专利名称:用于补偿正交误差的方法和系统的制作方法
技术领域:
本发明的某种实施方式涉及一种陀螺仪,或者更确切地说是涉及一种陀螺仪装置,和/或一种用于补偿正交误差的方法和系统,例如补偿陀螺仪,或者更准确地说是补偿陀螺仪装置的正交误差。
背景技术:
对于陀螺仪装置而言,正交误差的产生是一个需要解决的问题。例如,一个正交误差可以是一个干扰信号,该干扰信号叠加在一个可用的转动速率信号上。对于一个陀螺仪,正交误差是由运动物体在几何层面上的不准确性和不对称性引起的。这种正交误差的幅值可以是全偏差的十倍到百倍。正交误差会影响到一个陀螺仪的质量,例如通过如下参数·
电荷放大器的动态范围
输出端干扰,和/或 零速率水平的温度偏差
例如,由专利公开文本US 6,067,858、EP I 752 733 A2、US 2006/0213265 Al 和 US2010/0132461 Al中公开的用于补偿正交误差的方法和装置。所有这些专利公开文本中都提出由于传感器的正交误差的存在,被驱动的物体的真实运动会与理想情况下的运动存在一定偏差,但还是要使真实的运动尽可能地接近理想情况下的运动。通过将这种方法和系统与本发明的几个观点进行比较,如在本发明其余的申请文本和附图中所描述的,可以为中等专业人士展示出,常规和传统的方式的局限性和缺点。
发明内容
本发明涉及一种微电子机械系统(MEMS)传感器和一种补偿微电子机械系统(MEMS )传感器中的正交误差的方法,其中该微电子机械系统(MEMS )传感器用于检测一个基板的运动,特别是检测一个基板的加速度和/或者转动速率。至少一个放置于所述基板上的物体借助一个传动电极进行驱动,并且该物体相对于所述基板运动地安置。由于正交误差的存在,所述物体(或所述多个物体)执行的运动与所预定的运动之间存在一定的偏差。由于科里奥利力(Corioli)和正交误差的存在,所述物体(或所述多个物体)会发生偏移,该偏移可以利用一个检测电极来进行检测。例如,通过在传感器制作过程中很小的加工偏差和/或者通过不均匀的热膨胀而引起的正交偏差有如下影响运动的物体的运动状态和其理想的、理论上给定的运动方向之间存在偏差。由此会在检测电极上产生信号,该信号会叠加在用于检测传感器的加速度和/或者转动速率的信号上和妨碍信号的正确检测。根据本发明借助一个补偿电极检测电容的变化,该电容的变化取决于所述物体(或所述多个物体)的传动运动。在所述补偿电极上,会产生一个补偿电荷,该补偿电荷取决于所述微电子机械系统(MEMS)传感器的正交误差,特别的是该补偿电荷与所述正交误差成正比。为了达到补偿效果,所述补偿电荷会与通过正交误差在检测电极上产生的虚假以及错误的电荷相互抵消。在这种情况下,很明显的是,所述物体或所述多个物体的运动受到正交误差的影响,会产生偏差,当所述补偿电荷仅仅被添加到检测到的虚假以及错误的电荷上,该运动就不会改变。当错误的运动一直保持下去,检测到的电荷必定与补偿电荷相互抵消。与之相反,现有技术中提出,可以按照如下方式影响物体的运动物体的运动进一步地接近理想情况下的运动并在检测电极上产生一个真实的信号。相反的,在本发明中,补偿过程既不影响物体的运动,也不影响电极上的电荷。即检测到错误信号之后才实施补偿过程。其中被抵消的是错误的信号而不是物体的运动。如下方案是特别有利的所述通过正交误差在检测电极上产生的电荷和所述补偿电荷大体上完全相抵。由此可以完全消除正交误差的影响并以最准确的方式得到测量结果O如下方式是有利的为了产生一个补偿电荷,在所述补偿电极上施加一个预先设 定的电压,该电压取决于所述微电子机械系统(MEMS)传感器的正交误差。在本发明的一种有利的实施方式中,所述补偿电荷和所述检测电极的电荷相互叠力口,由此可以得到一个由上述两个信号组成的新信号,该新的信号抵消了所述正交误差并使所述物体的运动接近虚拟的理想情况下的运动。在一种有利的实施方式中,所述已叠加的电荷被输送到一个评估电子模块,因此电荷信号被发送到传感器内部的评估设备,该电荷信号将抵消物体真实的运动偏差并由此模拟理想情况下的运动。所述补偿电荷和所述检测到的电荷受正交误差影响的一部分相互抵销,从而仅仅将在理想的运动情况下才能检测到的值发送出去。在这种情况下,所述评估设备以及评估电子模块仅仅得到一个已补偿的信号。在本发明的另外一种有利的实施方式中,不管是所述补偿电荷还是所述检测电极的电荷都被输送到一个评估电子模块,并在该评估电子模块内进行进一步的处理。因此,在所述评估电子模块内才进行叠加。在这种情况下,一方面,所述评估电子模块或者更准确地说是评估设备得到所述补偿电荷,另一方面还得到所述真实检测到的检测电荷的信号。之后,在电子模块内对上述两个信号进行进一步的处理,从而补偿所述正交误差。如下方案是特别有利的依据所述正交误差对所述补偿电荷进行调节。该调节过程可以立刻对变化后的正交误差做出反应并相应地修正所述补偿信号。对于工作方式极其准确的传感器或者会随着时间的流逝而变化的传感器,以上方案是特别有利的,例如,会随着时间的流逝而变化的该传感器是一个通过极端的温度变化而变化的传感器,其中该温度变化对所述正交误差有影响。在一种有利的实施方式中,所述微电子机械系统(MEMS)传感器的正交误差和/或者所述取决于所述正交误差的电压直接在所述微电子机械系统(MEMS)传感器的制造过程之后确定,由此可以以特别简单的方式确定专门的微电子机械系统(MEMS)传感器存在的误差,并为该误差设定一个固定的补偿电压。如下方式是有利的所述微电子机械系统(MEMS)传感器的正交误差和/或者所述取决于所述正交误差的电压在所述微电子机械系统(MEMS)传感器运行过程中确定。由此可以根据需要改变补偿电压,例如在超过规定的偏差的情况下。
本发明的微电子机械系统(MEMS)传感器用于检测一个基板的运动,特别的是检测一个基板的加速度和/或者转动速率,该微电子机械系统(MEMS)传感器具有一个基板和至少一个放置于所述基板上的物体,该物体相对于所述基板运动地安置,并且借助一个传动电极进行驱动。至少一个检测电极被稳定放置于所述基板上,该检测电极与至少一个放置于所述物体旁的电极共同用于检测物体的偏移,该偏移是因科里奥利力(Corioli)和正交误差引起的。除此以外还设置有一个用于补偿所述正交误差的设备。所述用于补偿所述正交误差的设备具有至少一个固定放置于所述基板上的补偿电极,该补偿电极与至少一个放置于所述物体旁的电极共同用于检测电容的变化,该电容的变化取决于所述物体或者所述多个物体的传动运动。此外还设置有一个电压源,该电压源在补偿电极上施加一个预先设定的电压,该电压取决于所述正交误差,用于产生一个补偿电压。除此以外还有一个所述补偿电极和所述检测电极之间的连接模块和/或者一个评估设备,该评估电子模块用所述补偿电荷抵消所述通过正交误差在所述检测电极内产生的电荷。同样的,所述检测电极也和一个评估设备相连,从而使所述检测电极的信号能进一步传输到评估设备或者评估电子模块。所述微电子机械系统(MEMS)传感器相应地按如下方式构设所述微电子机械系统(MEMS)传感器可以将一个已经进行补偿处理的单一信号发射到所述评估电子模块,其中 所述已经进行补偿处理的单一信号与电极的某个电荷相关。作为补充或者替补方案所述微电子机械系统(MEMS)传感器也可以发射两个信号到所述评估电子模块,即一方面发射一个补偿设备的信号,另一方面发射一个检测电极的信号,该信号出于正交误差的原因是虚假的。当所述评估设备或者评估电子模块具有一个调节设备时,所述微电子机械系统(MEMS)传感器可以以特别有利的方式特别准确地运行。在此,那些在传感器运行过程中出现的、对正交误差有影响的变化也可以考虑到。由此可以对正交误差的补偿进行修正和调
難
iF. O如下方式是有利的所述微电子机械系统(MEMS)传感器为一个一维或者多维传感器。所述微电子机械系统(MEMS)传感器即可以构设成具有本发明正交误差补偿功能的一维或者多维的加速度传感器,又可以构设成具有本发明正交误差补偿功能的一维或者多维的转动速率传感器,还可以构设成上述两种传感器的组合。优选而言,为每个需要进行补偿处理的检测维度设置一个单独的补偿设备。当然,也可以在所述微电子机械系统(MEMS)传感器内放置一个为用于多个维度而生成一个补偿信号的补偿设备。如下方案是有利的所述补偿电极设备额外地按如下方案设置,用于检测和评估传动运动和/或者驱动所述物体或者所述多个物体。就此,可以实现一种空间特别紧凑并且成本相对较低的传感器。
用于补偿正交误差的系统和/或者方法将结合附图以及权利要求书作进一步的展示和/或说明。下面结合说明和附图对本发明的优点、观点和新的特点作进一步详细的说明,同样也对具体实施例进行详细的说明。
图I为一个正交误差出现在一个电容式陀螺仪的示意图。图2为如何读取检测的示意图。图3为结合本发明的一个具体实施例的一个正交信号补偿装置的建议解决方案的示意图。图4为结合本发明的一个具体实施例的一个具有正交信号补偿装置的检测读取装置的示意图。图5为结合本发明的一个具体实施例的一个具有一个闭环调节回路的正交信号补偿装置的示意图。
具体实施例本发明的某种实施方式涉及一种用于补偿正交误差的方法和系统,例如补偿陀螺 仪装置的正交误差,但是并不只局限于陀螺仪装置。图I为一个正交误差出现在一个电容式陀螺仪的示意图。如图I中所示,“Rot”代表转子或者更准确的说是运动的物体,“D”代表传动电极,“SD”或者“S2a”和“S2b”代表传动检测电极,“S”代表检测电极,“ Ω ”代表转动速率,“X”代表传动方向,“y”代表检测方向。转子“Rot”借助一个弹簧“F”运动地安置在一个基板“Sub”。电极“D”、“SD”或者“S2a”和“S2b”用作为补偿电极,因为它们可以检测到物体“Rot”的运动,该物体“Rot”的运动与正交误差成正比。从图I可以看出,对于一个理想的系统,Ω= O 并且
jy 二 O。相应地就没有检测输出。相反的,对于一个真实的系统,Ω= O, Sy = Oo相应地就会出现一个干扰检测
输出信号。图2所示为一个描述检测输出的示意图,特别的是对于图I所示的所述理想系统和真实系统。如图2所描述的,相应的传动运动为=X=Xci* sin(cot)。当转动速率信号具有与传动速度相同的相位时,正交误差的相位与传动运动的相位几乎相同。该正交误差会使传动物体的运动与真实的线性传动运动之间存在偏差,例如传动物体的偏转运动与真实的线性传动运动之间存在偏差。此外,如图2中,运用了一个电荷放大器,借助这个具有电子接口(E)的电荷放大器可以读取在转子中产生的电荷。在理想的系统中,由转子(Rot)产生的检测输出取决于一个转动速率信号
Cla= CO + Ω *cos (ω t)Clb= CO - Ω *cos (ω t)
Qla= (CO + Ω *cos (ω t) )*VlaQlb= (CO - Ω *cos (ω t) )*Vlb
相反的,在真实的系统中
Cla= CO + Quad*sin (cot) + Ω *cos (ω t) Clb= CO - Quad*sin (ω t) - Ω *cos (ω t)Qla= (CO + Quad*sin(cot) + Ω *cos (ω t) )*Vla Qlb= (CO - Quad*sin (ω t)-Ω *cos(ω t) )*Vlb
在此,“ ω ”表示传动频率,“Q/’表示检测电极S1的静态电容,“Quad”表示由正交误差引起的电容偏差,“ Ω ”表示由转动速率引起的电容偏差。图3为结合本发明的一个具体实施例的一个正交信号补偿装置的建议解决方案的示意图。在此建议解决方案中,由具有干扰效果的检测运动在转子上产生的正交信号电荷通过产生一个相反的电荷实现补偿效果,其中会用到另外一对电极(s2a,s2b)。为了产生一个可以以这种方式实现补偿效果的信号,所述电极的电容必须仅仅随着传动运动而变化。图4为结合本发明的一个具体实施例的一个具有正交信号补偿装置的检测读取装置的示意 由图4得知,在一个补偿系统中
C2a= CO, 2 + X0*sin(cot)C2b= CO, 2 - X0*sin(cot) Q2a= (CO, 2 + X0*sin(cot))*V2aQ2b= (CO, 2 - X0*sin (ω t)) *V2b
Cla= CO + Quad*sin(cot) + Ω *cos (ω t) Clb= CO - Quad*sin(cot) - Ω *cos (ω t)Qla= (CO + Quad*sin(cot) + Ω *cos (ω t) )*Vla Qlb= (CO - Quad*sin(cot)-Ω *cos(ω t) )*Vlb
Qtot= Qla+ Qlb+ Q2a+ Q2b=
=C0*Vla + C0*Vlb + CO, 2*V2a+ CO, 2*V2b + Q*cos(cot)* (Via - Vlb) +sin(cot)*(Quad*Vla +X0*V2a - Quad *Vlb - X0*V2b )
相应的,可以通过对正交信号的适当校正来求解
N2a= -Via* (Quad/XO )且 V2b= - Vlb* (Quad/XO )
信号V2a,V2b与具有校正部分的Vla,Vlb相同。X0为由传动运动引起的电容偏差。该建议解决包含需要一个可以读取传动运动的电极,该电极可以是
-为此指定的电极,
-陀螺仪中现存的用于传动调节的电极,用于检测传动运动(SD),
-陀螺仪中现存的用于传动调节的电极,用于影响传动运动(D)。该解决可以用于Ix陀螺仪、2x陀螺仪和3x陀螺仪。在多轴陀螺仪中,每个检测轴都需要一个不同的校正电压。补偿信号可以用在不同的电极上(每个检测轴一个)或者对于所有检测轴用在同一个电极上(不同补偿信号的总和)。如果有必要,该解决方案也可以运用到检测一个或者多个方向的线性加速度的传感器中。在此,传动物体的运动也可以通过相应的抵消正交误差的信号来补偿。为了实施对正交误差的调节,设备运行的过程中,补偿电压可以变化。在这种情况下,当传感器运转时,同样可以将一个正交误差偏移抵消掉。为此,图5所示为一个校正后的正交信号补偿装置,该正交信号补偿装置与本发明的一个具体实施方式
一致。当然,参照某些具体实施方式
描写本发明的同时,对于本领域专业人士而言,也可以进行各种改变以及在不变更本发明范围的前提下对所描述的等效特点进行替代。此外,在不变更本发明的规范范围的前提下也可以进行许多改动,以适应特定的情况或者特别的材料。因此,它的目的在于,本发明不仅是限于特定描述的实施方式,而且是包含相应专利权利要求范围内的所有的实施方式。
权利要求
1.补偿微电子机械系统(MEMS)传感器中的正交误差的方法,其中该微电子机械系统(MEMS)传感器用于检测一个基板(Sub)的运动,特别是检测一个基板的加速度和/或者转动速率, 其中至少一个放置于所述基板(Sub)上的物体(Rot)借助一个传动电极(D)进行驱动,并且该物体(Rot)相对于所述基板运动地安置, 由于正交误差的存在,所述物体或所述多个物体(Rot)执行的运动与所预定的运动之间存在一定的偏差, 由于科里奥利力以及正交误差的存在,所述物体或所述多个物体(Rot)会发生偏移,该偏移可以利用一个检测电极(S)来进行检测, 其特征在于,包括以下步骤 借助一个补偿电极(D; DS; S2a,S2b)检测电容的变化,该电容的变化取决于所述物体或所述多个物体(Rot)的传动运动, 在所述补偿电极(D; DS; S2a, S2b)上,会产生一个补偿电荷,该补偿电荷取决于所述微电子机械系统(MEMS)传感器的正交误差,特别是该补偿电荷与所述正交误差成正比,和 所述物体或所述多个物体(Rot)的运动受到正交误差的影响,会产生偏差,当所述补偿电荷与通过正交误差在检测电极(S)上产生的电荷相互抵消,该运动就不会改变。
2.如权利要求I中所述的方法,其特征在于,所述通过正交误差在检测电极(S)上产生的电荷和所述补偿电荷大体上完全相抵。
3.如上述权利要求中一项或者多项所述的方法,其特征在于,为了产生一个补偿电荷,在所述补偿电极(D; DS; S2a,S2b)上施加一个预先设定的电压,该电压取决于所述微电子机械系统(MEMS)传感器的正交误差。
4.如上述权利要求中一项或者多项所述的方法,其特征在于,所述补偿电荷和所述检测电极(S)的电荷相互叠加。
5.如上述权利要求中一项或者多项所述的方法,其特征在于,所述叠加电荷被输送到一个评估电子模块(E)。
6.如上述权利要求中一项或者多项所述的方法,其特征在于,所述补偿电荷和所述检测电极(S)的电荷被输送到一个评估电子模块(E),并在该评估电子模块(E)内进行进一步的处理。
7.如上述权利要求中一项或者多项所述的方法,其特征在于,对所述补偿电荷的调节取决于正交误差。
8.如上述权利要求中一项或者多项所述的方法,其特征在于,所述微电子机械系统(MEMS)传感器的正交误差和/或取决于所述正交误差的所述电压直接在所述微电子机械系统(MEMS)传感器的制造过程之后确定。
9.如上述权利要求中一项或者多项所述的方法,其特征在于,所述微电子机械系统(MEMS)传感器的正交误差和/或取决于所述正交误差的所述电压在所述微电子机械系统(MEMS)传感器运行过程中确定。
10.用于检测一个基板的运动,特别是检测一个基板的加速度和/或者转动速率的微电子机械系统(MEMS)传感器,包括 一个基板至少一个放置于所述基板上的物体(Rot),该物体(Rot)相对于所述基板运动地安置,并且借助一个传动电极(D)进行驱动, 至少一个稳定放置于所述基板(Sub)上的检测电极(S),该检测电极(S)与至少一个放置于所述物体(Rot)旁的电极共同用于检测物体(Rot)的偏移,该偏移是因科里奥利力和正交误差引起的, 一个用于补偿所述正交误差的设备, 其特征在于,所述用于补偿所述正交误差的设备具备以下特点 包括至少一个固定放置于所述基板(Sub)上的补偿电极(D; DS; S2a,S2b),该补偿电极(D; DS; S2a, S2b)与至少一个放置于所述物体(Rot)旁的电极(D; DS; S2a, S2b)共同用于检测电容的变化,该电容的变化取决于所述物体或者所述多个物体(Rot)的传动运动, 包括一个电压源,该电压源在补偿电极(D; DS; S2a,S2b)上施加一个预先设定的电压,该电压取决于所述正交误差,用于产生一个补偿电压和 包括一个所述补偿电极(D; DS; S2a,S2b)和所述检测电极之间的连接模块和/或者一个评估电子模块(E),该评估电子模块(E)用所述补偿电荷抵消所述通过正交误差在所述检测电极(S)内产生的电荷。
11.如权利要求10中所述的微电子机械系统(MEMS)传感器,其特征在于,所述评估电子模块(E)具有一个调节设备。
12.如权利要求10和11中一项或者多项所述的微电子机械系统(MEMS)传感器,其特征在于,所述微电子机械系统(MEMS)传感器为一个一维或者多维传感器。
13.如权利要求10至12中一项或者多项所述的微电子机械系统(MEMS)传感器,其特征在于,所述补偿电极设备另须按如下方案设置用于检测和评估传动运动,和/或者驱动所述物体或者所述多个物体(Rot)。
全文摘要
本发明涉及微电子机械系统传感器和补偿微电子机械系统传感器中的正交误差的方法,其中该传感器用于检测基板运动,特别是检测基板的加速度和/或转动速率。至少一个放置于基板上的物体借助传动电极来驱动,并且物体相对于基板运动地安置。由于存在正交误差,所述至少一个物体执行的运动与预定运动间存在偏差。由于存在科里奥利力和正交误差,所述至少一个物体会发生偏移,该偏移可利用检测电极来检测。根据本发明,可以借助补偿电极检测电容变化,该变化取决于所述至少一个物体的传动运动。在补偿电极上会产生补偿电荷,其取决于所述传感器的正交误差。为了达到补偿效果,补偿电荷会与通过正交误差在检测电极上产生的虚假及错误的电荷相互抵消。
文档编号G01C25/00GK102889895SQ201210168238
公开日2013年1月23日 申请日期2012年5月28日 优先权日2011年5月26日
发明者卢卡·科洛纳多, 加布里埃莱·卡萨尼卡, 卡洛·卡米纳达, 曼努埃尔·桑托罗, 卢西亚诺·普兰迪, 戴米德·康迪利斯 申请人:马克西姆综合产品公司