山东科威数控机床有限公司铣床官方网站今天是:2025-05-03切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

预测银屑病关节炎患者对抗TNFα抗体的临床反应的血清标记物的制作方法

时间:2025-05-02    作者: 管理员

专利名称:预测银屑病关节炎患者对抗TNFα抗体的临床反应的血清标记物的制作方法
技术领域
本发明涉及使用血清生物标记物来预测经诊断患有银屑病关节炎的患者对用抗肿瘤坏死因子α (TNFa)生物治疗剂治疗的反应的方法和过程。
背景技术
用生物疗法如戈利木单抗(人的抗人TNFa单克隆抗体)治疗银屑病关节炎 (PsA)患者,面临着许多挑战。治疗和临床研究设计的有效性,受到对于在戈利木单抗治疗后会反应的PsA患者以及哪些PsA患者会丧失反应的预测能力的影响。替代标记物或生物标记物可用于应对这些问题。生物标记物定义为“被作为正常生物过程、致病过程、或对治疗性干预的药理反应的指示物客观测量与评价的特征”。生物标记物工作组(Biomarker Working Group), 2001. Clin. Pharm. and Therap. 69 :89_95。最近,生物标记物已被进一步定义为这样的蛋白质,所述蛋白质中表达的改变可以与疾病或进展的风险增加相关,或者所述蛋白质可以预测对给定治疗的反应。通过添加抗TNF α抗或生物制剂至体外或体内系统来中和TNF α,能够改变炎性细胞因子和许多其他血清蛋白以及非蛋白组分的表达。添加至培养的滑膜成纤维细胞的抗 TNFa 抗体减少细胞因子 IL-I、IL-6、IL-8 和 GM-CSF 的表达(Feldmann & Maini (2001) Annu Rev Immunol 19:163-196)。用英夫利昔单抗治疗的类风湿性关节炎(RA)患者具有降低的TNFR1、TNFR2、IL-IR拮抗剂、IL-6、血清淀粉样蛋白A、结合珠蛋白和纤维蛋白原的血清水平(Charles 1999 J Immunol 163 :1521-1528) 其他研究表明,用英夫利昔单抗治疗的RA患者具有降低的可溶性(s) ICAM-3和sP选择素的血清水平(Gonzalez-Gay,2006 Clin Exp Rheumatol 24 :373-379),以及细胞因子 IL-18 水平的降低(Pittoni, 2002 Ann Rheum Dis 61:723-725 ;van Oosterhout,2005 Ann Rheum Dis 64 :537-543)。在患有各种免疫介导的炎性疾病的患者中观察到升高水平的C反应蛋白(CRP)。 这些观察结果表明CRP可能具有作为抗TNF α治疗的标记物的潜在价值。M Clair, 2004 Arthritis Rheum 50 :3432-3443显示,英夫利昔单抗在早期RA患者中使CRP恢复到正常水平。在难治性银屑病关节炎(refractory psoriatic arthritis) (Feletar, 2004 Ann Rheum Dis 63 :156-161)中,用英夫利昔单抗治疗也使CRP恢复到正常水平。还显示CRP水平与仅用甲氨蝶呤治疗的早期RA患者的关节损伤进展相关(Smolen,2006 Arthritis Rheum 54 702-710)。将英夫利昔单抗治疗加入甲氨蝶呤治疗时,则CRP水平不再与关节损伤的进展相关。Strunk证明,RA患者的英夫利昔单抗治疗减少了炎症相关细胞因子如IL_6以及血管生成相关细胞因子如VEGF(血管内皮生长因子)的表达Q006 Rheumatol Int. 26 252-256)。Ulfgren(2000 Arthritis Rheum 43 :2391-2396)表明,英夫利昔单抗治疗在治疗两周内降低了滑膜中TNF、IL1和IL-I β的合成。MastroiannU2005 Br J Dermatol 153 :531-536)表明,VEGF、FGF和MMP-2的减少与英夫利昔单抗治疗后银屑病面积和严重程度的显著改善相关。Visvanathan(Ann Rheum Dis 2008,67 :511-517 ;)表明,英夫利昔单抗治疗降低了 PsA患者的血清中IL-6、VEGF和CRP的水平,并且这些降低反映改善的疾病活动度量。最近还查验了在T细胞介导的炎症过程中具有确定作用的脂肪细胞因子、瘦素和脂连蛋白与RA和对抗TNF疗法的反应的关系(Popa等人.2009,J. Rheumatol. 35 :274-30)。治疗前血清标记物浓度也与对抗TNFa治疗的反应相关。发现了 IL_2R的低基线血清水平与难治性RA患者对英夫利昔单抗的临床反应相关(Kuuliala 2006)。 Visvanathan(2007a)表明,用英夫利昔单抗加MTX治疗RA患者引起多种炎症相关标记物 (包括MMP-3)减少。研究数据表明,MMP-3的基线水平与治疗1年后临床改善的程度显著相关。已经特别针对银屑病关节炎查验了少数标记物。例如,FinH2007 Clin Experiment Rheum 25 =305-308)比较了活动性或非活动性PsA患者和健康对照组中的 VEGF,指出与其他两组相比,VEGF的水平在患有活动性疾病的患者中显著较高,并且与患者的临床监测评分如VAS和PASI相关。因此,尽管已经显示炎症和全身性疾病的多种血清蛋白标记物和非蛋白标记物在抗TNF α治疗期间被改变,然而迄今未找到预测对于受到这样治疗的全部炎性疾病或对于特定疾病(如银屑病关节炎)有反应或无反应的独特的标记物组和预测算法。

发明内容
本发明涉及使用多种生物标记物来预测患者对抗TNF α疗法治疗的反应,并且更具体地涉及使用多种生物标记物来确定患者是否会对治疗反应。此外,本发明可以用来确定患者是否已经对治疗反应,并且该反应是否会持续。在一个方面,本发明包括多组分筛选法的用途,所述多组分筛选法使用患者血清样品来预测PsA患者对用TNF α中和单克隆抗体治疗有反应以及无反应。在一个实施例中,使用在数据集中识别的已经与实际临床反应评估结果相关的特定标记物组来预测用抗TNF α疗法治疗前所测试的PsA患者的临床反应,其中所述数据集来自抗TNFa疗法开始之前的PsA患者。在一个特定实施例中,所述标记物组是选自脂连蛋白、MDC、PAP、SGOT, VEGF、脂蛋白、A和β -2-微球蛋白的两种或更多种标记物。在另一个实施例中,使用在数据集中识别的已经与实际临床反应评估结果相关的特定标记物组来预测用抗TNFa疗法治疗前所测试的PsA患者的临床反应,其中所述数据集来自抗TNFa疗法开始之前和之后的PsA患者。在一个特定实施例中,所述标记物组是选自脂连蛋白、MDC、PAP、SGOT, VEGF、脂蛋白A和β -2-微球蛋白的两种或更多种标记物。本发明还提供了用于预测PsA患者对抗TM^a疗法的反应的基于计算机的系统,其中所述计算机使用来自患者数据集的值来与预测算法例如决策树进行比较,其中所述数据集包括选自脂连蛋白、MDC、PAP、SGOT、VEGF、脂蛋白A和β _2_微球蛋白的一种或多种标记物的血清浓度。在一个实施例中,所述基于计算机的系统是用于处理患者数据集并且产生输出的受训神经网络,其中所述数据集包括选自脂连蛋白、MDC、PAP、SGOT、VEGF、脂蛋白A 和β-2-微球蛋白的一种或多种血清标记物浓度。本发明还提供了能够处理和检测从PsA患者获得的标本或样品中的血清标记物的装置,其中所述血清标记物浓度选自脂连蛋白、MDC、PAP、SGOT、VEGF、脂蛋白A和β -2-微球蛋白。在一个实施例中,所述装置将通过检测脂连蛋白、MDC、PAP、SGOT、VEGF、脂蛋白A 和β-2-微球蛋白中的一者所产生的信息在用于预测对抗TNFa疗法有反应或无反应的算法中进行比较。本发明还提供套盒,所述套盒包括能够处理和/或检测从I^sA患者获得的标本或样品中的血清标记物的装置,其中所述血清标记物浓度选自脂连蛋白、MDC、PAP、SG0T、 VEGF、脂蛋白A和β -2-微球蛋白,从而经处理和/或检测的血清标记物水平可以与用于预测对抗TNF α疗法有反应或无反应的算法进行比较。


图1-2是以决策树形式示出的PsA反应预测模型,所述决策树基于血清标记物的使用并且与ACRS20所评价的患者临床反应相关。无反应者或“否”节点意指该节点中的受试者由该模型预测为无反应者,而“是”节点意指该节点中的受试者由该模型预测为反应者。在该节点内,由符号“/”隔开显示该节点中实际无反应者的数量和实际反应者的数量。图1是由基线(第0周)标记物数据建立的预测模型,在第14周使用ACR20从接受戈利木单抗的研究患者通过多重方法分析所述基线标记物数据,其中无反应者的初始分类器基于VEGF(临界值< 8. 08,对数标度),并且反应者的第二分类器基于VEGF(临界值 >=8. 08,对数标度)、PAP(临界值> =-2.四,对数标度),以及作为脂连蛋白的第三分类器(临界值>=1.35,对数标度)。基于VEGF (临界值>=8. 08,对数标度)和PAP小于
<"2. 29或VEGF(临界值>于>=8. 08,对数标度)、PAP >= -2. 29和脂连蛋白(临界值
<1.35,对数标度),一患者也被预测为无反应者。图2是由基线(第0周)至第4周的标记物水平数据变化和在第14周ACR20的变化建立的预测模型,从接受戈利木单抗的研究患者通过多重方法分析所述基线标记物数据,其中初始反应者标准是MDC的变化(临界值>大于>等于-0.12,对数标度)并且次级分类器是脂蛋白A的变化(临界值<小于-0. 23);当脂蛋白A的变化大于或等于所述临界值并且MDC的变化大于或等于所述临界值时,该患者被预测为反应者。基于β 2-微球蛋白变化(临界值>大于>等于-0. 11,对数值),MDC变化<小于-0. 12的患者被再分类为反应者,并且如果β 2-微球蛋白变化小于所述临界值,则该患者被再分类为无反应者。
具体实施例方式MMACR,美国风湿病学会评分CART,分类与回归树模型CRP,C反应蛋白
DAS28,使用28个关节的疾病活动指数评分DIP,远端指节间EIA,酶免疫测定法ELISA,酶联免疫测定法G-CSF =粒细胞集落刺激因子HAQ,健康评估问卷MAP,多重分析物特征图MDC,巨噬细胞源趋化因子NAPSI,银屑病甲严重性指数PAP,前列腺酸性磷酸酶PASI,银屑病关节炎严重性指数I^sA,银屑病关节炎SELDI,表面增强激光解吸与离子化SAP,血清淀粉样蛋白P组分SGOTTNF α /TNF α,肿瘤坏死因子αTNFR,肿瘤坏死因子受体VEGF,血管内皮生长因子ILIL,白介素IL-1R, IL-I 受体VAS,视觉模拟评分^X“生物标记物”由生物标记物定义工作组定义为‘被作为正常生物过程、致病过程、 或对治疗性干预的药理反应的客观指示物客观地测量和评价的特征’ (Atkinson等人,2001 Clin Pharm Therap 69(3) :89-95)。因此,解剖学或生理学过程可以作为生物标记物,例如活动范围,如同蛋白质、基因表达(mRNA)、小分子、代谢物或矿物质的水平可以充当生物标记物那样,前提条件是该生物标记物与相关的生理、毒理、药理和临床结果之间存在经验证的联系。标记物的“血清水平”意指通过一种或多种方法(例如免疫测定法)对从标本(例如血液)制备的样品(通常离体)测量的标记物的浓度。免疫测定法对每种标记物使用免疫特异性试剂(通常为抗体),并且此测定法可以多种形式(包括酶偶联反应,例如,EIA、 ELISA、RIA、或其他直接或间接探针)进行。对样品中标记物进行定量的其他方法也是可能的,例如与电化学探针、荧光探针连接的检测法。该测定也可以是“多重的”,其中多种标记物在单个样品分析时被检测和定量。观察研究通常将其结果报告为比值比(OR)或相对风险。两者均为暴露(例如,吸烟、使用药物等)与疾病或死亡之间的关联程度的量度。相对风险1.0表示该暴露不会改变疾病的风险。相对风险1. 75表示患者暴露时发展该疾病的机会是原来的1. 75倍或罹患该疾病的风险高出75%。小于1的相对风险表示该暴露降低了风险。当相对风险不能具体计算时,比值比为病例-对照研究中估计相对风险的一种方法。虽然当疾病罕见时它是准确的,但当该疾病常见时,这种逼近就没那么可靠了。预测值有助于解释临床环境下测试的结果。过程的诊断价值通过其灵敏度、特异性、预测值和有效性来定义。任何测试方法都会产生真阳性(TP)、假阴性(FN)、假阳性(FP) 和真阴性(TN)。测试的“灵敏度”是具有疾病表现或确实反应的具有阳性测试的全部患者的百分比即(TP/TP+FN)X100%。测试的“特异性”是没有疾病或确实无反应的具有阴性测试的全部患者的百分比即(TN/FP+TN)X100%。测试的“预测值”或“PV”是所述值(阳性或阴性)为真值的次数的测量值(% ),即作为真阳性的全部阳性测试的百分比是阳性预测值 (PV+)或(TP/TP+FP)X100%。“阴性预测值”(PV-)是无反应的具有阴性测试的患者的百分比即(TN/FN+TN) X100%。试验的“准确性”或“有效性”是与总测试数相比该测试给出正确答案的次数的百分比即(TP+TN/TP+TN+FP+FN)X100(%。“误差率”根据预测有反应但实际无反应的那些患者和预测无反应但反应的患者算出,也就是(FP+FN/TP+TN+FP+FN) X 100%。 整体测试“特异性”是灵敏度的准确性的量度,并且测试的特异性不随群体中疾病的整体可能性变化而变化,而预测值则确实变化。PV随医师临床评估给定患者中疾病的存在或不存在或临床反应的存在或不存在而变化。生物标记物的“减低水平”或“较低水平”指可量化地小于称作“临界值”的预定值且高于定量下限(LLOQ)的水平。这种确定的“临界值”对与患者取样和治疗状况相关的算法和参数是特定的。生物标记物的“较高水平”或“升高水平”指可定量地高于称作“临界值”的预定值的水平。这种“临界值”对与患者取样和治疗状况相关的算法和参数是特定的。如本文所用,术语“人TNF α ”(本文缩写为hTNFa或简略为TNF)用来指作为17kD 分泌形式和^kD膜相关形式存在的人细胞因子,其生物活性形式由非共价结合的17kD分子的三聚体构成。术语“人TNF α ”用来包括重组的人TNF α (rhTNF α ),其可通过标准重组表达方法制备或商购获得(R&D Systems,目录号210-TA,Minneapolis,Minn.)。“抗TNF α,,或简略为“抗TNF”疗法或治疗意指将能够阻断、抑制、中和、防止受体结合或防止TNFR被TNF α激活的生物分子(生物药剂)施用至患者。此类生物药剂的例子是针对TNFa的中和单克隆抗,包括但不限于在通用名英夫利昔单抗、阿达木单抗和戈利木单抗下销售的那些抗体,以及处于临床开发阶段的抗体。还包括能够结合TNFa的非抗体构建体例如称为依那西普的TNFR免疫球蛋白嵌合体。该术语涵盖本文描述的抗TNF α人抗体和抗体部分以及在美国专利Nos. 6,090,382 ;6, 258,562 ;6, 509,015和美国专利申请 kr. Nos. 09/801185和10/302356中描述的那些。在一个实施例中,用于本发明中的TNF α 抑制剂是抗TNF α抗体或其片段,包括英夫利昔单抗(Remicade ,Johnson and Johnson ; 在以引用方式并入本文的美国专利No. 5,656,272中描述)、⑶P571 (人源化单克隆抗 TNF- α IgG4抗体)、CDP 870 (人源化单克隆抗TNF α抗体片段)、抗TNF dAb (Peptech)、 CNTO 148(戈利木单抗;WO 02/12502 和 US7, 250, 165)和阿达木单抗(Humira Abbott Laboratories,人抗TNF mAb,在美国专利No. 6,090,382中记为D2E7)。可以用于本发明中的额外 TNF 抗体在美国专利 Nos. 6,593,458 ;6,498,237 ;6,451,983 ;和 6,448,380 中描述, 所述专利每一篇均以引用方式并入本文。在另一个实施例中,TNFa抑剂为TNF融合蛋白, 例如,依那西普(Enbrel ,Amgen ;在以引用方式并入本文的WO 91/03553和WO 09/406476 中描述)。在另一个实施例中,TNFa抑制剂是重组TNF结合蛋白(r_TBP_I) (Serono)。
“样品”或“患者的样品”意指这样的标本,所述标本是从疑似患有或已经表现出与 TNFa相关疾病有关的症状的患者中提取、产生、采集、或以其他方式获得的细胞、组织、或流体或它们的部分。鍵近期在技术(例如蛋白质组学)上的进展向病理学家提出了挑战,要求将用高通量方法产生的新信息与基于临床病理学相关性并通常涵盖组织病理学发现的当前诊断模型整合在一起。医疗信息学和生物信息学领域的并行发展为以合理方式解决这些问题提供了技术和数学方法,从而向从业者和病理学家或其他医学专家提供了多变量多学科诊断预后模型形式的新工具,进而有希望提供更加准确的、个性化的基于患者的信息。循证医学 (EBM)和医疗决策分析(MDA)属于这类学科,它们使用定量方法来评估信息的价值并将所谓的最佳证据整合到多变量模型中用于评估预后、治疗反应和可能影响个体患者护理的化验方法的选择。本文公开并要求保护的主题包括几个方面,如1.使用血清或其他样品类型来识别与PsA患者中对抗TNF(如戈利木单抗)治疗有反应或无反应的相关的生物标记物;2.在开始抗TNF疗法之前,用来自PsA确诊患者的血清或其他样品类型中存在的生物标记物来预测对抗TNF a Mab (如戈利木单抗)治疗有反应或无反应的能力;3.用于预测接受抗TNF疗法的PsA患者的治疗结果的算法;a.在抗TNF疗法开始之前,可以在使用PsA确诊患者的血清或其他样品类型中存在的生物标记物评估时(第0周)预测PsA患者在第14周或稍后随访时对抗TNF α的临床反应或无反应。b.可以使用生物标记物距治疗开始前(第0周)和治疗开始后在第4周所获得的基线值的变化,预测PsA患者在第14周或之后随访时对抗TNF α治疗的临床反应或无反应。c.可以使用生物标记物距治疗开始前(第0周)所获得的基线值的变化联合治疗开始后在第4周的生物标记物变化,预测PsA患者在第14周或之后随访时对抗TNF α治疗的临床反应或无反应;以及4.装置、系统和套盒,其包括使用本发明标记物来预测PsA患者对抗TNF α疗法有反应或无反应的装置。为了判定可用于建立基于标记物浓度的预测算法的标记物,从用戈利木单抗治疗的患者获得血清。可在治疗的基线(第0周)、第4周和第14周或其他的居中时间点的或更长的时间点获得血清。对血清样品中的许多生物标记物作了分析,并对基线浓度以及治疗后生物标记物浓度的变化作了测定。然后使用生物标记物表达的基线和变化来确定生物标记物表达是否与治疗开始后第14周或其他限定时间点的治疗结果相关,如通过ACR20或临床反应的另一度量标准进行评估。在一个实施例中,用于定义与PsA患者对抗TNFa疗法临床反应相关的标记物和建立用于预测有反应或无反应的算法的过程使用了逐步分析法,所述算法涉及这些标记物的血清浓度,其中初始相关性通过逻辑回归分析法完成,所述逻辑回归分析法将每个患者在第0周、第4周和第14周的每种生物标记物的值与该患者在第14周和第M周的临床评估结果相关联,并且一旦确定标记物能够在多个临床终点与治疗反应显著相关,则使用如本文所述的或本领域所知的CART或其他合适的分析方法,建立基于所限定的标记物或标记物组的血清值的独特算法。除了本文所公开的其他标记物,数据集标记物可选自一个或多个临床指标,例如年龄、种族、性别、血压、身高和体重、身体质量指数、CRP浓度、吸烟、心率、空腹胰岛素浓度、 空腹葡萄糖浓度、糖尿病状态、使用其他药物、以及特定的功能或行为评估结果和/或基于放射学或其他图像的评估结果,其中数值被应用于各个度量方法或产生总体的数值评分。 通常会评估临床变量,并且将所得的数据在算法中与上文描述的标记物组合。在输入到分析过程之前,通常以三份或多重三份测量各标记物的值,从而收集每个数据集中的数据。可对数据进行操作,例如原始数据可使用标准曲线变换,并且用三份测量值的平均值来计算每个患者的平均值和标准偏差。这些值可在用于模型前进行变换,例如,对数变换、Box-Cox 变换(参见 Box and Cox (1964) J. Royal Stat. Soc, Series B, 26 211-212 ;1964),或本领域已知或实行的其他变换。这些数据然后被输入具有确定参数的分析过程。然后让这样获得的与蛋白质标记物和其他数据集组件相关的定量数据经历具有使用学习算法事先确定的参数的分析过程,即,输入预测模型中,如本文所提供的实例(实例1- 中那样。分析过程的参数可以是本文所公开的那些或者使用本文所述的指导得出的那些。将学习算法例如线性判别分析法、递归特征排除法、微阵列预测分析、逻辑回归法、 CART、FlexTree、LART、随机森林法、MART、或另一种机器学习算法应用于合适的基准或训练数据,以确定适用于PsA反应或无反应分类的分析过程的参数。该分析过程可设定用来确定样品属于给定类别的概率的阈值。概率优选地为至少 50%、或至少60%、或至少70%、或至少80%、或更高。在其他实施例中,该分析过程确定所得数据集和参考数据集之间的比较是否产生统计学上显著的差异。如果是这样,那么该数据集所源自的样品被归类为不属于参考数据集类。相反地,如果该比较与参考数据集没有统计学上显著的差异,那么该数据集所源自的样品被归类为属于参考数据集类。—般来讲,该分析过程在形式上为通过统计学分析方法例如线性算法、二次算法、 多项式算法、决策树算法、投票算法产生的模型。/ mmMmm^m^Mfrmmmm采用合适的基准或者说训练数据集通过任何合适的学习算法来确定用于分类 (即建立预测模型)的分析过程的参数。待使用的基准即训练数据集将取决于待确定的想要的PsA分类,例如反应者或无反应者。数据集可包括来自两个、三个、四个、或更多个类别的数据。例如,为了使用受监督的学习算法来确定用于分析过程(其用来预测对抗TNF α 疗法的反应)的参数,使用包含对照样品和发病样品的数据集作为训练集。作为另外一种选择,受监督的学习算法将用来建立PsA病疗法的预测模型。统计分析以下为统计分析方法的类型的例子,这些方法可供本领域的技术人员使用,以帮助实施本发明所公开的方法。统计分析可被应用于两个任务中的一者或两者。首先,可使用这些和其他统计学方法来识别标记物和其他指标的优选子集,这些优选子集将形成优选数据集。此外,可使用这些和其他统计学方法来生成分析过程,其应用于数据集以得到结果。本文介绍的或以其他方式在本领域获得的统计学方法中的若干方法可同时完成这两个任务,并且产生适合用作分析过程的模型以实施本文所公开的方法。在一个具体实施例中,生物标记物和它们对应的特征(例如,表达水平或血清水平)用来建立一个分析过程或多个分析过程,所述分析过程区分患者类别,例如,对于抗 TNF疗法的反应者和无反应者一旦使用这些示例性数据分析算法或本领域已知的其他方法建立了分析过程,则该分析过程可用来将测试受试者分类到两个或多个表型分类之一(例如预测对抗TNF α疗法有反应的患者或无反应的患者)。这通过将分析过程应用于从测试受试者获得的标记物特征图来实现。因此,此类分析过程具有作为诊断指标的价值。在一个方面,所公开的方法为相对于得自训练群体的标记物特征图来评价得自测试受试者的标记物特征图创造了条件。在一些实施例中,得自训练群体的受试者以及测试受试者的每种标记物特征图包括多种不同标记物各自的特征。在其他的实施例中,这种比较通过如下方式实现(i)使用得自训练群体的标记物特征图,建立分析过程,并且(ii)将该分析过程应用于得自测试受试者的标记物特征图。如此,在本文所公开的方法的一些实施例中应用的分析方法用来确定测试PsA患者是否被预测为对抗TNF α疗法有反应或无反应的患者。因此,在一些实施例中,上述二元决策情形中的结果具有4种可能结局(i)真实反应者,其中该分析过程表明受试者将是抗TNF α疗法的反应者并且该受试者在有限时间段期间对抗TNF α疗法有反应(真阳性,TP) ; (ii)虚假反应者,其中该分析过程表明受试者将是抗TNF α疗法的反应者并且该受试者在有限时间段期间对抗TNF α疗法无反应(假阳性,FP) ; (iii)真实无反应者,其中该分析过程表明受试者将不是抗TNF α疗法的反应者并且该受试者在有限时间段期间对抗TNF α疗法无反应(真阴性,TN);或(iv)虚假无反应者,其中该分析过程表明受试者将不是抗TNF α疗法的反应者并且事实上该受试者在有限时间段期间确实对抗TNF α疗法有反应(假阴性,FN)。用于建立分析方法的相关数据分析算法包括(但不限于)判别分析,包括线性、 逻辑以及更灵活的判别方法(参见,例如,Gnanadesikan,1977,Methods for Statistical Data Analysis of Multivariate Observations, New York :ffiley 1977,^ ! ] : 以引用方式全文并入本文);基于树的算法,例如分类与回归树(CART)及变型(参见,例
Breiman,1984, Classification and Regression Trees, Belmont, Calif. ;Wadsworth International Group);广义相加模型(参见,例如,Tibshirani,1990,Generalized Additive Models,London Chapman and Hall);以及神经网络(参见,例如,Neal,1996, Bayesian Learning for Neural Networks, New York Springer-Verlag ;以及 Insua, 1998,Feedforward neural networks for nonparametric regression In Practical Nonparametric and Semiparametric Bayesian Statistics,第 181-194 页,New York Springer0这些参考文献据此以引用方式全文并入。在具体的实施例中,本发明的数据分析算法包括分类与回归树(CART)、多重累计回归树(MART)、微阵列预测分析(PAM)或随机森林分析。此类算法对来自生物材料(例如血样)的复杂谱图进行分类,以将受试者分类为正常或分类为具有表征特定疾病状态的生物标记物表达水平。在其他实施例中,本发明的数据分析算法包括ANOVA和非参数等同物、线性判别分析法、逻辑回归分析法、最近邻分类器分析法、神经网络法、主成分分析法、二次判别分析法、回归分类法和支持向量机法。虽然此类算法可用来生成分析过程和/或增加分析方法应用的速度和效率以及避免研究者偏倚,然而本领域普通技术人员会体会到无需基于计算机的装置来实施使用本发明的预测模型的方法。CART分析的结果在本发明的一个方面,诊断患有I^sA的患者的血清标记物的分析以生物标记物基线值与对抗TNFa疗法的反应之间的显著相关为重点。在本发明的另一个方面,诊断患有 PsA的患者的血清标记物中从基线(抗TNF α疗法之前)至治疗后第4周的血清标记物变化的分析结果与该患者在之后的时间(第14周)的临床反应或无反应相关。在本发明的一个特定实施例中,发现VEGF的基线浓度可以是用于预测如ACR20对用戈利木单抗治疗的患者评价的第14周结果的初始分类器。在一个替代实施例中,其他基线标记物例如脂连蛋白、PAP和SGOT可以用作预测在第14周或第M周或其他时间点的结果的初始分类器,如ACR20、DAS28、或PCS、PASI、或活动性疾病的其他评分方法那样对于用戈利木单抗治疗的患者作出评估。医师可利用该信息来确定谁会受益于戈利木单抗治疗, 以及同样重要的,来识别那些不能受益于此类治疗的患者。作为另外一种选择,使用DAS28作为该模型的临床结果构成部分,并且基线处的 VEGF、基线处的脂连蛋白、基线处的PAP、或基线处的SGOT或其变化是分类的初始标记物。 已表明与第14周或第M周临床反应中至少一者相关的其他基线标记物水平包括IL-8、脱氧吡啶啉(deoxypyridinoline)、S_100 (由单核细胞产生的急性期蛋白质并且在来自RA和 PsA患者的血清和SF中升高)、透明质酸、骨碱性磷酸酶、IL-6 (血清)和VEGF (血清)。基线生物标记物预测对抗TNF α疗法的反应 当从仅包含基线生物标记物血清浓度值并且与用抗TNF α治疗剂治疗的PsA患者在多于一种临床反应评估方法(例如ACR20和DAS28)中的临床反应相关的数据集建立预测算法时,标记物包括VEGF、PAP和脂连蛋白。图1中的CART模型使用3种标记物以将患者分类为反应者或无反应者。对于每种标记物,使用单一阈值(例如,对于VEGF,该阈值是8.08幻。在这种模型中通过使用患者的生物标记值对患者分类,从决策树的顶部进行到底部。一旦到达该树底部的节点,则该患者的分类由节点标签决定(Yes或No分别指反应者和无反应者)。作为一个实例,考虑患者具有以下值VEGF = 9. 00前列腺酸性磷酸酶(PAP) = 1.00脂连蛋白=1.00在该树的顶部,第一标记物是VEGF,并且阈值是8. 082。由于VEGF值在本实例中是9. 00,沿着该树的右分支而下。下一个标记物是PAP,值1. 00大于-2.观7,故再次采用右分支。最后,脂连蛋白的值是1.00,小于阈值1.35,故采用左分支。最终结果是患者的值将它们置入“No”仓中,于是该受试者被分类为无反应者。注意,在一些情况下,由于CART模型的层级性,可以仅基于最高水平标记物对患者进行分类(例如,如果VEGF <小于8. 082, 将该受试者分类为无反应者,无论该模型中其余两个标记物的值是多少)。
如本文中所示,分析在基线(第0周,在治疗之前)从PsA患者获得的血清中的生物标记物,通过多重测定法定量,最佳CART模型包括VEGF作为初始分类器(图1)并且包括PAP作为第二分类器,同时以脂连蛋白作为第三分类器,此时PAP大于或等于患者中的阈值水平,所述患者具有大于或等于阈值水平的VEGF。模型灵敏度是53%,并且模型特异性是 95%。这些结果提示,可以在治疗前由医师测量生物标记物的基线水平,以确定哪些用戈利木单抗治疗的患者会对该治疗有反应或无反应。牛物标记物变化作为结局的早期预测物当比较PsA患者在第4周的基线血清水平变化时,与安慰剂治疗组相比,戈利木单抗治疗的患者组表现出显著不同的血清生物标记物水平。变化的生物标记物包括 α -1-抗胰蛋白酶、CRP、ENRAGE、结合珠蛋白、ICAM-I、IL-16、IL-18、IL-lra, IL_8、MCP_1、 MIP-I β、MMP-3、绿过氧物酶、血清淀粉样蛋白P、甲状腺素结合球蛋白、TNFRII和VEGF。为分析在基线和第4周从PsA患者获得的血清中与第14周主要临床终点(ACR20) 相关的生物标记物,该生物标记物模型使用MDC的变化作为初始分类器,随后使用脂蛋白A 的变化和β 2-微球蛋白的变化进行再次分类(图2)。本文所述的用于产生可用于预测PsA患者对抗TNF α疗法有反应或无反应的算法的具体实例表明,多种标记物与PsA过程相关并且迄今尚未充分确立每种特定生物标记物在诊断或预测治疗反应的定量解释。本申请人证实,算法可以通过对基于所定义的特定标记物的患者数据的取样来生成。在使用本发明标记物的一种方法中,使用计算机辅助的装置来捕获患者数据并且进行必要的分析。在另一方面,计算机辅助的装置或系统可以使用本文提供的数据作为“训练数据集”,以产生所需的分类器信息来应用预测性分析。用于讲行分析的仪器、试剂和套念可以在临床或研究实验室或者医院或医院外地点的中央实验室中,使用本文所述的标准免疫化学和生物物理方法进行用于预测PsA确诊患者对于抗TNF疗法的反应的血清标记物测量。标记物的定量可与例如其他标准测量法如WBC计数、血小板和ESR同时进行。 该分析可使用商购套盒或使用多重分析对单个患者样品分别或分批进行。在本发明的一个方面,在一个或多个步骤中使用单个和成组试剂来确定患者样品中生物标记物或生物标记物组的相对量或绝对量。可用试剂来捕获生物标记物,例如对生物标记物具有免疫特异性的抗体,该抗体形成配体生物标记物对,可通过间接测定例如酶联免疫特异性分析来测定。可进行单一分析物EIA或多重分析。多重分析为这样的技术, 通过该技术可使用单个血清样品进行多个同时的基于EIA的分析。可用于在非常小的样品体积中定量大量生物标记物的平台是Rules Based Medicine (Austin, Texas) (Luminex Corporation所有)采用的xMAP 技术,该技术将光学分类方案、生化检测、流式细胞仪和先进的数字信号处理硬件和软件整合在一起,实现了在单个反应容器中运行多达100路的基于微球的分析。在该技术中,多路复用通过为每个分析物特异的分析指定一个带有独特荧光标记的微球组来完成。多重分析在流式装置中分析,该装置在每个微球通过红色和绿色激光时对每个微球进行单独询问。作为另外一种选择,可使用方法和试剂来处理样品,以便检测以及使用直接的物理测量(例如质量、电荷或组合,例如通过SELDI测量)进行可能的定量。也已经开发了定量质谱多反应监测分析,例如NextGen Sciences (Ann Arbor,MI)提供的那些。因此,根据本发明的一个方面,用来评价PsA状态的生物标记物的检测需要使来自受试者的样品与其上具有捕获试剂的底物(例如,探针)在允许生物标记物和该试剂间结合的条件下接触,然后通过合适方法检测与吸附剂结合的生物标记物。检测标记物的一个方法是气相离子谱,例如质谱。可用于此目的的其他检测范例包括光学方法、电化学方法(伏安法、电流分析法或电致化学发光技术)、原子力显微镜法以及射频方法,例如多极共振分光法。除了显微镜法(共焦和非共焦)外,示例性的光学方法为荧光、发光、化学发光、吸光度、反射率、透射比和双折射率或折射率的测定方法(例如,表面等离子体共振、椭圆光度法、共振镜法、波导光栅耦合器法或干涉测量法)、以及酶偶联比色法或荧光法。将检测方法应用于处理过的标本或样品之前,来自患者的标本可能需要处理,例如但不限于浓缩、纯化标记物、或将标记物与标本的其他组分分开。例如,通常允许血样凝固,随后离心以产生血清,或用抗凝剂处理,并且在经历检测分析物浓度的方法之前移去细胞组分和血小板。作为另外一种选择,可通过连续处理系统完成检测,该处理系统可以并入完成此类浓缩、分离或纯化步骤的材料或试剂。在一个实施例中,该处理系统包括使用捕获试剂。一种类型的捕获试剂为“色谱吸附剂”,其为通常用于色谱法的材料。色谱吸附剂例如包括离子交换材料、金属螯合剂、固定化金属螯合物、疏水相互作用吸附剂、亲水相互作用吸附剂、染料、简单生物分子(例如,核苷酸、氨基酸、单糖和脂肪酸)、混合模式吸附剂(例如,疏水吸引/静电排斥吸附剂)。“生物特异性”捕获试剂是生物分子类型的捕获试剂,所述生物分子例如,核苷酸、核酸分子、氨基酸、多肽、多糖、脂质、类固醇或这些物质的缀合物 (例如,糖蛋白、脂蛋白、糖脂)。在某些情况下,生物特异性吸附剂可以是大分子结构,例如多蛋白复合体、生物膜或病毒。示例性生物特异性吸附剂为抗体、受体蛋白和核酸。生物特异性吸附剂与色谱吸附剂相比通常具有对目标分析物更高的特异性。因此,根据本发明,生物标记物的检测和定量可通过使用特定的选择性条件(例如,吸附剂或洗涤溶液)来增强。洗涤溶液是指这样的试剂(通常为溶液),其用来影响或改变吸附剂表面对分析物的吸附性和/或从表面去除未结合的材料。洗涤溶液的洗脱特性取决于例如PH、离子强度、疏水性、离液序列度、洗涤剂强度和温度。在本发明的一个方面,样品以多路复用方式进行分析,这意味着来自患者样品的标记物的处理几乎同时进行。在一个方面,用含有多种捕获试剂(代表独特的特异性)的底物接触样品。捕获试剂通常为免疫特异性的抗体或其片段。底物可为单个元件例如“生物芯片”,该术语表示这样的固体底物,其具有总体上平坦的表面,其上附着捕获试剂;或者捕获试剂分隔于多个底物之间,例如结合于单个球形底物(微珠)。通常,生物芯片的表面包括多个可寻址位点,每个位点上都结合有捕获试剂。生物芯片可适于与探针接口接合,并且因此作为气相离子谱(优选地为质谱)中的探针发挥作用。作为另外一种选择,本发明的生物芯片可安装于另一个底物上来形成可插入到光谱仪中的探针。就微珠而言,单个微珠可在暴露于待测样品后分隔或分类。根据本发明,多种用于捕获和检测生物标记物的生物芯片可得自商业来源, 例如 Ciphergen Biosystems(Fremont, CA)、Perkin Elmer(Packard BioScience Company (Meriden CT)、Zyomyx (Hayward, CA)禾口 Phylos (Lexington,MA)、GE Healthcare, Corp. (Sunnyvale, CA)。这些生物芯片的示例是在美国专利No. 6,225,047 (上文)和 No. 6, 329, 209 (Wagner 等人)并且在 WO 99/51773 (Kuimelis 和 Wagner)、WO 00/56934 (Englert等人)中描述的那些生物芯片,并且特别是使用了检测分析物标记在样品中的存在或含量的电化学方法和电化学发光方法的那些生物芯片,如Wohlstadter等人、W098/12539和美国专利No. 6,066, 448中教导的那些多特异性、多阵列。将具有生物特异性捕获和/或检测试剂的底物与样品(含有例如血清)接触一段时间,该段时间足以允许可能存在的生物标记物与试剂结合。在本发明的一个实施例中,将多于一种类型的其上具有生物特异性捕获或检测试剂的底物与生物样品接触。孵育一段时间后,洗涤底物以去除未结合的材料。可使用任何合适的洗涤溶液,优选地使用水溶液。结合到底物上的生物标记物在解吸后直接通过使用气相离子谱仪(例如飞行时间质谱仪)进行检测。生物标记物通过离子源(例如激光)离子化,产生的离子通过离子光学组件收集,然后质量分析器分散并分析通过的离子。然后检测器将检测到的离子的信息转换成质荷比。生物标记物的检测通常会涉及到信号强度的检测。因此,生物标记物的数量和质量均可测定。此类方法可用于发现生物标记物以及在某些情况下用于生物标记物的定量。在另一个实施例中,本发明的方法是能够使得例如在US 5,571,410和US RE36350中教导的用于液相分析的液体样品处理和分析装置微型化的微流体装置,所述微流体装置可用于检测和分析液相中的小和/或大分子溶质,任选地采用色谱分离方法、电泳分离方法、电色谱分离方法、或它们的组合。该微流体装置或“微装置”可以包括排列成可以分开分析物流体的多个通道,使得生物标记物可以在该装置内的可寻址位置捕获并且 (任选地)检测(US5, 637,469、US6, 046,056 和 US6, 576,478)。由生物标记物检测产生的数据可用可编程数字计算机进行分析。计算机程序对数据进行分析以指示检测到的标记物的数量和信号的强度。数据分析包括测定生物标记物的信号强度以及去除偏离预定统计分布的数据的步骤。例如,数据可相对于某个基准归一化。 计算机可将所得的数据转化成各种格式,以用于显示(如果需要)或用于进一步的分析。人工神经网络在一些实施例中,使用神经网络。可针对所选定的标记物组来构造神经网络。神经网络为二阶回归或分类模型。神经网络具有层状结构,其包括通过权重层与输出单元层连接的输入单元(和偏置)层。对于回归,输出单元层通常只包括一个输出单元。然而,神经网络能够以无缝方式处理多个定量性反应。在多层神经网络中,有输入单元(输入层)、隐单元(隐藏层)和输出单元(输出层)。此外,还有单个的偏置单元,其连接到除输入单元外的每个单元。关于神经网络的描述见于如下文献Duda et al,2001,Pattern Classification, Second Edition, John Wiley &amp ;Sons,Inc.,New York ;以及 Hastie et al, 2001, The Elements of Statistical Learning,Springer-Verlag, New York0使用神经网络的基本方法是从未训练的网络开始,向输入层提供训练模式,例如, 训练数据集中的来自患者的标记物特征图,并使信号通过网络并且在输出层确定输出,例如,训练数据集中的患者的预后。然后,将这些输出与目标值(例如,训练数据集中的患者的实际结果)进行比较;并且差异对应于误差。该误差或准则函数是权重的某种标量函数并且当网络输出与所需输出匹配时被最小化。因此,调整权重以减少这种误差的量。对于回归,此误差可为误差平方和。对于分类,此误差可为平方误差或交叉熵(偏差)。参见例如文献Hastie et al,2001,The Elements of Statistical Learning,Springer-Verlag, New York。三种常用的训练方案为随机、分批和在线。在随机训练中,从训练集中随机选择模式并且对各模式表示更新网络权重。经梯度下降法(例如随机反向传播)训练的多层非线性网络在用网络拓扑定义的模型中进行权重值的极大似然估计。在批训练中,所有模式在学习开始前提供给网络。通常,在批训练中,通过训练数据完成几次通过。在线训练中,各模式被提供给网络一次且仅为一次。在一些实施例中,考虑了权重的起始值。如果权重接近零,则常用于神经网络隐藏层的S型函数的操作部分(参见例如文献Hastie et al,2001, The Elements of Statistical Learning, Springer-Verlag, New York)大致呈线形,并且神经网络因此塌缩成近似线性的模型。在一些实施例中,权重的起始值选择为接近零的随机值。因此,模型开始时几乎呈线性,并随着权重的增加变为非线性。各个单元局限于各处,并在需要的地方引入非线性。使用精确零权重可导致零导数和完美的对称,并且算法不会变动。作为另外一种选择,从较大权重开始常常得到劣解。由于输入量的缩放决定了底层中权重的有效缩放,这可对最终解的质量有重大影响。因此,在一些实施例中,在开始时将所有表达式数值标准化成平均值为0并且标准偏差为1。这使得所有输入在规则化过程中被同等处理,并允许为随机起始权重选择有意义的范围。在标准化输入的情况下,通常取得在σ-0.7,+0.7Ο范围内的随机均一权重。在使用具有隐藏层的网络时经常发生的问题是在网络中使用的隐单元的最优数。 网络的输入和输出数由待求解问题确定。对于本文公开的方法,给定神经网络的输入数可为所选标记物组中的标记物数。神经网络的输出个数通常仅为一个“是”或“否”。然而,在某个实施例中使用多于一个的输出,以使得该网络可以定义多于两种状态。用来分析数据的软件可以包括代码,所述代码将算法应用于信号的分析以确定该信号是否代表对应于根据本发明的生物标记物的信号峰值。该软件也可将与观察到的生物标记物信号有关的数据用于分类树或ANN分析,以确定是否存在指示患者疾病的诊断或状态的生物标记物或生物标记物组合的信号。因此,该过程可分成学习阶段和分类阶段。在学习阶段,学习算法被应用于包括意欲加以分类的不同类别成员的数据集,例如来自诊断为PsA并且对抗TNF α疗法有反应的患者的多个样品的数据和来自具有阴性结果的患者(对抗TNFa疗法无反应的PsA患者)的多个样品的数据。用来分析数据的方法包括(但不限于)人工神经网络法、支持向量机法、遗传算法和自组织映射图法、以及分类与回归树(CART)分析法。这些方法记载于 (例如)2001年5月3日提交的W001/31579 (Barnhill等人);2002年1月M日提交的 1002/068 (Hitt等人)和2002年5月30日提交的W002/42733 (Paulse等人)。所述学习算法可产生适应于数据元素如特定标记物和标记物的特定浓度(通常结合在一起)的分类算法,所述分类算法可以将未知的样品分类为两个类别之一,例如,反应者或无反应者。该分类算法最终用于预测性检验。容易获得软件(不管是免费软件还是专有软件)来分析数据的模式并按任何预定的成功标准设计另外的模式。套盒在另一方面,本发明提供用于确定哪些I^sA患者将对抗TNFa剂(例如戈利木单抗)治疗有反应或无反应的套盒,所述套盒用来检测根据本发明的血清标记物。所述套盒筛查在PsA患者中差异性存在的血清标记物和标记物组合的存在。在一个方面,套盒包括用于采集样品的装置,例如造成皮肤“戳孔”的柳叶刀或穿刺工具。套盒也可以任选地含有探针,如毛细管或用于从戳孔采集血液的血液采集管。在一个实施例中,套盒包括具有一种或多种生物特异性捕获试剂的基片,这些生物特异性捕获试剂用来结合根据本发明的标记物。套盒可包括多于一种类型的生物特异性捕获试剂,每种试剂存在于相同或不同的基片上。在另一个实施例中,此种套盒可包括标签或单独插页形式的有关合适操作参数的说明书。例如,说明书可告知消费者如何采集样品或者如何清空或洗涤探针。在另一个实施例中,套盒可包括一个或多个含有生物标记物样品的容器,这些生物标记物样品用作校准的标准品。在使用本发明算法预测PsA患者对于抗TNF疗法的反应的方法中,在抗TNF疗法前并在所述疗法开始后的特定时间段从患者获得血液或其他流体。所述血液可以经处理以提取血清或血浆部分或可全血使用。血液或血清样品可被稀释成例如1 2、1 5、1 10、 1 20,1 50或1 100,或不稀释直接使用。在一种格式中,将血清或血液样品涂敷在预制的测试条或棒上,并在室温下温育特定时间,例如1分钟、5分钟、10分钟、15分钟、1小时或更长的时间。在规定的测定时间段后,可从测试条直接读出样品和结果。例如,结果显示为不同色调的彩色或灰色带,表示一种或多种标记物的浓度范围。测试条套盒会提供说明,解释基于一种或多种标记物的相对浓度得出的结果。作为另外一种选择,可提供能够检测条上标记物检测体系的色彩饱和度的装置,所述装置可基于合适的诊断算法为该标记物系列任选地给出测试解释的结果。使用本发明的方法本发明提供了一种通过分析诊断患有I^sA的患者中检测到的生物标记物来预测对于用抗TNFa剂(例如戈利木单抗)治疗的反应的方法。在本发明的方法中,患者首先由富有经验的专家使用主观和客观标诊断患有ΜΑ。银屑病关节炎是一种慢性、炎性、通常类风湿因子(RF)阴性的与银屑病相关的关节炎。银屑病在普通白种人群体中的流行率为约2% (Boumpas等人,2001)。大约6%至 39%的银屑病患者发生I^sA (Sibeeb等人,2000 ;Leonard等人,1978)。男性和女性的发病率相等,PsA在30至55岁达到高峰(Boumpas等人,2001)。银屑病关节炎牵涉外周关节、中轴骨骼、骶髂关节、指/趾甲和肌腱端,并且与银屑病性皮肤损害相关(Gladman等人,1987, Boumpas等人,2001)。PsA的表现可以划分成5个重叠的临床类型,其包括在大约22%至 37%患者中的寡关节炎;在36%至41%患者中的多关节炎;在最多20%患者中的远端指节间(DIP)关节关节炎;影响大约7%至23%患者的脊柱炎;和在大约4%患者中的毁形关节炎(Gladman等人,1987 ;Torre Alonso等人,1991)。超过三分之一的PsA患者还发生指/ 趾炎和肌腱骨止点炎(Gladman等人,1987 ;Soko 11和Helliwell, 2001)。指炎是整个指头因指关节炎症和腱鞘炎引起的疼痛性肿胀。
肌腱骨止点炎是腱、韧带或关节囊插入骨中所致的炎症。多于一半的PsA患者可能具有X光胶片上的侵蚀证据,并且最多40%的患者发生严重的侵蚀性关节病(Torre Alonso等人,1991 ;Gladman等人,1987)。银屑病关节炎导致功能障碍、生活质量降低和死亡率增加(Torre Alonso 等人,1991 ;Sokoll 和 Helliwell,2001 ;Wong 等人,1997 ;Gladman 等人,1998)。目前用于I^sA的大部分疗法根据类风湿性关节炎(RA)患者群体中的经验改造而成。尽管PsA的进行性和潜在致残性质,并且与RA对照,仅有几个随机、对照试验查验了传统的病情缓解性抗风湿药(DMARD)在治疗PsA中的作用(Dougados等人,1995 Jones等人, 1997 ;Salvarani等人,2001 ;Kaltwasser等人,2004)。在这些研究中,甲氨蝶呤(MTX)、环胞菌素、柳氮磺吡啶和来氟米特在这种病症的治疗中显示功效,尽管所述治疗与治疗开始和在关节炎或银屑病中的临床显著反应(MTX、环孢菌素)之间的几周时滞相关,或仅对皮肤产生不太大的功效(柳氮磺吡啶、来氟米特)。由于一旦停药就出现严重银屑病暴发,皮质类固醇几乎不用来治疗I^sA。临床评估方法银屑病关节炎是风湿病症(关节疾病),并且经常连同发红、干燥和鳞片状的皮肤 (银屑病性皮肤损害)一起见到。银屑病关节炎是也可以在除皮肤之外远离关节的身体组织中如眼、心脏、肺和肾中引起炎症的的全身性风湿疾病。银屑病关节炎与数种其他的关节炎病症如强直性脊柱炎、反应性关节炎(前称Reiter综合征)和与克罗恩氏病及溃疡性结肠炎相关的关节炎共有许多特征。全部这些病症都可以在脊柱与其他关节和眼、皮肤、嘴、 及多种器官中引起炎症。鉴于它们引起脊柱炎症的相似性和倾向,这些病症被总称为“脊柱关节病”。往往通过评估肿胀和疼痛的关节和如下文所述的某些血清标记物作出PsA的诊断。PsA 一旦确诊,医师通常纵向监测临床结果以确定面临疾病恶化风险的患者。ACR反应被作为多种疾病评估标准的数值化改善量来示出。例如,将ACR 20反应 Orison等人,Arthr Rheum 38(6) :727-735,1995)定义为以下方面的彡20%的改善量1.肿胀关节数(66个关节)和压痛关节数(68个关节);以及2.以下5项评估中3项的彡20%的改善量a.患者对疼痛的评估(VAS)b.患者对疾病活动性的总体评估(VAS)c.医师对疾病活动性的总体评估(VAS)d.患者对如HAQ所测量的身体功能的评估e.CRP类似地定义ACR 50和ACR 70,不过在这些标准方面分别存在彡50%或彡70%的
改善量。ACR-N 改善指数(Schiff 等人,1999 Arthritis Rheum. 42 (Supp 1 9) :S81 ;Bathon 等人,2000 N Engl J Med. 343(22) :1586-1593 ;Siegel 和 Zhen,2005Arthritis Rheum 52(6) :1637-1641)被定义为以下3项中的最小值1.压痛关节数方面从基线算起的改善百分比
2.肿胀关节数方面从基线算起的改善百分比3.以下5个评估项的从基线算起的中位数改善百分比a.患者对疼痛的评估(VAS)b.患者对疾病活动性的总体评估(VAS)c.医师对疾病活动性的总体评估(VAS)d.患者对如HAQ所测量的身体功能的评估e. CRP疾病活动指数评分^(DAS28)是以统计方法得到的指数,该指数合并了压痛关节 ( 个关节)、肿胀关节( 个关节)、CRP和总体健康(GH) (van der Linden,2004,可得自互联网)DAS^是连续参数并且定义如下DAS28 = 0. 56*SQRT(TEN28)+0. 28*SQRT(SW28)+0. 36*Ln(CRP+1)+0. 014*GH+0. 96TEN28是针对压痛的观关节数。SW28是针对肿胀的观关节数。这组观关节数依据于左侧与右侧肩部、肘部、腕部、上肢的掌指骨(MCP) 1、MCP2、MCP3、MCP4、MCP5、近端指节间(PIP) 1、PIP2、PIP3、PIP4、 PIP5关节和下肢的左侧与右侧膝关节。Ln(CRP+1)是(CRP 值+1)的自然对数。GH是用VAS IOOmm评价的患者对疾病活动性的总体评估。要被分类为DAS^反应者,受试者应当具有良好或适度反应。DAS^反应标准在下表 1 中定义(van Riel,van Gestel 和 kott,2000 EULAR Handbook of Clinical Assessments in Rheumatoid Arthritis. Alphen Aan Den Rijn, The Netherlands :Van Zuiden Communications B. V.;第 40 章)。表权利要求
1.一种用于预测银屑病关节炎患者对抗TNF α疗法的反应的方法,所述方法包括 测定选自脂连蛋白、前列腺酸性磷酸酶(PAP)、MDC、SGOT、VEGF、脂蛋白A和β _2_微球蛋白的至少一种血清标记物的浓度;以及将所述浓度与临界值进行比较,所述临界值通过分析来自被诊断患有银屑病关节炎的患者的所述标记物的血清浓度值集确定,所述患者接受抗TNF α疗法并且基于一个或多个临床终点被分类为反应者或无反应者。
2.根据权利要求1所述的方法,其中测定至少两种血清标记物的所述浓度并且与所述标记物的各个临界值的浓度进行比较。
3.一种用于预测银屑病关节炎患者对抗TNF α疗法的反应的方法,所述方法包括a)从抗TNFα疗法开始之后在指定时间点施用抗TNF α剂之前的患者获得样品;b)测定每个时间点的所述样品中MDC、脂蛋白A和β-20-微球蛋白的浓度;以及c)将所述样品中MDC的浓度的变化与MDC临界值进行比较,从而,如果确定所述浓度大于或等于所述MDC临界值,则基于所述样品中脂蛋白A值的变化对所述患者进一步分类,并且如果所述变化低于所述脂蛋白A临界值,则基于血清中β -2-微球蛋白水平在治疗前的样品和治疗后的样品之间的变化对所述患者进一步分类;从而通过使用临床评估测量所述值能够用来预测所述患者是否为对抗TNF α的无反应者。
4.根据权利要求3所述的方法,其中所述样品是血清。
5.根据权利要求4所述的方法,其中将血清MDC的所述变化进行对数变换并且所述临界值是-0. 12。
6.根据权利要求3所述的方法,其中将血清中脂蛋白A的浓度进行对数变换并且脂蛋白A临界值的所述变化是-0. 23。
7.根据权利要求3所述的方法,其中将血清中β-2-微球蛋白的浓度进行对数变换并且β-2-微球蛋白临界值的所述变化是-0. 11。
8.根据权利要求3所述的方法,其中所述测定步骤同时进行。
9.根据权利要求3所述的方法,其中所述测定步骤由计算机辅助装置执行。
10.一种用于预测银屑病关节炎患者对抗TNF α疗法的反应的方法,所述方法包括a)测定来自所述患者的血液或血清样品中VEGF、前列腺酸性磷酸酶和脂连蛋白的浓度;以及b)将所述血液或血清样品中所述VEGF浓度与VEGF临界值进行比较,从而,如果确定所述VEGF浓度小于所述临界值,则预测所述患者是抗TNF α疗法的无反应者;c)将所述患者的样品中所述前列腺酸性磷酸酶浓度与前列腺酸性磷酸酶临界值进行比较,如果VEGF的血清值大于或等于所述临界值,其中前列腺酸性磷酸酶的浓度小于前列腺酸性磷酸酶临界值,则预测所述患者是TNF α治疗剂的反应者,并且如果所述PAP值大于或等于所述PAP临界值,则使用所述样品中的所述脂连蛋白值对所述患者进一步分类;其中d)如果所述脂连蛋白值小于脂连蛋白临界值,则预测所述患者为无反应者,并且如果脂连蛋白值大于或等于临界值,则将所述患者分类为被预测对TNFa中和治疗剂有反应者ο
11.根据权利要求10所述的方法,其中所述样品是血清。
12.根据权利要求11所述的方法,其中将血清中所述VEGF浓度进行对数变换并且所述 VEGF临界值是约8. 08。
13.根据权利要求10所述的方法,其中将血清中前列腺酸性磷酸酶的浓度进行对数变换并且所述前列腺酸性磷酸酶临界值是2.四。
14.根据权利要求10所述的方法,其中将血清中脂连蛋白的浓度进行对数变换并且所述脂连蛋白临界值是1.35。
15.根据权利要求10所述的方法,其中所述测定步骤同时进行。
16.根据权利要求10所述的方法,其中所述测定步骤由计算机辅助装置执行。
17.一种基于计算机的系统,所述系统将预测算法应用于从银屑病关节炎患者获得的数据集,所述银屑病关节炎患者有待用抗TNF α治疗剂治疗并且在治疗后使用一个或多个临床终点进行评估,所述系统包括用于接收并处理计算机可读格式的患者数据集的计算站,所述计算站包括用于处理所述患者数据集并且产生输出分类的受训神经网络,其中所述受训神经网络通过用于预处理患者数据集的方法训练,所述方法还包括a)选择与PsA相关的患者生物标记物,b)基于临床终点以统计和/或计算方式检验所选择的患者生物标记物各自在线性和/ 或非线性组合下指示患者有反应或无反应的辨别能力,c)将用于推导二次输入的统计学方法应用于所述神经网络,所述二次输入是原初或变换的所述生物标记物的线性或非线性组合,d)仅选择那些表现出辨别能力的患者生物标记物或推导的二次输入;以及e)使用预处理的所述患者生物标记物或推导的二次输入,训练基于计算机的所述神经网络。
18.根据权利要求17所述的基于计算机的系统,其中所述输出分类是所述患者是否会对抗TNF α疗法有反应或无反应,并且所述临床终点是ACR20 JsARC、或DAS28,并且所述生物标记物是脂连蛋白、前列腺酸性磷酸酶(PAP)、MDC、SGOT、VEGF、脂蛋白A和β _2_微球蛋白中的至少二者。
19.根据权利要求18所述的基于计算机的系统,其中,另外还测量基线脱氧吡啶啉、 S-100、透明质酸、骨碱性磷酸酶α-1-抗胰蛋白酶中的至少一者的水平;并测量来自诊断患有 I3SA 的患者的样品中 CRP、ENRAGE、结合珠蛋白、ICAM-I、IL-16、IL-18、IL-lra, IL-8、 MCP-U MIP-I β、ΜΜΡ-3、绿过氧物酶、血清淀粉样蛋白P、甲状腺素结合球蛋白、TNFRII和 VEGF从基线至第4周水平的变化,并且用于所述预测中。
20.一种装置,所述装置用于预测有待用抗TNFa治疗剂治疗的银屑病关节炎患者是否会对治疗有反应或无反应,所述反应通过一个或多个临床终点评估,所述装置包括a)测试条,所述测试条包含针对与PsA患者对抗TNFα疗法有反应或无反应相关的标记物特异的抗体和用可检测标签标记的第二抗体,所述标记物选自脂连蛋白、前列腺酸性磷酸酶(PAP)、MCD、SGOT, VEGF、脂蛋白A和β -2-微球蛋白;b)使用能够处理所述信号的读出器检测所述标签产生的所述信号;以及c)将得自所述信号的处理的所述数据处理成结果,所述结果指示所述标记物在所述样品中的预定浓度。
21.根据权利要求20所述的装置,其中所述读出器是人。
22.根据权利要求21所述的装置,其中所述读出器是反射计。
23.一种用于预测有待用抗TNF α治疗剂治疗的被诊断为患有银屑病关节炎的患者是否会对治疗有反应或无反应的预后检测套盒,所述反应通过一个或多个临床终点评价,所述预后检测套盒包括制备的底物,所述底物能够将患者样品中选自脂连蛋白、前列腺酸性磷酸酶(PAP)、MCD、SGOT, VEGF、脂蛋白A和β -2-微球蛋白的一种或多种标记物的存在量化。
全文摘要
本发明提供用于尤其在用抗TNFα剂治疗开始之前管理诊断患有银屑病关节炎的患者的工具。所述工具是特定的标记物和算法,其中使用血清标记物浓度,所述标记物和算法基于标准临床主要和次要终点预测治疗反应。在一个实施例中,使用VEGF、前列腺酸性磷酸酶和脂连蛋白的基线水平来预测治疗开始后在第14周的反应。在另一个实施例中,使用治疗4周后血清蛋白质生物标记物(如MDC、脂蛋白a和β2-微球蛋白)的变化。
文档编号G01N33/53GK102576015SQ201080044717
公开日2012年7月11日 申请日期2010年7月12日 优先权日2009年7月28日
发明者C·沃纳, S·维斯瓦纳桑 申请人:詹森生物科技公司

  • 专利名称:一种主动施加载荷条件下铝合金热裂测试实验装置的制作方法技术领域:本实用新型涉及一种主动施加载荷条件下铝合金热裂测试实验装置及方法,该装置能够测定铝合金热裂时的临界载荷、温度等参数,属于金属材料实验研究和铸造领域。背景技术:在铸造生
  • 专利名称:一种基于电涡流位移传感器的轧辊外径测量系统的制作方法技术领域:本发明涉及电涡流位移传感器测量轧辊外径的设备领域,尤其是涉及一种基于电涡流位移传感器的轧辊外径测量系统。背景技术:随着无缝钢管在石油、化工、军事等方面的使用不断增多,无
  • 专利名称:大口径大动态范围准直系统波前质量检测装置的制作方法技术领域:本发明涉及一种基于夏克哈特曼传感器的大口径大动态范围准直系统波前质量检测装置,属于光学检测领域。背景技术:从激光器出射的光束往往具有一定的发散角。为了利用聚焦镜以获得高功
  • 专利名称:用于测量土样渗透液位的活动式光控装置的制作方法技术领域:本实用新型涉及土工试验技术领域,尤其涉及一种用于测量土样渗透液位的光控&gt;J-U装直。背景技术:在工程建设过程中,为提供分析地基固结沉降的时间因素,估计天然地基、
  • 专利名称:内外径千分尺的制作方法技术领域:本实用新型涉及测量工具。背景技术:在机械工程中,内径千分尺和外径千分尺都是常用的、不可缺少的测量工具。目前常用的千分尺分为通用千分尺、外径千分尺、内径千分尺和变形千分尺等。其中,外径千分尺主要用于一
  • 专利名称:一种高效率建筑检测仪器壳体结构的制作方法技术领域:本实用新型涉及建筑检测仪器壳体结构的改进,尤其适用于利用声波衍射法来测量固体介质中裂缝深度值的仪器。背景技术:建筑工程中固体表面常常会出现各种缺陷,而混凝土表面也时常会出现各种大小
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12