山东科威数控机床有限公司铣床官方网站今天是:2025-05-08切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

能够自诊断的电子电路以及磁场检测装置的制作方法

时间:2025-05-08    作者: 管理员

专利名称:能够自诊断的电子电路以及磁场检测装置的制作方法
技术领域
本发明涉及能够判断电子电路是否正常地起作用的能够自诊断的电子电路。
背景技术
以往,例如在具有用于磁场检测的检测电路的电子电路中,在仅能够取得磁场检测信号的构成中,即使在电子电路内产生故障,微处理器也将该磁场检测信号作为正确的信号来进行运算处理,成为可靠性较差的构成。例如在专利文献I中公开有如下构成在多路复用器方式电压测定元件的测定信道中,预先设置测定O伏的基准电压的信道,测定该基准电压并将测定结果与基准电压值进行比较,由此判断电压测定器件能否正常地通信(参照专利文献I的
栏)。但是,如专利文献I所记载的构成那样,在仅为一个基准电压时,例如当多路复用器故障而不能够顺畅地切换且成为锁止状态、并持续出现偶然与一个基准电压吻合的测定结果时,会被判断为正常,不能够充分提高可靠性。此外,在专利文献I中,例如通过在电子电路内连接了运算放大器的构成中,即使上述运算放大器故障,也使基准电压成为0V,因此不能够适当地判断运算放大器的故障。此外,专利文献2所记载的发明为,构成为根据外部负载的种类来切换多个驱动电压的电子电路构成,基于通过由一对分压电阻进行分压而得到的分压值,来判断驱动电压的切换是否正常地进行(参照专利文献2的
栏)。但是,在专利文献2中,与专利文献I同样,仅通过一个基准电压(分压值)进行判断,不能够充分提高可靠性。专利文献I :日本特开2006-113699号公报专利文献2 :日本特开2008-59517号公报

发明内容
本发明是用于解决上述以往的问题点的发明,其目的在于提供与以往相比可靠性较高的能够自诊断的电子电路以及磁场检测装置。本发明为一种电子电路,具有检测电路;运算放大器,使来自上述检测电路的检测信号放大;多路复用器,连接在上述检测电路和上述运算放大器之间;以及微处理器,对来自上述运算放大器的检测信号进行运算处理;该电子电路的特征在于,具有诊断电路,该诊断电路用于分别生成高电压的第一诊断信号和低电压的第二诊断信号,上述诊断电路与上述多路复用器连接,由上述多路复用器所选择的各诊断信号能够经由上述运算放大器向上述微处理器输入,在上述微处理器中,能够基于上述第一诊断信号和上述第二诊断信号,来诊断上述电子电路是否正常地起作用。如此,在本发明中,基于高电压和低电压的这两种诊断信号,通过微处理器判断电子电路是否正常地起作用,因此能够构成与以往相比可靠性较高的能够自诊断的电子电路。此外,由于构成为将检测电路和诊断电路与多路复用器连接,而设置一个运算放大器以及微处理器,因此电路构成不会变的复杂而能够抑制成本提高。在本发明中优选,在上述微处理器中,根据上述诊断电路的输入电压,能够分别校正用于与向上述微处理器输入的上述第一诊断信号进行比较的第一基准电压和用于与向上述微处理器输入的上述第二诊断信号进行比较的第二基准电压。由此,能够构成可靠性更高的能够自诊断的电子电路。此外,在本发明中优选,上述微处理器具有自诊断部,该自诊断部用于基于向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号,对上述电子电路是否正常地起作用进行诊断,上述自诊断部具有评价部,用于对向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号是否在正常范围内进行评价;和计数器部,在通过上述评价部评价为上述第一诊断信号以及上述第二诊断信号从正常范围脱离时,累积规定的计数器值,在上述计数器值成为规定以上时判断为异常而输出错误信号。由此,即使由评价部判断为第一诊断信号、第二诊断信号从正常范围脱离,也不立即输出错误信号,而在计数器值成为规定以上时才开始输出错误信号,由此能够提高电子电路的驱动稳定性。此外,在本发明中优选,上述诊断电路能够通过电阻分压电路分别输出高电压的上述第一诊断信号和低电压的上述第二诊断信号。由此,能够构成简单的诊断电路,电路构成不会变的复杂而能够抑制成本提高。此外,在本发明中优选,上述检测电路能够由多个磁场检测元件的桥式电路构成。此外,本发明的磁场检测装置的特征在于,磁传感器与磁铁隔开间隔地相对配置,上述磁传感器用于对由上述磁铁产生的磁场的变化进行检测,上述磁传感器中构成有包含上述磁场检测元件的上述电子电路。由此,能够有效地避免进行错误的磁场检测,能够提高磁场检测精度。发明的效果在本发明中,基于高电压和低电压的这两种诊断信号,通过微处理器判断电子电路是否正常地起作用,因此能够构成与以往相比可靠性较高的能够自诊断的电子电路。此外,由于构成为将检测电路和诊断电路与多路复用器连接,而设置一个运算放大器以及微处理器,因此电路构成不会变的复杂而能够抑制成本提高。


图I是磁场检测装置的立体图。图2是本实施方式的电子电路图。图3是本实施方式的微处理器的构成图。图4是基于伴随磁铁旋转的磁场变化,从图2所示的检测电路经过运算放大器而生成的SIN信号和COS信号的影像图((a)为SIN信号、(b)为COS信号)
图5是本实施方式的用于对电子电路是否正常起作用进行自诊断的流程图。
符号说明
9磁场检测装置
10磁传感器
11印刷布线基板
14磁铁
20电子电路
21检测电路
22多路复用器
23运算放大器
24微处理器
25诊断电路
26、27桥式电路
28a 28c固定电阻
32第一诊断信号
33第二诊断信号
34SIN信号
35C0S信号
37自诊断部
38评价部
39计数器部
40基准电压调整部
具体实施例方式图I是本实施方式的磁场检测装置的立体图。图I所示的磁场检测装置9构成为,具有磁传感器10和磁铁14。图I所示的磁传感器10构成为,具有印刷布线基板11和与印刷布线基板11电连接的传感器元件12。磁传感器10和磁铁14隔开间隔地配置(非接触)。图2是磁传感器10内所组装的电子电路20的电路图。如图2所示,电子电路20构成为,具有作为磁场检测部的检测电路21、多路复用器 22、运算放大器(差动放大器)23、微处理器24以及诊断电路25。如图2所示,检测电路21由多个磁场检测元件31、52、53、54、55、56、57、58的桥式电路26、27构成。如图2所示,当磁铁14(在图2中由点线示意地表示)旋转时,各磁场检测元件 SI S8的电气特性变化,从第一桥式电路26输出作为磁场检测信号的SIN+信号和SIN-信号,从第二桥式电路27输出作为磁场检测信号的COS+信号和COS—信号。SIN+信号和SIN—信号以及COS+信号和C0S_信号分别相位错开180度。并且SIN+信号和COS+信号以及SIN_信号和C0S_信号分别相位错开90度。当通过图2所示的多路复用器22选择SIN+信号和SIN_信号而向运算放大器23输入时,能够得到由运算放大器23如图4(a)所示那样放大的SIN信号34。并且,通过图2所示的多路复用器22选择COS+信号和COS-信号而向运算放大器 23输入时,能够得到由运算放大器23如图4(b)所示那样放大的COS信号35。另外,如图2所示,例如各桥式电路26、27的输入电压(电源电压)为5V,因此如图4(a)、(b)所示那样,中点电位为2. 5V。由运算放大器23生成的SIN信号34以及COS信号35,例如以被转换为数字信号的状态输入到微处理器24的图3所示的运算处理部19,由运算处理部19利用“arc tan” 函数运算磁铁的角度,并进行表示角度值的输出。例如,在未图示的D/A转换部中被转换为模拟值,并以电压值输出。此时,输出电压在磁铁14旋转I周的期间,成为相对于其角度变化呈正比例地变化的电压、即相对于角度变化按照一次函数进行变化的电压、或者与一次函数近似地进行变化的电压,并作为磁铁14的旋转角、角速度的信号43向设备主体侧的控制部(例如ECU) 44发送。图2所示的多个磁场检测元件SI S8的元件构成,只要是接受伴随磁铁14的旋转的磁场变化而电气特性变化的元件,则不特别限定。例如,磁场检测元件SI S8为GMR 元件,具有固定磁性层/非磁性层/自由磁性层的层叠构造。GMR元件为如下元件根据固定磁性层的固定磁化方向(PIN方向)与根据外部磁场的方向而磁化方向变动的自由磁性层的磁化方向之间的磁化关系,电阻进行变动。而且,基于各磁场检测元件SI S8的电阻变化而从桥式电路26、27得到的输出从中点电位变动,伴随磁铁14的旋转从第一桥式电路 26输出SIN+信号和SIN_信号、从第二桥式电路27输出COS+信号和C0S_信号。此时,调整为,各桥式电路26、27中的串联的磁场检测元件之间以及第一桥式电路26和第二桥式电路 27之间,磁场检测兀件的固定磁性层的固定磁化方向(PIN方向)不同,而从第一桥式电路 26输出SIN+信号和SIN—信号、从第二桥式电路27输出COS+信号和C0S_信号。如图2所示,本实施方式的电子电路20具有诊断电路25。诊断电路25构成为如下的分压电阻电路三个固定电阻28a 28c串联,用于从固定电阻28a和固定电阻28b之间、固定电阻28b和固定电阻28c之间分别得到不同的分压电阻。如图2所示,固定电阻28a侧连接有输入端子30、固定电阻28c侧连接有接地端子 31。第一桥式电路26以及第二桥式电路27能够共用输入端子30。因此,如果第一桥式电路26以及第二桥式电路27的输入电压为5V,则诊断电路25的输入电压也为5V。通过图2所示的诊断电路25,从固定电阻28a和固定电阻28b之间的连接部得到的第一诊断信号32成为高电压,从固定电阻28b和固定电阻28c之间的连接部得到的第二诊断信号33成为低电压。优选经由运算放大器23之后的第一诊断信号32比中点电位 (2. 5V)高、第二诊断信号33比中点电位(2. 5V)低。在图2所示的多路复用器22中,从微处理器24接受信道选择信号36,而依次选择由第一桥式电路26生成的SIN+信号和SIN_信号、由第二桥式电路27生成的COS+信号和C0S_信号、以及由诊断电路25生成的第一诊断信号32和第二诊断信号33,而向运算放大器23输送。如图3所示,向微处理器24依次输入由运算放大器23放大了的SIN信号34、C0S 信号35、第一诊断信号32、第二诊断信号33,SIN信号34和COS信号35如上述那样向运算处理部19输送。
另一方面,第一诊断信号32和第二诊断信号33向微处理器24的自诊断部37输送。以下,还参考图5所示的流程图对电子电路20是否正常地起作用进行诊断的自诊断方法进行说明。如图3所示,自诊断部37构成为,具有评价部38、计数器部39以及基准电压调整部40等。在评价部38中评价向微处理器24输入的第一诊断信号32相对于第一基准电压是否处于正常范围内、以及向微处理器24输入的第二诊断信号33相对于第二基准电压是否处于正常范围内。用于与各诊断信号32、33进行比较的第一基准电压以及第二基准电压存储在微处理器24内,第一基准电压为,在电子电路20正常起作用的状态下,与向微处理器24输入的第一诊断信号32的电压值一致,第二基准电压为,在电子电路20正常起作用的状态下, 与向微处理器24输入的第二诊断信号33的电压值一致。在图3所示的基准电压调整部40中,在诊断电路25的输入电压变动了时,与其相对应地分别对第一基准电压和第二基准电压进行校正。通过将各基准电压以相对于输入电压的规定比例(百分比)进行限制,由此能够对应于输入电压的变动,高精度地调整第一基准电压和第二基准电压。图3所示的计数器部39具备如下功能在由评价部38判断为第一诊断信号32、 第二诊断信号33从正常范围脱离的情况下,累积某个规定的计数器值,或者当在正常范围内时使计数器值减少。如图5的流程图所示,计数器值最初为零。当由图2所示的诊断电路25生成的高电压的第一诊断信号32和低电压的第二诊断信号33,通过多路复用器22分别选择,经由运算放大器23被微处理器24读取时,在微处理器24的评价部38中,将第一诊断信号32与第一基准电压进行比较来评价是否处于正常范围内,将第二诊断信号33与第二基准电压进行比较来评价是否处于正常范围内(图5的步骤ST1、ST2)。例如,“正常范围”距离基准电压具有某一程度的宽度。当第一诊断信号32和第二诊断信号33为正常范围内时,判断当前时刻的计数器部39的计数器值是否比零大(图5的步骤ST3),如果计数器值为零,则通过微处理器24 读取作为磁场检测信号的SIN信号34、COS信号35(图5的步骤ST4)。然后,经过计算磁铁14的旋转角度、角速度(图5的步骤ST5),如果为CAN发送定时(图5的步骤ST6),则磁铁14的旋转角度、角速度的信号,向组装了图I的磁场检测装置9的电子设备、车载设备等发送(图5的步骤ST7)。如果不是CAN发送定时(图5的步骤ST6),则再次返回到步骤 STl0此外,在图5的步骤ST3中,如果计数器值比零大,则将计数器值减少1(步骤ST11), 向步骤ST4转移。如图5所示,在步骤ST2中,当判断为第一诊断信号32或者第二诊断信号33从正常范围脱离时,计数器部39中的计数器值例如增加3(图5的步骤ST8)。接着,判断计数器值是否为规定的错误阈值以上(图5的步骤ST9),如果计数器值超过错误阈值,则成为错误确定(图5的步骤ST10)。错误信号45向组装了图I的磁场检测装置9的电子设备、车载设备等的控制部发送(参照图3)。错误信号45在控制部中如何处理被任意地决定。例如,能够接受错误信号45而使电子设备、车载设备的驱动完全停止。此外,如图5所示,在步骤ST9中,如果计数器值小于错误阈值,则转移到步骤ST4。
如此,即使由评价部38判断为第一诊断信号32、第二诊断信号33从正常范围脱离,也不立即输出错误信号,而在计数器值成为规定以上时才开始输出错误信号(图5的步骤ST9、ST10),由此在电子电路20内没有产生故障并由于噪声等偶然输出异常的诊断信号,也不会立即成为错误,因此能够提高电子电路20的驱动稳定性。在本实施方式中,特征性构成在于,基于高电压和低电压这两种诊断信号32、33, 通过微处理器24判断电子电路20是否正常地起作用。以往,未设置诊断电路25而仅对来自检测电路21的检测信号进行处理,因此即使多路复用器22、运算放大器23等存在故障,微处理器24也将来自检测电路21的检测信号作为正确的信号来进行运算以及规定的输出处理,因此可靠性降低。或者,以往还具有如下的电路构成将一个诊断电压输入到微处理器,与上述微处理器内所设定的基准电压进行比较,对电子电路内是否存在故障进行自诊断。但是,当诊断电压仅为一个时,例如在产生多路复用器22锁止的故障时,当偶然持续输入与微处理器24 所设定的基准电压一致的电压时,微处理器24会错误地判断为电子电路20正常动作。相反,在本实施方式中,基于高电压和低电压这两种诊断信号32、33,通过微处理器24判断电子电路20是否正常地起作用,因此不会产生上述那样的问题,与以往相比能够构成可靠性较高的能够自诊断的电子电路20。即,通过使用高电压和低电压这两种诊断信号32、33,由此在电子电路20故障而不能够正常起作用时,输入到微处理器24的第一诊断信号32或第二诊断信号33的至少一方,与基准电压相比较一定从正常范围脱离,因此能够高精度地调查电子电路20的状态。此外,如图2所示,为将检测电路21和诊断电路25与多路复用器22连接而设置一个运算放大器23和微处理器24的结构,因此不会使电路构成复杂化,能够抑制成本上升。此外,如图3所示,本实施方式中,在微处理器24的自诊断部37中设置有基准电压调整部40,在基准电压调整部40中根据诊断电路25的输入电压,能够分别校正用于与输入到微处理器24的第一诊断信号进行比较的第一基准电压、和用于与输入到微处理器24 的第二诊断信号进行比较的第二基准电压。由此,能够构成可靠性更高的能够自诊断的电子电路20。此外,在本实施方式中,诊断电路25能够通过电阻分压电路分别输出高电压的第一诊断信号32和低电压的第二诊断信号。由此,能够构成简单的诊断电路25,电路构成不会变复杂,能够抑制成本上升。而且,通过将本实施方式的电子电路20组装到与磁铁14相对配置的磁传感器10 内,由此能够回避进行错误的磁场检测的风险,并能够提高磁场检测精度。本实施方式的电子电路20在磁传感器10以外也能够应用。
权利要求
1.一种能够自诊断的电子电路,具有检测电路;运算放大器,使来自上述检测电路的检测信号放大;多路复用器,连接在上述检测电路和上述运算放大器之间;以及微处理器, 对来自上述运算放大器的检测信号进行运算处理,其特征在于,具有诊断电路,该诊断电路用于分别生成高电压的第一诊断信号和低电压的第二诊断信号,上述诊断电路与上述多路复用器连接,由上述多路复用器所选择的各诊断信号能够经由上述运算放大器向上述微处理器输入,在上述微处理器中,能够基于上述第一诊断信号和上述第二诊断信号,来诊断上述电子电路是否正常地起作用。
2.如权利要求I所述的能够自诊断的电子电路,其特征在于,在上述微处理器中,根据上述诊断电路的输入电压,能够分别校正用于与向上述微处理器输入的上述第一诊断信号进行比较的第一基准电压和用于与向上述微处理器输入的上述第二诊断信号进行比较的第二基准电压。
3.如权利要求I所述的能够自诊断的电子电路,其特征在于,上述微处理器具有自诊断部,该自诊断部用于基于向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号,对上述电子电路是否正常地起作用进行诊断,上述自诊断部具有评价部,用于对向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号是否在正常范围内进行评价;和计数器部,在通过上述评价部评价为上述第一诊断信号以及上述第二诊断信号从正常范围脱离时,累积规定的计数器值,在上述计数器值成为规定以上时判断为异常而输出错误信号。
4.如权利要求2所述的能够自诊断的电子电路,其特征在于,上述微处理器具有自诊断部,该自诊断部用于基于向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号,对上述电子电路是否正常地起作用进行诊断,上述自诊断部具有评价部,用于对向上述微处理器输入的上述第一诊断信号以及上述第二诊断信号是否在正常范围内进行评价;和计数器部,在通过上述评价部评价为上述第一诊断信号以及上述第二诊断信号从正常范围脱离时,累积规定的计数器值,在上述计数器值成为规定以上时判断为异常而输出错误信号。
5.如权利要求I 4任一项所述的能够自诊断的电子电路,其特征在于,上述诊断电路能够通过电阻分压电路分别输出高电压的上述第一诊断信号和低电压的上述第二诊断信号。
6.如权利要求I 4任一项所述的能够自诊断的电子电路,其特征在于,上述检测电路由多个磁场检测元件的桥式电路构成。
7.如权利要求5所述的能够自诊断的电子电路,其特征在于,上述检测电路由多个磁场检测元件的桥式电路构成。
8.一种磁场检测装置,其特征在于,磁传感器与磁铁隔开间隔地相对配置,上述磁传感器用于对由上述磁铁产生的磁场的变化进行检测,在上述磁传感器中构成有包含权利要求6所述的上述磁场检测元件的上述电子电路。
9.一种磁场检测装置,其特征在于,磁传感器与磁铁隔开间隔地相对配置,上述磁传感器用于对由上述磁铁产生的磁场的变化进行检测,在上述磁传感器中构成有包含权利要求7所述的上述磁场检测元件的上述电子电路。
全文摘要
本发明的目的在于提供与以往相比可靠性较高的能够自诊断的电子电路以及磁场检测装置。该电子电路具有检测电路(21);运算放大器(23),使来自检测电路的检测信号放大;多路复用器(22),连接在检测电路和运算放大器之间;以及微处理器(24),对来自运算放大器的检测信号进行运算处理。并且,具有用于分别生成高电压的第一诊断信号和低电压的第二诊断信号的诊断电路(25)。诊断电路(25)与多路复用器(22)连接,由多路复用器(22)选择的各诊断信号(32、33)能够经由运算放大器(23)向微处理器(24)输入。在微处理器(24)中,能够基于第一诊断信号和第二诊断信号来诊断电子电路是否正常地起作用。
文档编号G01R33/02GK102608376SQ20121001729
公开日2012年7月25日 申请日期2012年1月19日 优先权日2011年1月19日
发明者奥村博文, 水泽司, 繁田一央 申请人:阿尔卑斯电气株式会社

  • 专利名称:基于反射型超声波传感器的地下管道探测装置及方法技术领域: 本发明涉及一种地下塑料管道的探测装置及探测方法,尤其是指一种基于反射型超声波传感器阵列的地下塑料管道的探测装置及探测方法。背景技术:地下管道、电缆在当今城市基本建设中得到了
  • 专利名称:幅频电透视探测方法技术领域:本发明涉及一种工作面底板探测技术,属于地球物理勘探领域,特别涉及一种幅频电透视探测方法。背景技术:突水,是威胁我国煤矿安全的第二大杀手,其危害程度仅次于瓦斯事故。1995 2006年,全国发生各类突水事
  • 专利名称:变压器动稳定状态参数测试仪及诊断软件的制作方法1技术领域本项目属光机电一体化技术领域之电力系统信息化与自动化、数字化状态检测仪表和电力设备状态检修软件。2003年通过甘肃省科学技术厅组织的科技成果鉴定.2003年荣获国家科技部、财
  • 专利名称:一种弧形焊缝真空检漏装置的制作方法技术领域:本实用新型涉及焊缝质量检测装置,特别是一种用于弧形焊缝真空检漏装置。背景技术:在舰船制造过程中,船体、舱室等结构上的焊接缝具有一定密性要求,通常采取气密或水密等检测手段检查,确保焊接部位
  • 磁共振射频匀场系统的制作方法【专利摘要】本发明提供了一种磁共振射频匀场系统,该系统包括:2n个单独激励脉冲源,用于产生脉冲信号,其中,n为正整数;2n个调整电路,与所述2n个单独激励脉冲源相连,用于对来自所述单独激励脉冲源的脉冲信号进行处理
  • 专利名称:一种矿井风机转速测量装置的制作方法技术领域:本实用新型涉及一种风机转速信号的采集、处理和识别装置,适用于矿井通风系统的风机转速测量。背景技术:矿井通风是提高采矿企业生产效率、保障矿工生命安全的重要举措,而对风机转速的测量正是其中最
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12