山东科威数控机床有限公司铣床官方网站今天是:2025-05-09切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

用于轮廓形成系统的头戴式显示装置的制作方法

时间:2025-05-09    作者: 管理员

专利名称:用于轮廓形成系统的头戴式显示装置的制作方法
技术领域
本发明涉及位于表面以下的介质的非侵入式测试的领域。具体而言,本发明涉及表面以下介质的表征的显示。
背景技术
例如在地球物理勘探领域中,已经寻求和开发非侵入式技术作为包括钻探的常规原位测试技术的补充或者替代,因为这些技术无破坏性。在钻探例如在粒状土壤中不可行的一些情况下,这样的非侵入式技术是勘探地下的唯一方式。另外,它们一般更为成本有效。非侵入式技术也在各种其他领域中用于勘探位于表面以下的介质,例如用于评估道路、桥梁、建筑物中的钢条接合、混凝土墙壁等的结构状况,或者用于在采矿或者军事应用中检测表面下特征,比如空隙、隐藏的下部结构和承载能力。通常,在计算机监视器上显示被表征介质的断片的二维或者三维轮廓或者被表征介质的分析数据。显示的数据可能不便于非专家用户理解和解释显示的数据以供它的实际表征使用°因此,尽管在该领域中进行了诸多努力,但是仍然需要一种允许表面以下介质的轮廓形成并且便于显示表征数据的系统。

发明内容
在评估道路、桥梁、建筑物中的钢条接合、混凝土墙壁等的结构状况时,或者在采矿或者军事应用中检测表面下特征时,以三维形式将表面以下介质可视化将是便利的。与真实世界的表面叠加将表面以下介质可视化,就如同用户可以透过表面看见的一样,从而用户可以将表面下特征在真实环境中的位置可视化,这将甚至更为便利。根据本发明的一个方面,用户佩戴与虚拟现实目镜相似的头戴式显示器,以便优选地在立体视觉中显示在真实环境中参考定位(reference)的表面以下介质的图像。图像与用户的真实环境叠加,从而用户可以在表面内行走或者移动并且在三维中将表面以下介质可视化,就如同他可以透过表面看见的一样。因而,本发明提供一种头戴式显示器,用以通过显示由轮廓形成(profiling)系统提供的并且在用户的真实环境中参考定位的表面以下介质的表征的图像来透过表面将介质可视化。与用户的真实环境叠加,在佩戴头戴式显示器的个人的一只眼睛或者双眼前投影表面以下介质的图像。头戴式显示器包括用于确定它在真实环境中的位置和定向的定位传感器,比如惯性定位传感器。当用户在介质周围移动时,更新介质的图像以显示介质,就如同可以透过表面看见它一样。在本发明的一个实施例中,在立体视觉中显示表面以下介质的图像,用户由此在三维中将介质可视化。例如,这样的头戴式显示器可以有利地在挖掘项目中由重型设备如反铲的操作者使用。使用头戴式显示器,操作者将表面视为半透明材料,并且可以看见表面以下管线或者障碍物,因而调整他的操作。另一例子是在下部结构检查中使用头戴式显示器。头戴式显示器提供表面以下密度不同地带的可视化。检查者然后可以透过表面检查下部结构。另外,在钻井应用中,可以通过将地下和钻杆柱可视化来优化爆破装药的数量和放置。本发明的一个方面提供一种用于由用户用来将表面下介质的表征可视化的头戴式显示装置。该显示装置包括输入、定位传感器、处理单元和第一显示系统。该输入用于接收在参考系中用三维表示来表征表面下介质的模型。该模型使用轮廓形成系统来提供。该定位传感器用于感测用户的第一只眼睛在参考系中的位置和定向。该处理单元用于利用第一位置和定向来将模型透视地投影于位于第一只眼睛前的第一表面上,以提供表征表面下介质的第一图像。该第一显示系统用于在第一表面上与第一只眼睛前的真实环境的第一图像叠加显示表征表面下介质的第一图像。本发明的另一方面提供一种用于由用户用来将表面下介质的表征可视化的系统。该系统包括轮廓形成系统,用于提供表面下介质的表征;三维模型处理器,用于处理表面下介质的表征,以提供在参考系中用三维图形表示来表征表面下介质的模型;以及头戴式显示设备。该头戴式显示设备具有输入,用于接收该模型;定位传感器,用于感测用户的第一只眼睛在参考系中的位置和定向;处理单元,用于利用位置和定向将模型透视地投影于位于第一只眼睛前的第一表面上,以提供表征表面下介质的第一图像;以及第一显示系统,用于在第一表面上与第一只眼睛前的真实环境的图像叠加显示表征表面下介质的第一图像。本发明的另一方面提供一种用于用户将表面下介质的表征可视化的方法。该方法包括提供表面下介质的表征;处理表面下介质的表征以提供在参考系中用三维图形表示来表征表面下介质的模型;感测用户的第一只眼睛在参考系中的第一位置和定向;限定位于第一只眼睛前的第一表面;将模型透视地投影于位于第一只眼睛前的第一表面上,以提供表征表面下介质的第一图像;提供第一只眼睛前的真实环境的图像;以及在第一表面上与第一只眼睛前的真实环境的图像叠加显示表征表面下介质的第一图像。本发明的另一方面提供一种用于由用户用来将表面下介质的表征可视化的头戴式显示装置。该显示装置包括输入、定位传感器、处理单元和第一显示系统。该输入接收在参考系中用三维表示来表征表面下介质的模型。该定位传感器感测用户的第一只眼睛在参考系中的位置和定向。该处理单元利用第一位置和定向将模型透视地投影于位于第一只眼睛前的第一表面上,以提供表征表面下介质的第一图像。该第一显示系统在第一表面上与第一只眼睛前的真实环境的第一图像叠加显示表征表面下介质的第一图像。本发明的另一方面提供一种用于在全局参考系中对头戴式显示设备进行参考定位的方法。该方法包括提供设置于全局参考系中并且限定目标平面的三个目标点;向头戴式显示设备的第一只眼睛显示第一标线而向第二只眼睛显示第二标线;将第一和第二标线相互对准;将标线与第一目标点对准,并且读取头戴式显示设备在设备参考系中的第一位置和定向;将标线与第二目标点对准,并且读取头戴式显示设备在设备参考系中的第二位置和定向;将标线与第三目标点对准,并且读取头戴式显示设备在设备参考系中的第三位置和定向;使用第一、第二以及第三位置和定向来计算在全局参考系与设备参考系之间的平移矩阵;以及在存储器中保存计算的平移矩阵。本发明的另一方面提供一种用于由用户用来将表面下介质的表征可视化的头戴式显示装置。该显示装置包括输入、存储器、定位传感器、处理单元和一对显示系统。该输入从模型处理器接收在参考系中用三维图形表示来表征表面下介质的模型。该存储器保存模型以便在保存模型之后将该输入从所述模型处理器断开。该定位传感器感测头戴式显示装置在参考系中的位置和定向。处理单元根据模型以及位置和定向来提供表征表面下介质的一对立体视觉图像。该立体视觉显示系统在用户的眼睛前与真实环境的一对图像叠加显示表征表面下介质的一对立体视觉图像。


本发明的更多特征和优点将根据与以下附图结合的下文具体描述变得清楚,附图中图1是根据本发明一个示例实施例的将在用于透过表面将介质可视化的显示设备中使用的头戴式显示器的前视图,其中头戴式显示器具有各眼前的透视显示屏;图2是根据本发明另一示例实施例的将在用于透过表面将介质可视化的显示设备中使用的头戴式显示器的透视图,其中头戴式显示器具有各眼前的摄像机;图3是图示了将三维模型投影到单个表面上的示意图;图4是图示了将三维模型投影到两个表面(一个表面用于相应各眼)上的示意图;图5是图示了根据本发明一个示例实施例的显示设备的框图;图6是图示了在参考系中对头戴式显示器进行参考定位的示意图;以及图7是图示了用于在参考系中对头戴式显示器进行参考定位的方法的流程图。将注意在附图中通篇地采用相似参考标号标识相似特征。
具体实施例方式现在参照附图,图1示出了将用于透过表面将介质可视化的头戴式显示器100的例子。头戴式显示器100适合于佩戴于用户的眼睛前,并且具有两个透视屏110a、110b,这些透视屏透射光,从而用户可以透过透视屏IlOaUlOb直接地看见他的/她的眼睛前的真实环境。在各透视屏IlOaUlOb上投影表面以下介质的图像。在右眼和左眼上提供的图像对应于介质的表征模型在立体视觉中的图形表示,从而介质的表征在三维中呈现给用户。在用户在表征的介质周围移动时图像实时更新,从而用户将介质的表征可视化就如同他/她可以透过表面看见的一样。透视屏IlOaUlOb可以使用透视有机发光二极管器件(参见来自 Liteye Systems 公司的 LE_750a 系列)。图2示出了将用于透过表面将介质可视化的头戴式显示器200的另一例子。与图1的头戴式显示器100 —样,图2的头戴式显示器适合于佩戴于用户的眼睛前,但是具有摄像机210a、210b,这些摄像机设置于各眼前,以便采集用户前的真实环境的图像就如同在他/她没有佩戴头戴式显示器200时他/她可以看见它一样。使用两个显示系统在用户的眼睛前实时显示由摄像机210a、210b捕获的图像。例如,各显示系统可以使用液晶二极管器件或者有机发光二极管器件。实时更新真实环境的图像,从而用户可以在立体视觉中看见世界就如同在他/她没有佩戴头戴式显示器200时他/她可以看见的世界一样。然而,表征表面以下介质的图像在立体视觉中与真实环境的图像叠加。图2的头戴式显示器的结果大体上类似于图1的头戴式显示器的结果。图2的头戴式显示器200可以使用对红外线辐射敏感的摄像机210a、210b,这些红外线辐射被转变成使用显示系统显示的图像。这样的头戴式显示器200特别地可用于在夜视中或者在低光度环境中使用。也设想其他头戴式显示器。单眼头戴式显示器使用仅一个显示系统用于向仅一只眼睛显示表面下介质的图像。单眼配置有利地让第二只眼睛没有更改它的视觉,但是仅在二维中表示介质。图3图示了表面下介质的三维(3D)表征模型312到在这一情况下为平面的单个表面314上以提供表征表面下介质的图像的透视投影。以参考系310为参考来提供表征表面下介质的3D模型312。图示的情况对应于如下头戴式显示器,其中仅在用户的双眼之一前提供表征介质的图像(单眼配置)或者其中在单视觉中向双眼提供相同图像。例如,在单视觉中,可以在头戴式显示器上提供单个摄像机以提供真实环境的图像。将向双眼显示相同图像。注意,如果图像被投影到其上的屏幕是弯曲的,则可以在弯曲表面上进行投影。从在2006年7月11日授权的美国专利第7,073,405号中描述的轮廓形成系统获得表征表面下介质的断层扫描(tomography)。该轮廓形成系统使用设置于表面上的传感器并且借助于由脉冲生成器生成的激励,来对试验中的表面下介质中诱发的剪切波的加速度进行检测来提供表面下介质的表征。可以设置传感器以覆盖试验中的整个表面,或者可以在表征过程期间重新定位它们以覆盖更大表面或者提供更佳的表征分辨率。用户计算接口处理从传感器接收的加速度信号以提供表征介质的断层扫描。断层扫描包括介质的物理和机械特性或者其他分析数据。为了提供3D表征模型312,将断层扫描提供给3D模型处理器,该处理器使用三维分析和基于地质学的算法来进行断层扫描的并置(juxtaposition)和内插。提供的3D表征模型312是介质的表征在三维中的图形表示。在一个实施例中,3D模型处理器使用尤其针对地理技术应用而设计的软件,比如由Mira Geoscience公司提供并且在GOCAD软件上运行的3D-GIS模块。提供的3D表征模型312包括诸如剪切速度、密度、泊松比、机械阻抗、剪切模量、杨氏模量等特性。更多处理可以提供诸如液化因子、岩石深度、基层深度等各种数据。以参考系310为参考来提供所提供的3D表征模型312。如下文将讨论的那样,在用户移动或者转动他的/她的头部以查看介质的不同区域时,实时感测和更新在头戴式显示器100或者200与参考系之间的相对位置和定向。这通过使用位于头戴式显示器中的定位传感器来完成。当用户在介质周围移动时,更新用户的眼睛前显示的图像以提供介质的特性的图形表示就如同可以透过表面看见它一样。因而,在参考系中限定位于用户的一只眼睛前的表面314 (在头戴式显示器中)。它对应于图像将显示到其上的屏幕在真实环境中的位置。如图3中所示,处理单元然后根据感测的眼睛位置和定向将3D表征模型透视地投影于投影表面314上,以提供表征介质的图像。这一图像显示于用户的眼睛前。显示的图像是介质的相关特性的图形表示,并且表示的特征位于图像上进行仿真,就如同表面充分地透明以让用户透过表面看见特征的图形表示一样。表征介质的图像与用户的眼睛前的真实环境的图像叠加显示,真实环境的图像对应于在用户没有佩戴头戴式显示器时他/她将看见的图像。真实环境的图像通过使用透视屏(见图1)(图像简单地透射透过屏幕)或者通过使用设置于眼睛前的摄像机(见图幻(使用图像处理算法将来自摄像机的图像与表征介质的图像进行数值叠加)来提供。图3的投影方案在具有单个显示系统的头戴式显示器中用于仅向眼睛之一显示表面下介质的图像。它也使用于具有两个显示系统(一个显示系统用于相应各眼)的单视觉头戴式显示设备中。图4图示了 3D模型312到两个表面3Ha、314b (—个表面用于相应各眼)上以在立体视觉中提供介质的可视化的透视投影。与图3的图示的唯一差别在于图4图示了如下情况,其中头戴式显示器向用户提供用于各眼的表征介质的不同图像,从而提供3D感知。根据图3的以上描述来提供右眼和左眼前显示的图像。然而,根据头戴式显示器在参考系中的感测位置和定向在右眼和左眼前限定两个投影表面,即右表面31 和左表面314b,并且根据各眼的相应位置和定向来进行3D表征模型的不同投影。由此提供表面以下介质的图形表示的3D透视图。图5图示了显示设备500的各种功能块,该显示设备包括头戴式显示器200,将由用户佩戴以将表面下介质的表征可视化;以及控制单元512,由用户在他/她相对于表面移动时携带并且处理数据以便生成将向用户显示的图像。控制单元512如前文所述从3D模型处理器562接收3D表征模型。3D模型处理器562通过处理由轮廓形成系统560 (如在2006年7月11日授权的美国专利第7,073,405号中描述的轮廓形成系统一样)所提供的表征表面以下介质的断层扫描来提供3D表征模型。头戴式显示器200和控制单元512使用任何有线协议如通用串行总线协议或者火线协议或者任何无线链路协议如射频或者红外线链路来通信。在图示的实施例中,头戴式显示器200和控制单元512为有线连接,但是在一个替代实施例中,两个单元具有无线通信接口以相互通信并且各单元具有它的自有电源。摄影机520a、520b分别设置于右眼和左眼前以采集右眼和左眼前的真实环境的图像。摄影机持续地提供视频信号,从而真实环境的图像在用户相对于表面移动时持续地更新。在提供给控制单元512之前使用A/D转换器526a和526b将视频信号转换成数字信号。头戴式显示器200具有用于各眼的显示系统52h、522b,以在立体视觉中将表面以下介质可视化。显示系统52h、522b分别由视频控制器528a、528b控制。视频信号由控制单元512提供给视频控制器528a、5^b。在头戴式显示器200中提供定位传感器524,即基于加速度计的惯性定位传感器,用于确定它在真实环境中的位置和定向。当用户在介质周围移动时,感测头戴式显示器的位置和定向,并且在使用信号调节器530将其进行放大和信号调节之后提供给控制单元512。信号控制器530包括自动增益模拟放大器和防混叠滤波器。定位传感器5M包括平移三轴加速度计定位传感器和旋转三轴加速度计定位传感器以提供头戴式显示器的位置和定向两者。本说明书假设先前已经在3D表征模型的参考系中对头戴式显示器200进行了参考定位。下文将描述一种用于在参考系中对头戴式显示器进行参考定位的方法。使用头戴式显示器在参考系中的位置和定向,控制单元512使用校准参数来确定各眼的位置和定向。模拟定位信号提供给具有用于定位信号的数字转换的A/D转换器548的控制单元512。数字定位信号和数字视频图像提供给处理单元M0。处理单元也从通信接口 542接收3D表征模型并且在存储器546中存储它。因而,在轮廓形成系统560完成表面以下介质的表征并且3D模型处理器562将所得表征转换成3D表征模型之后,将3D模型传输到并且保存于显示设备500中以供头戴式显示器使用。当完成传输时,3D模型处理器562可以断开,并且用户在携带显示设备500之时相对于介质自由移动。处理单元也从用户接口 544接收将在参考定位过程期间使用的命令,用于控制头戴式显示器中的显示等。用户输入讨4包括按钮和滚轮或者用于输入命令的其他装置。另外,控制单元512也具有电源552和用于控制单元512从故障状况恢复的监视计时器550。处理单元540接收3D表征模型以及头戴式显示器200的感测位置和定向。使用预定校准(双眼以传感器为参考的位置和定向)和头戴式显示器200的参考定位参数(传感器在参考系中的位置和定向),处理单元进行适当计算和图像处理,以提供将在立体视觉显示系统52h、522b上显示的表征介质的图像。另外,可以使用用户输入544来选择适合于特定应用的图形表示参数。可以寄存多个图形表示轮廓,并且用户可以简单地加载适合于他的应用的表示轮廓。可以控制的参数例子是表面下介质和真实环境表面的图形表示的不透明度/透明度、调色板、将用图形表示的介质的深度、将从图形表示中去除的介质的深度、关于机械结构的具体数据的显示、关于介质内部和外部的信息数据的显示、给定特性在介质中的存在/不存在的显示。例如,可以用图形表示仅与具体矿石对应的介质区域。使用矿石的密度和剪切波速度来标识它的存在。也可以选择用图形表示与表面下的水或者其他特性对应的区域。处理单元540具有用于回应请求、进行头戴式显示器200在3D模型的参考系中的参考定位、用于在显示系统52h、522b上提供各种信息显示以及按照用户的选择使显示器适应立体视觉或者单视觉的其他实用程序。在图示的实施例中,头戴式显示器200使用摄像机520a、520b来提供真实环境的图像,但是在一个替代实施例中使用比如图1中所示头戴式显示器这样的头戴式显示器100,并且无需摄像机520a、520b。因而也去除A/D转换器526a、5^b。单个显示系统52 也可以使用于单眼头戴式显示器中。取而代之,可以使用其他惯性制导系统如基于陀螺仪的系统、全球定位系统或者技术组合而代替惯性定位传感器524。参照图6和图7,现在描述一种用于在3D模型的参考系Oiref,Yref, Zref)中对头戴式显示器进行参考定位并且因而对各眼的位置(X0j0,Z0)和定向(θχ,0y,ΘΖ)进行参考定位的方法。该方法假设使用立体视觉头戴式显示器。该参考定位方位在710中开始,提供设置于介质的表面上的三个目标点((XI,Yl,Zl) ; (Χ2,Υ2,Ζ2) ; (Χ3, Υ3, Ζ3)) 0三个目标点限定目标平面,并且三个目标点之间的距离Cl1^d2,ydw已知。因而,3D模型包含三个目标点在它的参考系中的位置。目标点通常是由轮廓形成系统用于表征介质的三个轮廓形成传感器的位置。由于相对于传感器的位置来限定3D模型,所以可以根据这些位置推断参考系OCref,Yref, Zref) 0因而,尽管可以去除其他轮廓形成传感器,但是至少三个参考传感器应当在轮廓形成过程之后保留在原位用于在参考定位过程中使用。根据步骤712,在头戴式显示器的两个显示系统上,即在双眼前,显示标线,即十字线。在714中,用户使用用户输入从双眼对准十字线,从而十字线由用户视为单个十字线。在716中,用户将十字线对准到第一目标点(XI,Yl, Z1)。通常,应当用作目标点的传感器具有不同颜色或者具有用于用户识别它们的区别要素。在718中,用户按动用户按钮或者使用任何其他输入装置(用户输入M4)向控制单元输入该目标被对准,接着控制单元读取由位置传感器提供的头戴式显示器的位置和定向(未图示)。相对于头戴式显示器的系统给出读取的位置和定向(如在头戴式显示器的初始化过程期间限定的那样)。保持读取的位置和定向用于进一步计算。然后在步骤720中,用户将十字线对准到第二目标点(X2,Y2,Z2)。在722中,用户向控制单元输入该目标被对准,因而控制单元读取由位置传感器提供的头戴式显示器的位置和定向(未图示)。也保持这些读取的位置和定向用于进一步计算。在步骤724中,用户将十字线对准到第三目标点(X3,Y3,Z3)。在726中,用户向控制单元输入该目标被对准,因而控制单元读取由位置传感器提供的头戴式显示器的位置和定向(未图示)。也保持这些读取的位置和定向用于进一步计算。在7 中,控制单元使用读取的位置和定向来计算在参考系0CrefJref,Zref)与头戴式显示器的系统之间的平移矩阵。因而相对于参考系OCref,ft~ef,Zref)对头戴式显示器的位置(Xo,Yo, Zo)进行参考定位。注意在参考定位过程中,控制单元可以使用显示系统来显示发给用户的指令。仍然留有关于头戴式显示器定向的不明确性,并且需要对定向进行参考定位。在730中,根据计算的平移矩阵,在头戴式显示器中在立体视觉中显示与由三个目标点((XI,Yl, Zl) ; (X2,Y2,Z2) ; (Χ3,Υ3,Ζ3))限定的目标平面对应的虚拟平面。在732中,用户通过使用用户输入将虚拟平面与目标平面叠加来对准它,并且按动用户按钮以确认对准。为求最好结果,应当以最佳可能精确度完成这一步骤。在734中,控制单元读取由位置传感器提供的头戴式显示器的位置和定向(未图示)。在736中,控制单元使用头戴式显示器的已知平移矩阵以及位置和定向来计算在参考系OCref,ft~ef,Zref)与头戴式显示器的系统之间的旋转矩阵,以便恰当对准到目标平面。因而相对于参考系0CrefJref,Zref)对头戴式显示器的定向(θχ,ΘΥ, θ ζ)进行参考定位。也验证平移矩阵。在738中,保存经计算的平移和旋转矩阵用于由头戴式显示器来将表面下介质可视化。因而,当头戴式显示器在空间中移动时,可以实时计算它们在参考系OCref,Yref, Zref)中的位置(Xob,Yob, Zob)和定向(θ xb,θ yb, θ yb)。注意类似参考定位方法可以用来对单视觉头戴式显示器进行参考定位。取而代之,可以通过使用图像识别方法来进行对使用摄像机的立体视觉头戴式显示器200的参考定位。可以在由摄像机提供的两个图像上识别相同三个目标点((XI, Yl,Zl) ; (X2,Y2,Z2);(Χ3,Υ3,Ζ; )),并且可以使用摄像机的已知相对位置和目标点在两个图像上的位置来计算头戴式显示器在参考系中的位置和定向。取而代之,尤其是如果将挖掘或者以别的方式破坏表面,则可以使用设置于介质的紧邻环境中的目标点而代替传感器。此外,当回到已经表征的表面下介质时可能需要重复参考定位方法,并且可能要求去除目标点传感器。可能需要在表面的环境中重新安置目标点。因而,在任何其他结构上、在墙壁上设置三个新目标点。在参考系中对新目标点进行参考定位。这使用已经参考定位的头戴式显示器来完成。用户以与上述参考定位方法相似的方式将十字线对准到各新目标并且对准新目标平面。将新目标点的位置然后保存于模型中用于头戴式显示器的以后参考定位,并且可以在物理上从表面去除旧目标点。在描述的例子中,通过使用轮廓形成系统表征表面以下介质来获得断层扫描。将理解,如果3D表征可用,则这一表征可以由3D模型处理器用来提供介质的3D图形表示模型。另外,向用户显示的图像可以表示断层扫描而不是完整3D模型,用户在该断层扫描周围或者之上在空间中移动。3D模型处理器然后仅将表征介质以及由轮廓形成系统提供的断层扫描转换成断层扫描的适当3D图形表示。尽管在框图中图示为经由不同数据信号连接来相互通信的成组分立部件,但是本领域技术人员将理解,可以通过硬件和软件部件的组合来提供优选实施例,其中通过硬件或者软件系统的给定功能或者操作来实施一些部件,并且通过计算机应用或者操作系统内的数据通信来实施所示许多数据路径。因此提供所示结构是为了有效教导本优选实施例。上述本发明实施例仅旨在于举例。本发明的范围因此旨在于仅由所附权利要求的范围限制。
权利要求
1.一种用于在全局参考系中对头戴式显示设备进行定位的方法,所述方法包括提供设置于所述全局参考系中并且限定目标平面的三个目标点;向所述头戴式显示设备的第一只眼睛显示第一标线,而向第二只眼睛显示第二标线;将所述第一和第二标线相互对准;将所述标线与第一目标点对准,并且读取所述头戴式显示设备在设备参考系中的第一位置和定向;将所述标线与第二目标点对准,并且读取所述头戴式显示设备在设备参考系中的第二位置和定向;将所述标线与第三目标点对准,并且读取所述头戴式显示设备在设备参考系中的第三位置和定向;使用所述第一、第二以及第三位置和定向来计算在所述全局参考系与所述设备参考系之间的平移矩阵;以及在存储器中保存计算的平移矩阵。
2.如权利要求1所述的方法,还包括根据所述平移矩阵来显示与所述目标平面对应的虚拟平面;将所述虚拟平面与所述目标平面对准,并且读取所述头戴式显示设备在设备参考系中的第四定向;使用所述第四定向和所述平移矩阵来计算在所述全局参考系与所述设备参考系之间的平移矩阵;以及在存储器中保存计算的旋转矩阵。
全文摘要
本发明提供一种头戴式显示器,用以通过显示由轮廓形成系统提供的并且在用户的真实环境中参考定位的表征表面以下介质的图像来透过表面将介质可视化。与用户的真实环境叠加,在佩戴头戴式显示器的个人的一只眼睛或者双眼前投影表面以下介质的图像。头戴式显示器包括用于确定它在真实环境中的位置和定向的定位传感器,比如惯性定位传感器。当用户在介质周围移动时,更新介质的图像以显示介质,就如同可以透过表面看见它一样。在本发明的一个实施例中,在立体视觉中显示表面以下介质的图像,用户由此在三维中将介质可视化。
文档编号G01V1/00GK102566053SQ201210032348
公开日2012年7月11日 申请日期2007年1月31日 优先权日2007年1月31日
发明者D·里奥克斯 申请人:麦可门蒂斯公司

  • 专利名称:一种汽车减震弹簧故障诊断仪的制作方法技术领域:本发明是涉及一种汽车的辅助仪器,尤其是涉及一种汽车减震弹簧故障诊断仪。 背景技术:汽车减震弹簧故障诊断仪,根据采样得到的减震弹簧的输入和输出数据,利用有 效的非线性系统辨识方法得到弹簧
  • 专利名称:位移量监测电极的构造的制作方法技术领域:本发明涉及位移量监测电极的构造,尤其涉及如下位移量监测电极的构造:相对于基板固定的固定电极和能够在与基板平行的预定轴方向上移动的可动电极以使相互的电极指彼此啮合的方式相对配置,基于固定电极与
  • 专利名称::用多个发射器执行受控源电磁探测的方法用多个发射器执行受控源电磁探测的方法0001本申请要求2005年9月19日提交的美国临时申请第60718,473号的权益。技术领域:0002本发明一般地涉及地球物理勘测领域,且更具体地涉及受控
  • 专利名称:可变刚度模拟器的制作方法技术领域:本发明涉及力学环境试验技术领域中的一种物体模拟器,尤其涉及碰撞试验中一种刚度可调的物体模拟器。背景技术:力学环境试验技术领域中的运动物体碰撞试验主要是考核试件的抗撞击能力,并从试验中获得试验数据,
  • 专利名称:绕组温度计小油浴套筒的制作方法技术领域:本实用新型属于电力维修用具,特别涉及一种绕组温度计小油浴套筒。 背景技术:现有的绕组温度测试一般都是在标准油槽里进行,由于标准油槽容积大,变压器绕组温度计放入产生的温升在大油槽内很快扩散,很
  • 专利名称:高速电主轴测试系统的制作方法技术领域:本实用新型涉及一种测试系统,特别涉及一种用于对高速电主轴进行测试的系统平台。背景技术:传动轴固定节车间的球笼六窗口磨床、球笼内圆磨床及球道磨床等设备都使用各种规格的德国GMN高速电主轴作为设备
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12