山东科威数控机床有限公司铣床官方网站今天是:2025-05-12切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

光声检测器的制作方法

时间:2025-05-12    作者: 管理员

专利名称:光声检测器的制作方法
技术领域
本发明涉及在后附独立权利要求书的前序中提出的光声检测器,并涉及用于光声检测器的传感器以及对用作光声检测器中传感器的门的优化方法。
当红外辐射或通常意义的光照射到填充气体的腔室时,其中,此腔室包含分压为px的待分析气体和分压为pN的载体气体(通常为氮),由气体px吸收辐射。在吸收过程之后,能量转换为一定时间常数τ(如10-5s)的热运动。因而,全部气体的温度每单位时间升高ΔT。温度升高也导致压力增加Δp。
典型的光声检测器包括可被提供待分析气体的腔室;让经过调制的或脉冲红外辐射或光进入腔室的窗口;以及适于测量由腔室中所吸收红外辐射或光而引起的压力变化的压力传感器。压力传感器一般包括麦克风、聚酯薄膜或金属膜。光声检测器通常可用于测量或检测红外辐射,但检测器的一个具体而重要的应用是处理例如与空气质量和污染有关的气体或气体混合物的测量和检测。
在麦克风中,通常用电容法测量膜(聚酯薄膜)的运动。聚酯薄膜涂敷金属并放置在另一固体金属膜片附近。其结果是具有以下电容的电容器C=ϵrϵ0Ah---(a)]]>这里,h代表静止膜之间的距离,A是膜的表面积,εrε0是存在于板之间的气体的介电常数,而ε0是真空的介电常数。C的测量提供h,从而得到聚酯薄膜的运动,因为ΔC=-ϵrϵ0A3h2Δh---(b)]]>这里,Δh是在中间的距离变化,而Δh/3是距离的平均变化。进一步,
ΔCC=-Δhh---(c)]]>或|Δhmin|≈hC/ΔC=hS/N---(d)]]>这里,S/N是测量电子学中的信噪比。
当h改变时,现有技术的电容测量受存在于板之间的气体流的限制。当间隙h减小时,气体被迫从板之间流出,而当h增加时,气体返回。流动具有惯性并需要能量。其结果是膜片的角振荡频率ω越高并且h越小,所述流动就更多地减小膜片运动的振幅。因而,h不能无限地增加,因为这会增加信号ΔC。从而,市场上可得到的麦克风在物理规律的限制下发挥作用,并且在此方面不能提高它们的响应性。
在Nicolas Lederman等的出版物[1]中公开了一种用于传感器的光声检测器,其中,用悬臂型膜制作传感器,此膜响应光声检测器的腔室内气体的运动,并且在此膜中集成记录悬臂运动的压电元件。在此出版物中提出的传感器的问题是忽略悬臂的谐振频率。连接到传感器的压电元件有可能增加传感器的谐振频率,并因而使传感器的响应变坏。在此出版物中提出的传感器非常不准确,从而,不适于高精度应用。此出版物根本没有提及光声检测器内的腔室和传感器的优化,即腔室与传感器的尺寸之比的优化。
在M.H.de Paula等的出版物[2]和[3]中还公开了传统膜片解决方案的替代方案。这些出版物提出在光声检测器单元内的小管道上方距管道大约0.1mm处安装薄片。根据这些出版物的说明,在薄片本身周围不设置所谓的边缘,薄片因而延伸超出管道边界,即,问题与出版物[1]中所示悬臂的不同。因此,de Paula等的出版物中的根本问题其实是以下事实在光声检测器单元内存在的且待测量的压力只作用到薄片总面积的一小部分上,导致显著降低响应。另外,在薄片下面有泄漏,薄片与管道尺寸相比是较大的,这进一步减小薄片响应。出版物[2]和[3]进一步描述用于测量薄片运动的光学角测量。然而,在所述出版物中提出的薄片的形状实际上不利于角测量。结果,在出版物[2]和[3]中提出的解决方案不能充分地响应高准确度测量和高精度应用。
进而,原子力显微镜方法使用悬臂型薄片。因而从所述薄片要求高频率,并且,从而,在原子力显微镜方法中使用的薄片不适于光声检测器。
光声检测的另一问题是由外部声音导致的干扰。因而,如果腔室内的声音比系统固有噪声更强,对于检测器系统灵敏性(响应)的提高不能改进对待分析气体的确定,其中,腔室内的声音是从测量仪器外部渗透进来的。减小外部声音所产生干扰的典型方法是隔声。隔声能以10000-100000的系数衰减外部声音。
另一减小外部声音所产生干扰的现有已知方法包括使用部分减小干扰声音的双重检测。在现有已知的双重检测系统中,提供与常规测量系统相同的测量系统,所述相同系统拒绝光的进入,并只测量腔室内的声音。接着,根据现有技术系统的解决方案,对实际测量信号与相同测量系统所提供的基准信号之间的差异执行直接放大。然而,上述双重检测系统的问题例如在于这些系统只在狭窄的频带中在特殊的情况下发挥作用。此问题归咎于在各测量系统中的传感器之间产生的相位差。
结果,根据本发明的光声检测器、用于光声检测器的传感器以及对用作光声检测器中传感器的门的优化方法的目的是消除或至少缓解上述现有技术中的问题。
根据本发明的光声检测器、用于光声检测器的传感器以及对用作光声检测器中传感器的门的优化方法的另一目的是提供准确和高度灵敏的光声检测器。
本发明的又一目的是提供光声检测器,其中,已经减小外部声音所产生的干扰因素对测量结果的影响。
根据本发明更优选实施例的光声检测器的又一目的是提供一种用于改进光声检测器灵敏度的方法以及一种光声检测器,其中,所述光声检测器包括由门形成的传感器,通过降低门的谐振角频率而提高光声检测器的灵敏度根据本发明更优选实施例的光声检测器的又一目的是提供一种用于确定光声检测器的腔室的最优尺寸的方法。
根据本发明更优选实施例的光声检测器的又一目的是提供一种在光声检测器中使用的高度灵敏的传感器以及一种用于优化该传感器的方法。
为了实现以上目的,首先,全部根据本发明的光声检测器、用于光声检测器的传感器以及对用作光声检测器中传感器的门的优化方法的主要特征在独立权利要求书的特征条款中提出。
因而,在本发明的典型光声检测器中,用于检测由吸收的红外辐射和/或光在第一腔室中产生的压力变化的装置至少包括设置在第一腔室壁中的孔,与所述孔相联系地设置适于根据气体运动而运动的门;以及,用于对门运动进行无接触测量的装置。在本文中,在涉及不用一个或多个连接到门或与门机械联系或接触的传感器来执行测量动作时,例如,在不用连接到门表面的压电传感器来执行测量动作时,使用术语无接触测量。也就是说,在无接触测量时,干扰和/或抑制门运动的测量装置不附加或连接到门。这些无接触测量方法例如是不同种类的光学测量方法。进而,上述电容测量被视为无接触测量方法,其中,本发明的门布置为第二板。
在根据本发明的优选光声检测器中,门的表面积最大等于设置在第一腔室中的孔的表面积。在本文中,孔的表面积指虚拟水平面的表面积。门的表面积指门投影在孔的虚拟水平面上的方位投影的表面积。因而,例如,如果门的表面弯曲,门的真实表面积就比孔的表面积更大,但根据本发明的门的方位投影的表面积也比孔的表面积更小。
在根据本发明的优选光声检测器中,门的至少一侧安装在包围门侧面的框架上。例如通过在硅晶片中形成间隙,用硅制作门和框架是非常有利的,除了连接点以外,该间隙使门与形成框架的晶片其余部分分离。
在根据本发明的优选光声检测器中,用于对门运动进行无接触测量的装置包括光学测量装置,所述光学测量装置包括至少一个或多个光源以及一个或多个检测器,所述光源照射门或其一部分,所述检测器接收从门反射的光并以光学角和/或平移测量来测量门运动;或者电容测量系统,从而,门或其一部分用金属涂敷,或者门用高度导电的材料制作,并且,所述测量系统包括设置在门附近的金属膜或涂敷金属的膜片、以及用于测量由门和金属膜形成的电容器的电容变化的装置。在一些应用中,所述系统可包括光学和电容测量系统。除了光学和/或电容测量系统之外,光声检测器还有可能包括用于对门运动进行无接触测量的其它测量系统。
在根据本发明的更优选光声检测器中,在第二腔室中布置用于对门运动进行无接触测量的装置,其中,第二腔室构成容积为V的测量空间并通过第一腔室的孔与第一腔室联通。
在根据本发明的更优选光声检测器中,进一步设置与第二腔室联通的第三腔室,其中,第三腔室在尺寸上与第一腔室相同,并具有与第一腔室所包括孔相同的孔,所述孔连接第三腔室和第二腔室,用与封闭第一腔室孔的门相似的门来封闭第三腔室的孔,并且以与测量封闭第一腔室孔的门的运动相似的方式测量门运动。因而,实际测量信号和基准信号可单独测量并计算它们的振幅,它们之间的差异能准确地过滤外部噪声。
根据本发明的光声检测器的典型传感器包括作为门框的面板状边缘元件、以及通过间隙与面板状边缘元件分开的门。优选地,传感器可布置得与包括在光声检测器内的腔室联系,所述腔室包含待分析气体,使得根据吸收的红外辐射和/或光在腔室中产生的压力变化而移动门。
根据本发明更优选实施例的传感器不包括固定安装在门上的传感器和/或固定布置得与门联系的传感器,所述传感器用于检测和/或测量门运动。
与典型光声检测器相比,本发明最重要的优点是其准确度和灵敏度。
进而,根据本发明的光声检测器和光声检测器中传感器的优点是它们结构简单并且尺寸小。
根据本发明的对用作光声检测器中传感器的门的优化方法的最重要优点是该方法是准确的,并且容易应用于光声检测器的优化,尤其是应用于光声检测器中所使用门的优化。
现在结合附图更详细地描述本发明,在附图中

图1示意性示出用于本发明光声检测器的设计,图2示意性示出从斜上方观察的用于本发明光声检测器的压力传感器,图3a示意性示出从前面观察的用于本发明光声检测器的压力传感器,图3b在横截面上示意性示出用于本发明光声检测器的压力传感器,图4a示意性示出谐振角频率ω0对振幅Ax(ω)的影响,图4b示意性示出门谐振的模型化,图5示意性示出基于门的角变化而测量压力传感器门运动的本发明测量系统,图6示意性示出在图5测量系统中双重检测器的光强度。
图7示意性示出基于门的平移测量而测量压力传感器门运动的本发明测量系统,图8示意性示出基于使用迈克尔逊干涉仪而测量压力传感器门运动的本发明测量系统,图9示意性示出在图8测量系统中的三重检测器上产生的干涉条纹,图10示意性示出正切中的间断,图11示意性示出用于本发明光声检测器的一个优选门设计,图12a和12b示意性示出用于本发明光声检测器的几个可选门设计,以及图13示意性示出借助基于多次反射的光学倍增器而测量压力传感器门运动的本发明测量系统。
图1示意性示出本发明光声检测器的一个实施例。如图中所示,光声检测器包括填充气体的腔室V和V0,其中,腔室V和V0包含或可被提供分压为px的待分析气体和分压为pN的载体气体(通常为氮)。第一腔室V0由环形壳体元件1组成,环形壳体元件1的第一开口端设置有窗口2,窗口2封闭腔室的第一端,红外辐射或通常意义的光可通过窗口2被引导到腔室内。窗口2优选制作得对红外辐射和/或光高度透明,并且优选厚度为大约3-6mm。对于腔室V0的尺寸和优化,在后面更详细地描述。腔室V0的第二开口端设置有至少部分封闭腔室第二端的硅门3,硅门3用作压力传感器,并且其设计在图2和3中更仔细地描述。在一些特殊应用中,硅门3也可用麦克风、聚酯薄膜或金属薄膜替代。光声检测器包括第二腔室V,第二腔室V布置为第一腔室V0的第二端的延伸并构成容积为V的测量空间。测量空间设置有用于测量硅门运动的仪器。如图1所示,测量空间的第二端用基准系统封闭,基准系统包括基准腔室V0,基准腔室V0的一端被封闭并且其尺寸与第一腔室V0相同。基准腔室的第一端用与第一腔室所用硅门相似的硅门封闭。
图2、3a和3b借助实例示意性描绘根据本发明的一个优选硅制门,所述门用作压力传感器。压力传感器包括作为门框的面板状边缘部件、以及通过缝隙与面板状边缘部件分离的门。L为门的宽度,h为其高度,d为其厚度,并且Δ为缝隙的宽度。
利用在平衡状态下光源可通过窗口传导到腔室内的低IR输出,当W(t)=Wav+W0cos(2πft)时,满足(dTdt)T0=axpx2l(cosα)-1W0cos(2πft)ΣicVimi=axpx2l(cosα)-1W0cos(2πft)V0ΣicViρi---(1)]]>这里,ax是分压为Px的气体的吸收系数,l为腔室的长度,α是IR束与腔室的中心轴之间的角度,并且,W(t)是输入到腔室中的净光功率。也就是说,W(t)是光强度×πR2,其中,R是腔室的半径,mi是气体成分的质量,cVi是相应气体的比热,ρi是气体i的密度,并且,V0是更小腔室的容积。例如,ΣicVimi=cVxmx+cVNmN=V0(cVxρx+cVNρN)]]>在方程式(1)中τ<<f-1<<τ0是缺省的,其中,τ0是用于从腔室导出热的时间常数,并且,τ是用于把吸收能量转换为热的时间常数。
进一步地,ΔT=T(t)-T0=∫(dTdt)T0dt=axpx2l(cosα)-1W0sin(2πft)2πfV0ΣicViρi---(2)]]>理想气体状态的方程式导致dpp0+dVV0=dTT0---(3)]]>在压力传感器中dV≈12xAAdp=kx=F---(4)]]>这里,A代表压力传感器的表面积,k是弹簧常数,并且x是运动。从方程式(3)和(4)得到x≈ΔT/T0kAp0+A2V0,(ω=0)---(5)]]>由于在方程式(2)中出现的ΔT用角频率ω调制,因此,必需检查门(或膜片)运动的方程式,即 这里,F0eiωt代表周期力,β是阻尼常数,ω0=k/m]]>是谐振角频率,并且,x是门的端部或门或膜片的中间的运动。方程式(6)的解为
x=(F0/m)eiωtω02-ω2+2iωβ---(7)]]>从此解获得振幅x*x=Ax(ω)=F0/m(ω02-ω2)2+4β2ω2---(8)]]>方程式(3)和(4)提供振幅Δpp0=ΔTT0-ΔVV0=ΔTT0-12Ax(ω)AV0]]>并且,因而,Ax(ω)=AΔp/m(ω02-ω2)2+4β2ω2=Ap0(ΔTT0-Ax(ω)A2V0)m(ω02-ω2)2+4β2ω2.]]>从中得到Ax(ω)=Ap0ΔTT0m(ω02-ω2)2+4β2ω2+p0A22V0---(9)]]>图4a示意性示出谐振角频率ω0对门或膜片振幅Ax(ω)的影响。
如果ω=0,那么方程式(9)就导致方程式(5),即,Ax(0)=x,因为mω02=k.]]>优选门或膜片的谐振按以下方式模型化,所述方式为不考虑ω0附近谐振所带来的振幅增加(参见图4b)。也就是说,如果ω<ω0,结果就是Ax(ω)≈Ap0ΔT/T0mω02+p0A22V0=p0ΔT/T0mω02A+p0A2V0=p0ΔT/T0ρdω02+p0A2V0---(10)]]>并且,如果ω>ω0,结果就是Ax(ω)≈p0Δ&Tgr;/T0ρdω2+p0A2V0---(11)]]>这里,ρ代表门(或膜片)密度,并且d是厚度。如果不利用谐振,在低于谐振角频率ω0使用门(或膜片),即,使用方程式(10),就是合理的,这表示门(或膜片)运动的振幅Ax(ω)的优化,即最大化,必须借助ω0、d、V0和A来实现。ω0和A越低,Ax(ω)就越高。
当ρdω02+p0A2V0]]>达到最小时,振幅达到最大。当满足以下条件ρdω02≈p0A2V0---(12)]]>并且Axopt(ω)≈p0ΔT/T02ρdω02=p0ΔT/T02p0A2V0---(13)]]>时,发生此情况。
通过方程式(1)和(2),方程式(13)的结果为Axopt(ω)≈p0axpxl(cosα)-1W0T0ωV0Σicviρiρdω02---(14)]]>这里ω≤ω0。此方程式表示增加响应的最佳方式是减小角频率ω和ω0。应指出,通过忽略或不优化项 不会得到最佳的可能优化结果。因而,通过使因数A和/或d优化,可执行优化并且通常应该执行优化。利用市场上可得到的典型麦克风,谐振频率f0=ω0/2π通常为10-20kHz。如果谐振频率f0=20kHz的麦克风以接近谐振频率工作,结果就为Axopt(20kHz)。如果使用相似的膜片来构造其谐振频率f0=500Hz的新麦克风,那么Axopt(500Hz)=(20kHz0,5kHz)3Axopt(20kHz)=403Axopt(20kHz)=64000Axopt(20kHz)---(15)]]>只要麦克风根据方程式(12)优化就行。进一步地,如果为频率500Hz优化的麦克风以50Hz频率工作,响应就会进一步增加十倍,并且,改善因数因而为640000。通过使门(或膜片)更薄,可基于以下的方程式(16)而减小谐振频率。这进一步提供比例为d1/d2的改善,只要门或膜片的变薄在技术上可行就可以。
谐振角频率取决于门(或膜片)的尺寸和材料。对于门,ω0=2E3ρdL2,A=Lh,---(16)]]>这里,E为材料的扬氏模量,ρ为密度,L是门的宽度,h是高度,并且d是厚度。
对于不处于拉伸的圆形金属膜片,ω0E=E3ρ(1-σ2)4dr2---(17)]]>这里,σ=泊松比,r为膜片的半径。
对于拉伸的薄膜(例如,聚酯薄膜)ω0T=2.4T/μr=2.4rF2πρd---(18)]]>这里,T代表膜的拉伸,并且μ是质量/单位面积,即μ=m/a=ρdA/A=ρd。
为了精确点,即使对于薄膜(聚酯薄膜2μm),也应用ωtod2=ω02E+ω02T]]>不过ω02E<<Tω02]]>(19)如果在根据本发明一个典型实施例的门与不处于拉伸的圆形膜片之间进行比较,其中,所述门由相同材料(硅)制作并具有高度L/s,结果就是AdooroptAfilmopt≈sπ[8sπ(1-σ2)]1/3≈20---(20)]]>如果s=10,即,门的高度为宽度L的1/10。
如果在根据本发明一个典型实施例的门与在现有技术麦克风中通常使用的拉伸聚酯薄膜之间进行比较,结果就是AdooroptAMylaropt≈43(FN)2/5---(21)]]>这里,F代表总拉力,单位为牛顿,并且s=10。该比例一般为10-20,取决于需要多小的力F来使该膜发挥作用。
因而,根据本发明的门提供一种解决方案,该方案对传感器的响应至少提高一个数量级。如果此提高应用于通过角频率而得到的改善,就可创造低谐振门,该门以更有利的方式在传感器响应方面提供几百万的改善。
使用根据本发明一个典型实施例的门传感器要求门与壁之间的缝隙或间隙优选制作得尽可能的窄。腔室通过间隙泄漏,结果,传感器具有更低的截止频率fcut,截止频率fcut用门间隙面积a定义,如下所示fcut∝v0aV0---(22)]]>这里,v0是声音在腔室中的速度,并且V>>V0。
另一方面,为了使腔室之间的缓慢压力变化相等,在腔室之间具有小孔是有利的,并且因而,此孔可设计为在门与门框之间的上述间隙。
可通过用本发明的光学测量系统来取代现有技术对门(或膜片)运动的电容测量,从而提高光声检测器的准确度。光学测量导致与门(或膜片)运动非常少的干涉。根据本发明,可通过门(或膜片)表现出的角度或通过门(或膜片)中某个点的平移运动而测量所述运动。
图5示出基于角测量的测量系统,其中,使用激光器10形式的光学指示器,同时,检测器是双重检测器11。除了用作传感器的门3之外,测量系统还包括作为光源的激光器10、用于对光束聚焦的光学透镜12、以及用于接收和测量从门3反射的光束v的双重检测器11。因而,双重检测器包括第一检测器d1和第二检测器d2。光束v的焦点13在双重检测器上。图6描绘测量系统在双重检测器上的光功率,其中,在y的每个点上,在与y正交的方向上对光的强度进行积分。
在图5和6所示角测量中,角度变化Δα转换为平移运动Δy=a2Δα,角度变化Δα用双重检测器d1d2测量。角度Δα代表在激光束照射的门区域中的平均角度变化。一般地,Δα取决于测量光点,即l。
tanΔα=FL26EI[1-(L-lL)3]=8EIΔxL26L3EI[1-(L-lL)3]=4Δx3L[1-(L-lL)3]---(27)]]>或Δy≈2a4Δx3L[1-(L-lL)3]---(28)]]>可用双重检测器测量的最小运动是Δymin=σ2(S/N)---(29)]]>这里,σ是激光焦距的一半宽度。σ的最小值受衍射的限制,即σ≈λD(a+b)---(30)]]>因而,在门的端部可检测的最小运动是Δxmin≈3LΔymin8a[1-(L-lL)3]=3Lλ(a+b)2D(S/N)8a[1-(L-lL)3=3Lλ(a+b)16aD[1-(L-lL)3](S/N)---(31)]]>门上的照射区域具有宽度aD/[(a+b)cosβ],这提供最终的限制。如果b≈0且l≈L,从前一方程式就得到Δxmin≈3Lλ16D(S/N)---(32)]]>实际上, 即Δxmin≈3λ16(S/N)---(33)]]>这里,S是激光强度I0,并且,N是光和电子的总噪声。
信号的振幅(光功率的波动)Av=ΔPd1-ΔPd2=2ΔyImax---(34)]]>这里,ΔPd1和ΔPd2代表光功率在检测器d1和d2上的变化,并且,Imax是最大光功率/Δy。现在,借助方程式(28),得到Av=a16AxImax3L[1-(L-lL)3]≈16aAx3LPd1+Pd2σ[1-(L-lL)3]---(35)]]>
这里,Pd1+Pd2=I0代表照射到双重检测器上的激光的光功率。
因而,光学指示器的光信号的振幅是Av=16aDI0Ax3Lλ(a+b)≈16I0Ax3λ---(36)]]>这里,Ax是门运动x的振幅,Ax必须<λ。
本发明光学指示器提供的一个好处是它的设计简单,它不与门运动干涉,并且,双重检测器抑制激光的光子噪声。优选地,为了具有较小的σ,激光点在门上的尺寸较大,D≈L。本发明光学指示器也可用于测量膜片运动,最佳测量位置是 因而,根据本发明,也可用平移测量来测量门运动。图7描绘本发明的测量系统,该系统不是角测量,并且通过此系统可测量门的平移运动x。除了门之外,测量系统包括作为光源的激光器10、双重检测器11、用于把光束焦点集中到目前静止的或处于静止条件下的门3表面上的第一光学透镜12、以及用于把从门3反射的光束聚焦到双重检测器上的第二光学透镜12。光源、光学透镜以及双重检测器按以下方式配置当门静止时,入射到门上与从门反射的光束之间的角度为90°。所述测量的优点特别是光束的焦点在门表面上,并且门具有较差的光学质量。如果门具有镜面,可由测量系统检测的最小运动是Δxmin≈2aλ4D(S/N)---(37)]]>最小运动的数量级与角测量中的相同,即,如果D=2a/4,]]>那么,ΔXmin=λ/(S/N)。平移测量也适用于测量膜片运动。
根据本发明的一个优选实施例,门(或膜片)的运动也可用干涉仪来光学测量。图8示出本发明借助所谓的迈克尔逊干涉仪来测量门(或膜片)运动的一个测量系统。如图所示,除了门本身之外,该系统还包括作为光源的激光器10、用于聚焦光束的光学透镜12、用于把激光束分到门和基准镜16上的分束器15或半透明镜、基准镜16、以及用于接收来自分束器15的激光束的三重检测器17。根据图中所示出的,激光束大约聚焦在门和基准镜上。基准镜16调整成三重检测器17产生3/4与纸平面垂直的干涉条纹,其中,三重检测器17由三个传感器d1、d2和d3构成。如图6所示,当x随着门的运动而改变时,干涉条纹在检测器上横向运动。当x改变λ/2时,条纹移动单个条纹间隙。条纹的强度分布是I(z)=12A[1+cos(2πzD)]---(38)]]>如果干涉条纹移动ε,就按以下得到传感器d1、d2和d3的信号I1、I2和I3I1(ϵ)=∫-2D4+sD4+sA2[1+cos(2πzD)]dz=AD2.4+AD2.2π[-cos(2πϵD)+sin(2πϵD)]---(39)]]>I2(ϵ)=∫D4+ϵϵA2[1+cos(2πzD)]dz=AD2.4+AD2.2π[cos(2πϵD)+sin(2πϵD)]---(40)]]>以及I3(ϵ)=∫ϵD4+ϵA2[1+cos(2πzD)]dz=AD2.4+AD2.2π[cos(2πϵD)-sin(πϵD)]---(41)]]>因而,I2(ϵ)-I1(ϵ)=AD2πcos(2πϵD)I2(ϵ)-I3(ϵ)=AD2πsin(2πϵD)--(42)]]>或2πϵD=tan-1{I2-I3I2-I1}---(43)]]>由于ε=Δz=2DΔx/λ,因此,Δx=λ4πtan-1{I2-I3I2-I1}---(44)]]>由于信号I2-I1和I2-I3互相之间相位差是90°,因此,它们可提供如图10所示的路线横向正切函数间断。因而,在方程式Δx=(k+12)λ4+λ4πtan-1{I2-I3I2-I1}]]>中,有可能测量在正切间断φ=(n+1/2)π上测量整数k的变化±1。
最小的可检测运动是Δxmin=σ2(S/N)=λ8(S/N)---(45)]]>这里,S=I0/2。
如果门运动<λ/4,就可用与光学指示器中相同的方式,用双重检测器取代上述测量系统的三重检测器。因而,传感器的结合宽度等于单个条纹的宽度,并且,I1+I2=AD2=I02I1-I2=ADπsin(2πϵD)---(46)]]>因为ε=Δz=2DΔx/λ为Δx=λ4πsin-1{I1-I2I1+I2}≈λ8I1-I2I1+I2=λ4I0(I1-I2)---(47)]]>这里,I0是激光功率。接着,光信号的振幅为Ai=I1-I2≈4I0Axλ---(48)]]>这里,Ax是门运动x的振幅。
首先,根据本发明的干涉仪测量所得到的优点包括根据方程式(44),即使当门(或膜片)的运动覆盖几个波长时,响应是高度线性的。绝对准确度较高,因为干涉信号的形状与1/2(1+cos(2πz/D))正好一致。另外,激光以几乎点的方式聚焦在门的测量点上,并且其结果不受衍射的影响。测量结果的值也不受激光强度I0波动的影响,因为最大强度值A在方程式(44)中减去。
当互相比较光学指示器和干涉仪时,可得出结论,实际上不能计算方程式(33),因为当优化方程式(10)时,方形(矩形)门不是最佳的形式。即,换句话说,本发明的光学指示器和干涉仪与方形(矩形)门一起工作得很好,但是,如果希望进一步提高灵敏度和准确度,就必须改变门的形状。当使用其高度为其宽度L的1/10的门时(即s=10),根据图11,方程式(31)得到Δxmin≈3Lλ16L/10(S/N)≈2λS/N---(49)]]>这是干涉仪的相应值的16倍(方程式(45))。进一步地,如果s增加,即,门变得更短,那么,与光学指示器相比,干涉仪得到进一步改善,另一方面,这还增加门运动的振幅Ax(ω)。
例如,如图12a所示,通过在门铰链中部挖槽使门铰链减弱以进一步减小谐振频率,并且/或者,如图12b所示,通过在门的端部增加门的表面积,还可改善门的配置。如后面更详细描述地,图12b所示门设计尤其适用于干涉仪的倍增器解决方案。图12b所示门也可通过使用多于一个的杆来实现,从而,门的刚度增加,并且减小门的旋转对门所产生的压力。根据本发明,门也可按以下方式实现使用长杆作为门的铰链,其中,门的表面积比孔的表面积更小,从而,例如,图12a所示结构可用作杆,门连接到杆的头部或者形成为杆端部的一部分。长杆的优点是使用长杆减小门谐振。
由于使用干涉仪在门上产生几乎为点状的光点,因此,有可能在图13所示的干涉仪中应用多次反射,即倍增器。激光行进到端镜上,从门并从固定的平面镜20反射n次,其中,平面镜20安装在门附近并优选设置得与门表面平行。激光的焦点在端镜21附近,激光束从此端镜沿着相同的路径返回,从门又反射n次。如果门轻推距离Δx,干涉仪中的光学距离就改变4nΔx,并且,如果没有反射损失,响应增加2n倍。
如果镜子和门具有反射系数R,方程式(45)现在就采用新的形式xminR=λ2nR4n-28(S/N)=xmin2nR4n-2---(50)]]>此方法使灵敏度大约增加10倍。对于平移测量,在本发明的激光反射中也可应用多次反射,因为激光的焦点在门上。
当互相比较本发明的光学指示器和干涉仪时,可以得出结论,本发明的两个测量系统对于测量的准确度和灵敏度都能提供显著的改善。干涉测量甚至比光学指示器稍微更精确些,但同时测量系统稍微更复杂些。因而,应该根据具体应用和选择合适测量方法的情形来考虑所要求的灵敏度。
如上所述,现有技术光声检测器的问题是外部声音导致的干扰。根据本发明,可通过本身已知的双重检测器来抑制外部声音的影响,在图1中示出双重检测器。根据本发明,分别测量实际测量信号和基准信号并计算它们的振幅,它们之间的差异使得更准确并更有效地过滤外部噪声。尤其是在气体不产生信号的频率范围内,可明显减少干扰噪声。
无论如何都不把本发明限制于在前文描述的实施例,但是,在权利要求中提出的本发明概念范围内,可以改变本发明。
参考文献[1]Nicolas Ledermann等的集成铁电体(IntegratedFerroelectrics),第35卷,第177-184页(2001)[2]M.H.de Paula等的J.Appl.Phys.,第64卷第3722-3724页(1988)[3]M.H.de Paula等的Rev.Sci.Instrum.,第673卷第3487-3491页(1992)
权利要求
1.一种光声检测器,至少包括-可被提供待分析气体的第一腔室(V0),-允许经过调制的和/或脉冲红外辐射和/或光进入第一腔室(V0)的窗口,以及-用于检测由吸收的红外辐射和/或光在第一腔室中产生的压力变化的装置,特征在于用于检测由吸收的红外辐射和/或光在第一腔室中产生的压力变化的装置至少包括-设置在第一腔室(V0)壁中的孔,与所述孔相联系地设置适于根据气体运动而运动的门,以及-用于对门运动进行无接触测量的装置。
2.如权利要求1所述的光声检测器,特征在于门的表面积最大等于设置在第一腔室(V0)中的孔的表面积。
3.如权利要求1或2所述的光声检测器,特征在于门的至少一侧安装在包围门侧面的框架结构上。
4.如前面任一项权利要求所述的光声检测器,特征在于用硅制作门和框架。
5.如前面任一项权利要求所述的光声检测器,特征在于用于对门运动进行无接触测量的装置包括-光学测量装置,所述光学测量装置包括至少一个或多个光源以及一个或多个检测器,所述光源照射门或其一部分,所述检测器接收从门反射的光并以光学角和/或平移测量来测量门运动;或者-电容测量系统,由此,门或其一部分用金属涂敷,或者门用高度导电的材料制作,并且,所述测量系统包括设置在门附近的金属膜或涂敷金属的膜片、以及用于测量由门和金属膜形成的电容器的电容变化的装置。
6.如权利要求5所述的光声检测器,特征在于测量系统的光源包括激光器。
7.如权利要求5或6所述的光声检测器,特征在于测量系统的检测器包括双重传感器。
8.如权利要求5-7任一项所述的光声检测器,特征在于光源和检测器设计为干涉仪的一部分。
9.如权利要求5-8任一项所述的光声检测器,特征在于在第二腔室(V)中布置用于对门运动进行无接触测量的装置,其中,第二腔室构成容积为V的测量空间并通过第一腔室的孔与第一腔室联通。
10.如权利要求9所述的光声检测器,特征在于进一步设置与第二腔室联通的第三腔室,其中,第三腔室在尺寸上与第一腔室相同,第三腔室具有与第一腔室所包括孔相同的孔,所述孔连接第三腔室和第二腔室,用与封闭第一腔室孔的门相似的门来封闭第三腔室的所述孔,并且以与测量封闭第一腔室孔的门的运动相似的方式测量所述门的运动,以及,用于计算实际测量信号和基准信号的振幅并计算它们之间差异的装置,其中,实际测量信号从布置在第一腔室孔中的传感器测量,基准信号从布置在第三腔室孔中的传感器测量。
11.一种用于光声检测器的传感器,特征在于传感器包括作为门框的面板状边缘元件、以及通过间隙与面板状边缘元件分开的门。
12.如权利要求11所述的传感器,特征在于传感器可布置得与包括在光声检测器内的腔室联系,所述腔室包含待分析气体,使得根据吸收的红外辐射和/或光在腔室中产生的压力变化而移动门。
13.如权利要求11或12所述的传感器,特征在于传感器不包括固定安装在门上的传感器和/或固定布置得与门联系的传感器,所述传感器用于检测和/或测量门运动。
14.一种对用作光声检测器中传感器的门优化的方法,特征在于通过应用以下优化方程式而实施门运动振幅的优化,所述方程式为当ω<ω0时,Ax(ω)≈p0ΔT/T0ρdω02+p0A2V0,]]>当ω>ω0时,Ax(ω)≈p0ΔT/T0ρdω2+p0A2V0,]]>
15.如权利要求14所述的方法,特征在于通过ω0、A和d,特别是通过尽力减小它们的值,而执行振幅Ax(ω)的优化。
全文摘要
本发明涉及一种光声检测器,至少包括可被提供待分析气体的第一腔室(V
文档编号G01N21/17GK1685215SQ03823323
公开日2005年10月19日 申请日期2003年9月19日 优先权日2002年9月30日
发明者于尔基·考皮宁 申请人:诺维尔技术解决有限公司

  • 专利名称:一种梨花粉及花粉管微丝骨架的荧光标记方法技术领域:本发明是梨花粉及花粉管微丝骨架的荧光标记方法,包括蔷薇科木本果树花粉及 花粉管微丝骨架的荧光标记方法以及用该方法对花粉及花粉管微丝骨架进行显微镜 观察等内容,属于生物技术领域。二、
  • 专利名称:用于确定流体的流属性的设备的制作方法技术领域:本发明涉及用于确定流体的流属性的设备、方法和计算机程序。 背景技术:S. Sudo ^AWifeiI"Detection of small particles in flui
  • 专利名称:一种误差试验及直流和偶次谐波试验用的电能表检定电路的制作方法技术领域:本实用新型涉及电能表检定电路,特别是一种能够自动切换误差试验以及直流和偶次谐波试验的电能表检定电路。背景技术:直流和偶次谐波试验是《IEC62053电能测量设备
  • 专利名称:隧道信息利用导航装置的制作方法技术领域:本发明涉及导航装置,特别涉及通过利用隧道信息能够进行更适当的地图匹配的隧道信息利用导航装置。背景技术:在导航装置中,能够利用GPS得到正确的当前地。进而,通过地图匹配(mapmatching
  • 专利名称:Cvt无级变速器坡路起步性能的测试方法技术领域:本发明涉及一种CVT无级变速器性能的测法,尤其是CVT无级 变速器坡路起步性能的测试方法。背景技术:为满足对汽车驾驶的轻松、便捷和舒适的要求,以及提升汽车 的自动化程度,人们研发了各
  • 专利名称::一种治疗妇科子宫肌瘤的药物组合物的质量检测方法技术领域::本发明属于医药质量检测技术领域:,涉及一种中成药的质量检测方法,具体涉及一种治疗妇科子宫肌瘤的药物组合物的质量检测方法。背景技术::现有技术中,原申请号为20071015
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12