山东科威数控机床有限公司铣床官方网站今天是:2025-05-15切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

用于实施问候传感器的测量过程控制的方法和设备的制作方法

时间:2025-05-15    作者: 管理员

专利名称:用于实施问候传感器的测量过程控制的方法和设备的制作方法
背景技术
1.发明领域本发明通常涉及半导体晶片准备,并且更准确地说涉及晶片处理期间过程参数控制的现场测量。
2.相关领域说明众所周知,半导体制造包含数个阶段,在该数个阶段期间下方衬底经历各种层的形成和去除。较小形体尺寸和较高表面平面性的持续需求结合增加晶片生产量的持续探索要求实施过程状态监视和一旦已经达到目标厚度时能够停止目标层处理的终点检测方法。
最近,涡流传感器(ECS)开始被用于测量薄膜属性中的变化。关于用于使用涡流传感器的新方法的更多信息可参考于2002年6月28日提交的美国专利申请No.10/186,472的“INTEGRATION OF EDDYCURRENT SENSOR BASED METROLOGY WITH SEMICONDUCTOR FABRICATIONTOOLS(具有半导体制造工具的基于涡流传感器的计量学集成)”。该专利申请在此引入作为参考。该ECS传感器依赖通过接近正被探测的对象的测试线圈的振荡电磁场感应样品中的循环电流。作为经过通过线圈的交流电的结果,产生振荡电磁场。该振荡电磁场感应涡流,该涡流扰动所应用的场并改变线圈的电感。


图1是涡流传感器运行的原理的简化示意图。交流电流过限定在最接近导电对象102的线圈108。该线圈108的电磁场感应导电对象102中的涡流104。涡流104的幅值和相位依次影响线圈108上的载荷,导致线圈108的阻抗受到涡流104的影响。该影响根据导电对象102的接近程度和/或对象102的厚度(如果该对象102的厚度明显小于该场穿透深度)来测量和校准。如可看到的,距离106影响线圈108上的涡流104的效应。同样地,如果对象102移动,则来自监视线圈108上的涡流104的影响的该传感器的信号也将改变。
在化学机械平面化(CMP)操作中,晶片载体包含用于测量在该CMP操作期间正被处理的薄膜层的厚度的隔离的内置涡流传感器。该晶片载体包含设计用于支撑该晶片的底膜。在该平面化操作期间,该旋转载体、该内置涡流传感器、以及晶片被压在磨光垫上,从而将该晶片表面平面化。
不幸地,使用涡流传感器以检测该目标层的终点或测量该目标层的厚度具有某些负面方面。例如,图2中所示的曲线200说明在晶片的中心和边缘中产生的涡流传感器信号。曲线114表示在该平面化操作期间涡流电压与时间的变化。在曲线114中,涡流电压中的变化由限定在晶片中心的隔离的涡流传感器感应,而曲线116表示由限定在晶片边缘的另一个隔离的涡流传感器感应的平面化操作期间涡流电压中的变化。正常情况下,该涡流传感器信号正弦波动,其中每个信号跟随该载体旋转的频率波动。然而如图2所示,尽管两个信号均正弦波动,但是边缘曲线116中的信号振幅被示为明显大于中心曲线114中的振幅。
此外,所探测的薄膜层允许该电磁场穿透该薄膜层,以便到达位于该感应处附近的导电对象。通常,该外部对象的配置相对旋转传感器的轨迹是不对称的。然而,旋转的接近度变化导致该信号振幅的正弦变化,该正弦变化归因于在非均匀外部介质中的该晶片载体以及因此该涡流传感器的旋转。
该正弦信号振幅的变化由该涡流传感器对宽频谱的参数的灵敏度引起。例如,在很多其它参数中,已经建立,涡流传感器对底膜厚度、偏距、温度以及压力中的变化敏感。另外,所探测的薄膜层中产生的涡流的幅值和相位对该薄膜层的属性(例如,厚度、电阻、地形等)以及该薄膜层/传感器接近度敏感。
通过实例,“偏距”参数(即待磨光的层和该涡流传感器表面之间的距离)可能因很多原因有所不同。当该底膜厚度变化(例如在+/-数密耳之间)时,偏距将产生实质性变化。该偏距进一步由于以不同程度压力施加于该磨光垫上的底膜的压缩所致的底膜厚度变化而产生变化。一旦该旋转晶片的前沿在接触点上插入该移动磨光垫中,该底膜厚度以及因此该偏距将进一步变化。在此点上,施加于该接触点的压力引起该底膜被压缩,该偏距改变,并因此该涡流信号振幅的振幅改变。如可理解的,校准所有影响偏距的参数极为困难,该偏距最终将对由该传感器测量厚度产生负面影响。
另一个影响该涡流信号振幅的可变参数为该晶片表面上的非均匀温度梯度。例如,当该晶片前沿与该移动磨光垫相接触时,该晶片前沿的温度增加。然后,当该晶片后沿与该磨光垫相接触时,该晶片后沿的温度增加,从而增加该晶片后沿的温度。该涡流传感器对温度变化的灵敏度直接影响该涡流正弦信号振幅。而且,校准影响该涡流传感器的厚度测量结果的温度变化极端困难。
此外,该正弦信号振幅依据限定在接近该晶片中心或该晶片边缘的晶片载体内的传感器而有所不同。当传感器被进一步限定远离晶片中心时,信号振幅增加。
如可理解的,这些参数的综合效应已在使用涡流传感器信号的厚度测量或终点检测中引入无法接受的高数量的误差和不可预见性,导致处理过的晶片层磨光不足或过度磨光,损害该晶片并因此降低晶片生产量。
以上述观念,存在能够通过控制过程参数确定检测目标层的厚度的灵活测量方法和系统的需要。
发明概要概括地讲,本发明通过以下方式来满足这些需要,即实时确定晶片层的厚度或通过平均由多个被限定基本上相等地沿被配置来容纳待处理的晶片的晶片载体的半径的问候传感器产生的反相正弦信号。应理解,本发明可以许多方式来实施,该方式包括过程、设备、系统、装置、或方法。以下将说明本发明的数个有创造性的实施例。
在一个实施例中,提供一种用于检测晶片层的厚度的方法。该方法包含定义被配置来啮合待处理的晶片的晶片载体的特定半径。该方法也包含提供多个被配置来产生一组互补传感器的传感器。此外,在该方法中包含沿着该晶片载体内的特定半径分布多个传感器,以致该多个传感器中的每一个传感器与相邻传感器相位相差相同角度。该方法也包含测量由该多个传感器产生的信号。进一步包含平均由该多个传感器产生的信号,以产生组合信号。该平均被配置来从该组合信号中去除噪声,以致该组合信号能够与识别该层的厚度相关。
在另一个实施例中,提供一种用于检测晶片的晶片层的厚度的方法。该方法包含定义被设计来啮合待处理的晶片的晶片载体的特定半径。该方法进一步包含提供一对传感器并沿着该晶片载体内的特定半径分布该对传感器,以致该对传感器的第一传感器与该对传感器的第二传感器相位相差预定角度。该方法进一步包含测量由该对传感器的第一传感器和第二传感器产生的信号。也包含平均由该第一传感器和第二传感器产生的信号,以便产生组合信号。该平均被配置来从组合信号中去除噪声,该组合信号能够与识别该层厚度相关。
在又一个实施例中,提供一种用于检测被配置来由晶片载体啮合的晶片的导电层的厚度的设备。该设备包含多个被配置来检测由磁场增强源产生的磁场产生的信号的传感器。该多个传感器沿限定在该晶片载体内的圆被限定,以致该多个传感器中的每一个传感器与相邻传感器相位相差预定角度。由多个传感器所产生的信号平均被配置来产生组合信号。
本发明的优点有许多。最显著地,本发明的实施例可允许相等分布且沿同一个圆限定的传感器的任何组合的实施消除由相应的圆周运动所造成的信号波动。如此,该正弦清晰(clear)信号与正被去除的该金属膜的厚度精确相关,从而提供用于半导体制造过程(诸如CMP过程)的可靠的过程状态监视和终点检测方法。另一优点是,由于使用算术平均程序,该旋转非扰动的组合信号是实时记录的。该算术平均程序有利地实时监视测量。还有另一优点是通过使用沿特定圆定义的均匀分布的传感器,涉及周期性运动(例如波动)的信号分量自动和彻底地被抑制,而不需任何额外调整并不考虑复杂度(即具有简单的正弦或其余更复杂情况下的形状的信号)。又有另一优点在于,本发明的实施例可实施于任何类型的CMP系统(例如,线性CMP系统、转盘CMP系统,轨道CMP系统等)。仍有另一优点是,本发明的实施例可实施于任何实施循环周期系统运动的装置,以调节引起信号波动的感应空间中的情况。
本发明的其它方面和优点将从下列结合附图、借助本发明原理的实例示出的详细说明中更加明显。
附图简述本发明将通过结合附图的以下详细说明变得更易理解,并且相同的参考标记指示相同的结构元件。
图1是涡流传感器运行原理的简化示意图。
图2示出由晶片中心和边缘限定的两个隔离的涡流传感器的信号的曲线。
图3A是根据本发明的一个实施例的示例性晶片载体的示意图,该晶片载体包含用于测量化学机械平面化过程(CMP)期间的晶片层的厚度的一对互补涡流传感器。
图3B是根据本发明的实施例的晶片载体以及图3A中示出的该对互补涡流传感器的简化示意性顶视图。
图3C是根据本发明的实施例的另一对示例性涡流传感器的简化示意性顶视图。
图3D是根据本发明的实施例的示例性晶片载体的简化示意性顶视图,该晶片载体包含三组置于其中的问候ECS传感器。
图4根据本发明又一个实施例说明由一对示例性问候涡流传感器产生的正弦信号图。
图5A根据本发明的一个实施例说明由一对示例性问候涡流传感器产生的正弦信号图。
图5B根据本发明的一个实施例说明由该对示例性问候涡流传感器产生的正弦信号图。
图5C根据本发明的一个实施例说明由该对示例性问候涡流传感器产生的正弦信号图。
图6A是根据本发明又一实施例的用于测量目标层的厚度的三个传感器的互补涡流传感器的简化示意性顶视图。
图6B是根据本发明又一个实施例的用于测量目标层的厚度的四个传感器的互补涡流传感器的简化示意性顶视图。
图6C是根据本发明的又一个实施例的用于测量目标层的厚度的五个传感器的互补涡流传感器的简化示意性顶视图。
图6D是根据本发明的又一个实施例的用于测量目标层的厚度的六个传感器的互补涡流传感器的简化示意性顶视图。
图6E是根据本发明的又一个实施例的用于测量目标层的厚度的七个传感器的互补涡流传感器的简化示意性顶视图。
图6F是根据本发明的又一个实施例的用于测量目标层的厚度的八个传感器的互补涡流传感器的简化示意性顶视图。
图6G是根据本发明的又一个实施例的说明实施该多组互补传感器来测量目标层的厚度的简化示意性顶视图。
图6H是根据本发明的又一个实施例的说明实施该多组互补传感器来测量目标层的厚度的简化示意性顶视图。
图7是根据本发明的又一个实施例的说明被执行来使用多个问候传感器确定金属膜的厚度的操作的流程图。
图8是根据本发明的还有一个实施例的说明在通过实施多个互补传感器来检测蚀刻终点中执行的方法操作的流程图。
优选实施例的详细说明提供用于准确确定终点或晶片层的厚度的发明。在一个实施例中,由多个问候传感器产生的多个正弦信号被平均,以产生被配置来基本上与正被处理的晶片层的厚度相关的正弦抑制信号。在一个实施例中,由沿着晶片载体的圆周限定的一组问候传感器产生的信号被平均,以产生与正被处理或正被去除的该晶片层厚度明显相关的正弦抑制信号。如在此所使用的,术语“问候传感器”指沿晶片载体的圆周基本上均匀分布的一组两个或多个传感器,以致所产生的正弦信号的平均值中的该正弦分量基本上被抑制,以便与正被处理的晶片层厚度精确相关。
在优选实施例中,该噪声的正弦分量通过平均由该多个互补传感器产生的交变相位信号来消除。如在此所使用的术语“噪声”指影响所产生的信号的任何因素(例如波动扰动等)。这样,实施抑制正弦信号来确定具有明显提高的信噪比的传感器信号。在一个例子中,该多个传感器为涡流传感器(ECS)传感器。
在以下说明中,陈述多个具体细节,以便提供对本发明的彻底理解。然而,对于本领域的技术人员将理解,不需部分或全部的具体细节仍然可实施本发明。在其它例子中,未详述已熟知的过程操作,以便不必要地不混淆本发明。
图3A是根据本发明的一个实施例的示例性晶片载体118的简化示意图,该晶片载体118包含测量晶片122的层的厚度的一对互补传感器128a和128b。在一个实施例中,该互补传感器128a和128b为ECS传感器。如图3A的实施例中所示,该晶片载体118利用万向架134安装在载体轴133上。位于该晶片载体118上的万向架134被实施来在磨光操作期间将晶片载体118和晶片122对准移动磨光垫130。如可以看到的,安装在该载体轴133上的万向架135被设计来沿着晶片旋转的方向134旋转。该载体轴133被配置来将该晶片载体118以及因此该晶片122施加到该移动磨光垫130上。
在一个例子中,在晶片载体118以及因此该晶片122沿旋转方向134旋转的同时,晶片载体118和晶片122以力F被施加到磨光垫132。在某些实施例中,尽管包括万向架135以将晶片载体118和晶片122与磨光垫130的表面对准,但是晶片122被施加到磨光垫130上,以致最初晶片122的前沿122a插入磨光垫130中。此后,该晶片中心122c和后沿122b与磨光垫130相接触。
在另一个实施例中,插入该磨光垫130中的前沿122a导致靠近该晶片的前沿122a的底膜120厚度的减少。结果,该偏距以及因此正由ECS传感器128a检测的ECS信号被修正。插入该磨光晶片中的晶片前沿122a也使影响靠近该晶片前沿122a的正弦波动的晶片前沿122a处的温度增加。如以下更加详细地描述,在一个实施例中,分别在晶片前沿122a和后沿122b处由ECS传感器128a和128b检测到的ECS信号被实施来抑制该ECS信号波动。
参考图3B,根据本发明的一个实施例,该图3B说明正被施加到磨光垫130的图3A的晶片载体118的简化示意性顶视图。如可看到的,在ECS传感器128a被限定在晶片122内定义的假定圆123a的半径R上的同时,该问候ECS传感器128b被限定在该假定圆123a的半径-R上。如此,如下面将解释的那样,信号波动振幅中的变化可有利地使用正弦函数之一来消除(即,消除该噪声的任何正弦分量)。如可被理解的那样,所得到的抑制正弦信号基本上与该目标层的实际厚度有关。
根据本发明的一个实施例,图3C是图3A的晶片载体118的简化示意性顶视图,其示出两个ECS传感器128a和128b被规定彼此相位相差180度。也就是,来自一个传感器128a的信号由来自另一个传感器128b的信号抵消。如可看到的那样,ECS传感器128a产生相对于0度角131的角度α,而ECS传感器128b产生相对于0度角131的角度180+α。如进一步示出的那样,该ECS传感器128a与定义在半径-R处的ECS传感器128b相对地被定义在半径R处。
根据一个实施例,抑制图3C的实施例中的正弦振幅中的变化可进一步被理解为如下表1中所示的那样。在一个实施例中,假设S0为由该载体旋转正弦调制的实际信号幅度。故该实际信号幅度S被配置以如下方式振荡S=S0(1+sinα)其次,位于给定圆上的相应传感器1和传感器2的信号轨迹S1和S2也遵守表1中所提供的振荡等式,其中每个传感器位于直径上可替换的位置。通过平均该信号轨迹S1和S2的正弦分量,同时可得到实时的实际非振荡信号振幅。
表1-两个传感器的问候正弦信号抑制
因此,如可看到的,在实施一对互补ECS传感器处,将同步记录由各自的传感器产生的正弦信号。根据所实施的传感器数目(例如在此例中为2),将该正弦信号的正弦分量平均。如此,该ECS正弦信号的振幅变化被抑制,从而产生基本上不受与所处理的层的实际厚度精确相关的旋转正弦噪声所影响的信号。
参考图3D的实施例,根据本发明的一个实施例,图3D说明包含三组置于其中的问候ECS传感器的晶片载体118的简化示意性顶视图。如可看到的那样,第一组问候ECS传感器128a和128a′分别被定义在半径R1和-R1处。类似地,第二组问候ECS传感器128b和128b′分别被定义在半径R2和-R2处,而第三组问候ECS传感器128c和128c′分别被定义在半径R3和-R3处。根据一个实施例,每对问候ECS传感器的正弦信号的正弦分量被同步记录和平均,从而产生与晶片层的厚度明显相关的组合正弦抑制的正弦信号。那就是说,通过抵消每对ECS传感器之间的正弦信号,由每对传感器产生的电磁场将互相抑制。如可理解的那样,每对互补ECS传感器128a和128a′、128b和128b′、128c和128c′的平均基本上等于零。如所示出的那样,半径R3被示为比半径R2大,而半径R2又比半径R1大。如下更详细地描述那样,半径越大,梯度变得越大。然而,本发明的实施例通过使用问候ECS传感器来平均同步记录的正弦信号的正弦分量来消除梯度中的这种变化。
根据本发明的一个实施例,在由图4中所示的问候ECS传感器产生的信号图中进一步说明抑制ECS传感器的正弦信号振幅中的变化。曲线134a以伏特(即y轴112)与时间(即x轴110)绘出如由ECS传感器128a′产生的涡流传感器输出。类似地,曲线134a′以伏特与时间绘出如由ECS传感器128a产生的涡流传感器输出。曲线134″表示正弦ECS传感器信号128a和128b的正弦分量的平均。如可理解的那样,通过平均以角度α限定在半径为R的圆上的ECS传感器的正弦ECS信号的正弦分量和以角度180+α限定在半径为-R的圆上的ECS传感器的ECS信号,基本上消除影响该正弦信号的噪声的正弦分量。因此,以这种方式,正被处理的金属层的厚度与正弦抑制的组合信号的振幅基本上相关。在一个实施例中,该信号强度与各自的传感器128a和128a′距正被处理的晶片层的距离线性相关。由晶片层向传感器128a的移动引起的每个信号的强度中的变化由从该传感器128a′中移动该晶片层导致的基本上相反的强度中的变化抵消。如此,有利地,基本上消除由噪声的正弦分量引起的正弦信号振幅变化。
例如,在信号被示为在其最低处的该点处,ECS传感器基本上与该待去除的连续金属膜间具有最短距离。此后,当该金属膜的厚度变薄时,该信号强度被示为正在增加,如曲线134a和134a′所示的那样。信号强度中的增加持续到直至该金属膜(如铜膜)基本上从该晶片表面完全去除,在该点处,该正弦曲线134a和134a′假设为更平滑的路径。
如可看到的那样,由每个传感器产生的信号包含曲线134a和134a′中所示的正弦分量,如可理解的那样,该正弦分量基本上等价但不同相。因此,具有相等振幅但不同相的两个正弦ECS信号的平均(组合曲线134a″)是其中噪声的正弦分量已经被消除的曲线。以此方式,当正弦ECS信号与该金属膜的厚度相关时,组合正弦抑制信号可被实施为目标层(即金属膜)的实际厚度的测量。在一个实施例中,所实施的ECS传感器为一般可用的诸如从SUNX股份有限公司中可得到的GP-A系列模拟位移传感器的ECS传感器。
根据本发明的一个实施例,图5A是一对互补ECS传感器的曲线136a和136a′的分解的简化图。如图所示,曲线136a表示来自位于半径R处的传感器的ECS信号,而曲线136a′表示来自定义在半径-R上且相对第一传感器相位相差180度的传感器的ECS信号。本领域的技术人员可理解曲线136a和136a′的信号振幅中的变化。根据本发明的一个实施例,通过实施被规定为相位相差180度的传感器对,信号振幅中的变化可基本上通过简单地平均两个曲线136a和136a′的正弦分量来消除,由此产生正弦抑制曲线136a″。
根据本发明的一个实施例,参考图5C中所示的分解简化曲线136a、136a′和136a″。如图所示,曲线136a和136a′均是振幅变化的正弦曲线,其中两个曲线136a和136a′由规定在相位基本上相差180度的ECS信号产生。尽管两个曲线136a和136a′具有明显的振幅变化和由噪声引起的波动,但组合曲线136a″被示为正弦抑制的信号曲线,在该正弦抑制信号曲线中噪声引起的波动已消除。因此,该组合曲线信号136a″可被实施来确定正被去除的该金属膜的厚度。
根据本发明的某些实施例,实施含有多个互补ECS传感器的一组问候ECS传感器以便产生正弦抑制的组合曲线在图6A-6H的实施例中示出。图6A示出包含一组三个互补传感器128a、128b和128c的载体头部118,其中传感器128a-c被规定相位相互相差120度。以此方式,金属膜(即目标层)的空间覆盖率增加,从而有利地允许更准确地测量金属膜厚度。表2提供关于由示例性的三个传感器的问候传感器产生的传感器信号的抑制的更进一步说明,从而允许同步测量该传感器信号及平均该传感器信号的正弦分量。
同样的方式,根据本发明的一个实施例,图6B示出包含一组由四个传感器128a、128b、128c和128d组成的互补传感器,其中传感器128a-d被规定沿半径为R的圆相位相互相差90度。在一个实施例中,这种结构可被配置为两对相互直径上相对定位的传感器。
根据本发明的又一实施例,图6C说明包含被规定沿着圆相位相互相差72°的五个互补传感器128a-128e的晶片载体118。根据本发明的另一个实施例,图6D示出被规定相位相互相差60°的六个互补传感器128a-128f。图6E和6F分别说明包含被规定相位相互相差52°的七个互补传感器128a-128g、以及被规定相位相互相差45°的八个互补传感器128a-128h的晶片载体118。如上所详述的,多组互补传感器可被实施,以便产生正弦抑制的组合信号,其中该噪声的正弦分量已经被消除,从而提供与金属膜厚度基本上相关的传感器信号。
表2实施三个问候传感器的振幅抑制
根据本发明的一个实施例,图6G和6H的实施例中说明实施问候传感器的多个组合。根据本发明的一个实施例,如图6G中所示,问候传感器128a-128i被规定在晶片载体118内相位相差40°并沿半径R,而传感器138a和138a′被规定沿着半径R′相位相差180°。如此,由被规定相互相位相差180°的传感器138a和138a′产生的信号的正弦分量的平均提供基本上与半径R′处及其附近的薄膜厚度相关的正弦抑制信号。同理,来自被规定彼此相位相差40°的传感器128a-128i的信号的平均提供基本上与半径R处及其附近的厚度平行的正弦抑制信号。
在一个实施例中,当该传感器被规定沿其的圆形半径增加时,温度、压力、或偏距梯度均变大。因此,在图6G的实施例中,由于半径R大于半径R′,所以温度、压力或偏距梯度较大。结果,所产生的正弦传感器信号的振幅比沿着半径R′所产生的正弦传感器信号的振幅高。
根据本发明的一个实施例,图6H说明包含问候传感器的另一个组合的载体头部118。如所看到的那样,十个问候传感器128a-128j被规定沿着半径R且相位相互相差36°。此外,两个问候传感器138a和138a′的组合被规定沿着半径R′且相位相互相差180°。
虽然本发明实施例已被示为包含二至十个互补传感器,但本领域技术人员必须理解,本发明的实施例可实施任何适当的均匀和相等分布的传感器组合,该传感器被规定沿载体头部的相同圆以产生基本上与晶片层厚度相关的正弦信号。此外,必须理解,可实施被规定沿各自的圆的相等分布的传感器的多种组合,以在传感器的各自的位置处与晶片层厚度相关。
此外,虽然本发明的某些实施例已经利用ECS传感器进行了说明,但是本发明的实施例可被实施来抑制由任何适当类型的传感器(例如红外线的,电容,声波等)产生的信号。
例如,红外线传感器可被实施来测量该磨光带随时间变化的温度。本领域的技术人员必须理解,当该红外线信号可穿透该硅衬底时,红外线信号可检测到正由该磨光垫的表面处理的晶片的薄膜(也就是目标层)的温度。在一个实施例中,晶片温度被监视,以观察CMP过程期间的温度变化。在一个实施例中,该晶片的温度及该磨光垫的温度在终点处开始降低。
根据本发明的一个实施例,图7为说明被执行来使用多个问候传感器确定金属膜的厚度的操作的流程图700。该方法以其中提供多个问候传感器的操作702开始。在一个实施例中,多个传感器为ECS传感器。该多个互补传感器被规定在被配置来容纳待处理的晶片的晶片载体内。在一个实施例中,待处理的晶片包括金属膜。然后,使用由该多个传感器产生的信号产生组合信号。被规定在晶片层上的金属膜的厚度然后使用该组合信号来确定。如上所详述的,该正弦抑制的组合信号基本上不受该噪声的正弦分量影响,从而与正被去除的薄膜层的厚度明显相关。
根据本发明的另一个实施例,参考图8中示出的流程图800,该流程图800说明在检测实施多个互补传感器的蚀刻终点中执行的方法操作。该方法以其中提供多个传感器的操作802开始。接着,在操作804中,由晶片载体上的半径定义的特定圆被规定。此后,在操作806中,该多个传感器被规定沿该晶片载体内的特定半径,从而产生一组反相问候传感器。在一个实例中,只要该传感器沿该晶片载体中的特定半径均匀分布,该传感器就是问候传感器,从而产生明显抑制的正弦信号。例如,该组互补传感器可包含每个相位相互相差180度的两个传感器、相位相互相差120度的三个传感器、相位相互相差90度的四个传感器等。
该方法接着继续进行至操作808,其中测量由该组互补传感器中的每个传感器产生的信号;前进至操作810,其中平均所产生的信号的正弦分量,从而产生组合信号。继续至操作812,使用该组合信号来确定被规定在晶片表面上的金属膜的蚀刻终点。
应理解,虽然在一个实施例中,该晶片载体使用万向架与该磨光垫对准,但本发明的实施例并不限于包含实施万向架的CMP系统。此外,虽然本发明的实施例被示为实施于包含线性磨光垫的CMP系统中,但在不同实施例中,任何适当的磨光台均可被实施(如旋转等)。此外,在本发明的实施例已经关于CMP过程被描述的同时,该问候传感器并不限于CMP过程。例如,该传感器可被用在衬底上去除或沉积层或膜的任何半导体过程内。本发明在此已就数个示例性实施例进行说明。从说明书和发明实践的考虑中,本发明的其他实施例对于本领域的技术人员将更明显。上述的实施例和优选的特征应被认为是示例性的,其中本发明由所附的权利要求来限定。
权利要求
1.一种用于检测晶片层的厚度的方法,该方法包含定义晶片载体的特定半径,该晶片载体被配置来啮合待处理的晶片;提供多个传感器,该多个传感器被配置来产生一组互补传感器;使该多个传感器沿该晶片载体内的特定圆分布,以致每个传感器与相邻传感器相位相差相同的角度;测量由该多个传感器产生的信号;平均由该多个传感器产生的信号,以便产生组合信号,该平均被配置来抑制该组合信号中的振荡扰动,该组合信号能够与识别该层的厚度相关。
2.如权利要求1所述的方法,其中,所述晶片层的厚度可被现场确定。
3.如权利要求2所述的方法,其中,现场被定义为当该层正被处理时确定该层的厚度。
4.如权利要求1所述的方法,其中,所述组合信号被实施来确定所述层的终点。
5.如权利要求1所述的方法,其中,所述多个传感器为涡流传感器。
6.如权利要求1所述的方法,其中,由所述多个传感器产生的信号不同相。
7.如权利要求6所述的方法,其中,平均由所述多个传感器产生的信号基本上消除信号抑制。
8.一种用于检测晶片层的厚度的方法,该方法包含定义晶片载体的特定半径,该晶片载体被配置来啮合所述待处理的晶片;提供一对传感器;沿该晶片载体内的该特定圆限定该对传感器,以致该对传感器中的第一传感器与该对传感器中的第二传感器相位相差预定角度;测量由该对传感器中的该第一传感器与该第二传感器产生的信号;平均由该第一传感器与该第二传感器产生的信号,以便产生组合信号,该平均被配置来去除该组合信号中的噪声,该组合信号能够与识别该层的厚度相关。
9.如权利要求8所述的方法,其中,所述第一传感器与所述第二传感器相位相差180度。
10.如权利要求8所述的方法,其中,所述传感器对为涡流传感器。
11.如权利要求8所述的方法,其中,规定所述传感器对中的第一传感器与所述传感器对中的第二个传感器不同相被配置来基本上消除信号抑制。
12.如权利要求8所述的方法,其中,由所述传感器对中的第一传感器与第二传感器产生的信号的强度与晶片层的厚度相关。
13.如权利要求8所述的方法,其中,所述晶片层的厚度可被现场确定。
14.如权利要求13所述的方法,其中,现场被定义为当所述层正被处理时确定该层的厚度。
15.一种用于检测晶片的导电层的厚度的设备,该晶片的导电层被配置来由晶片载体啮合,该设备包含多个传感器,该多个传感器被配置来检测正由磁场增强源产生的磁场产生的信号,该多个传感器被规定沿限定在该晶片载体内的圆,以致该多个传感器中的每个传感器与相邻传感器相位相差预定角度,其中由该多个传感器产生的信号的平均被配置来产生组合信号。
16.如权利要求15所述的设备,其中,所述组合信号的振幅被配置为基本上与晶片层的厚度成比例。
17.如权利要求15所述的设备,其中,所述多个传感器中的每个传感器为涡流传感器。
18.如权利要求15所述的设备,其中,所述组合信号被实施来确定所述晶片层的厚度。
19.如权利要求15所述的设备,其中,所述晶片层的厚度可被现场确定。
20.如权利要求16所述的设备,其中,现场被定义为当所述层正被处理时确定该层的厚度。
全文摘要
提供一种用于检测晶片层的厚度的方法。该方法包含定义被配置来啮合待处理的晶片的晶片载体的特定半径。该方法也包含提供被配置来产生一组互补传感器的多个传感器。在该方法中进一步包含的是使多个传感器沿该晶片载体内的特定半径分布,以致该多个传感器中的每个传感器与相邻传感器相位相差相同角度。该方法也包含测量由该多个传感器产生的信号。进一步包含的是平均由该多个传感器产生的信号,以便产生组合信号。该平均被配置来从该组合信号中去除噪声,以致该组合信号能够与识别该层的厚度相关。
文档编号G01R33/12GK1732369SQ200380107456
公开日2006年2月8日 申请日期2003年12月17日 优先权日2002年12月23日
发明者Y·戈特基斯, R·基斯特勒, A·奥夫查尔茨, D·亨克尔, N·J·布赖特 申请人:兰姆研究有限公司

  • 专利名称:聚合物自组装超微孔膜免疫组合传感器的制备方法技术领域:本发明涉及电化学测试技术,以及环境、医学卫生领域中生物分子与细菌的检测技术领域,特别是生物传感器制作技术领域。背景技术:电化学免疫传感器是一种将电化学检测技术与免疫学技术相结合
  • 专利名称:可实现并行测试的互连互通组合测试箱及测试系统的制作方法技术领域:本发明涉及测试设备,更具体地,涉及一种具有互连互通功能的组合测试箱。尤其是,应用于自动测试系统中,提供仪器承载及机箱之间信号互连的互连互通组合测试箱。背景技术:在线测
  • 专利名称:一种对液体进行采样和分析的装置的制作方法技术领域:本实用新型涉及液体检测技术领域,具体涉及一种对液体进行采样和分析的装置,其可以适用于检测水、各种水溶液等液体中的气体成分。背景技术:近些年来,由于傅立叶变换红外气体分析仪的可分析的
  • 专利名称:一种硬度测量夹具的制作方法技术领域:本实用新型涉及一种硬度测量夹具,尤其是配合里氏硬度计使用的测量夹具,属于测量工具技术领域。背景技术:目前,测量金属材料硬度一般使用洛氏硬度计、布氏硬度计、维氏硬度计、里氏硬度计等,里氏硬度计适用
  • 专利名称:用高压氙灯实现点火的硼颗粒燃烧观测装置的制作方法技术领域:用高压氙灯实现点火的硼颗粒燃烧观测装置技术领域[0001]本实用新型涉及一种燃烧试验装置,特别涉及高压环境下硼颗粒点火燃烧观测的>J-U ρ α装直。背景技术
  • 专利名称:一种检测织物纬斜的光电信号检测头的制作方法技术领域:本实用新型涉及ー种检测织物纬斜的光电信号检测头,属于纺织设备技术领域。背景技术:整纬装置是纠正纺织品在染整过程中由于エ艺因素产生的纬纱变形不可缺少的设备。其工作原理是在微机控制下
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12