专利名称:生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法
技术领域:
本发明涉及图像处理技术、遥感测量等领域,进一步是指用于生成干涉合成孔径雷达干涉相位图的条纹等值线窗口实虚部相关方法、矩形等窗口实虚部相关方法。
背景技术:
干涉合成孔径雷达(Interferometric Synthetic Aperture Radar,缩写InSAR或IFSAR)三维成像技术是新近发展起来的空间观测技术,它是传统的合成孔径雷达(Synthetic Aperture Radar,缩写SAR)遥感技术与射电天文干涉技术结合的产物。干涉合成孔径雷达技术通过两幅天线同时观测或一副天线两次平行观测,接收地面目标的回波信号,经成像处理后得到同一观测区域两幅具有相干性的合成孔径雷达复数图像(包括强度信息和相位信息),再经过干涉处理后得到这两幅复图像的干涉相位图像,按照一定的几何关系进行变换,进而得到观测目标的三维信息。
目前干涉相位图的生成主要采用共轭相乘的方法。记V1(r,x)和V2(r,x)分别为精确配准后的两幅复图像的复值,则V1(r,x)=A1eiφ1=A1cosφ1+iA1sinφ1---(1)]]>V2(r,x)=A2eiφ2=A2ei(φ1+Δφ)=A2cos(φ1+Δφ)+iA2sin(φ1+Δφ)----(2)]]>式中φ1和φ2分别为两根天线的回波相位,Δφ=φ2-φ1为回波相位差,即干涉相位。将两幅复图像对应像素进行复共轭相乘得V1*(r,x)·V2(r,x)=A1A2ei(φ2-φ1)=A1A2eiΔφ---(3)]]>式中*表示复共轭。由式(3)可得
Δφ=arctan[Im(V1*(r,x)·V2(r,x))Re(V1*(r,x)·V2(r,x))]---(4)]]>图1所示为用这种方法得到的干涉相位图。由于干涉合成孔径雷达系统中斑点噪声、空间失相关、时间失相关、数据处理噪声等因素的影响,使得干涉相位图的信噪比较低。这种高噪声的存在严重地影响了相位解缠的进行和高精度数字高程图的获取,已经成为干涉合成孔径雷达数据处理中一个最主要的瓶颈。
发明内容
本发明要解决的技术问题是,针对现有技术存在的缺陷,在干涉合成孔径雷达数据处理过程中,用条纹等值线窗口实虚部相关方法、矩形等窗口实虚部相关方法代替传统的共轭相乘方法,由两幅精确配准后的复图像生成完全免除相干斑噪声的干涉相位图。从而极大地提高相位解缠的可靠性及生成数字高程图的精度,解决了干涉合成孔径雷达数据处理中一个最主要的困难。
本发明的技术方案是,所述生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法是(1)对于两幅复数图像中对应的每一像素点,以当前点为中心,取一大小为m×n(m、n为大于0的数)的等值线窗口或其它形式窗口,在窗口内对两幅复图像数据的实部或虚部进行相关运算,求出其相关系数C1;(2)用上述相同方法对第一幅复图像数据的实部和第二幅复图像数据的虚部进行相关运算,求出其相关系数C2,或对第一幅复图像数据的虚部和第二幅复图像数据的实部进行相关运算,求出其相关系数-C2,进而得到C2;(3)对C2与C1的比值求反正切即可获得干涉相位图像。
所述窗口可以是条纹等值线窗口,也可以是矩形及其它形式窗口。
以下对本发明做出进一步说明。
关于本发明原理的公式推导。
使用的相关公式可以是协方差(均值归一化)相关、标准化协方差相关等多种数学表达形式。下面以标准化协方差相关公式为例来加以推导。
标准化协方差相关公式如下C(r,x)=<(f1-<f1>m×n)(f2-<f2>m×n)>m×n[<(f1-<f1>m×n)2>m×n]1/2[<(f2-<f2>m×n)2>m×n]1/2---(5)]]><·>m×n算符代表在m×n像素范围内对某一变量求均值。
对于两幅复图像V1(r,x)和V2(r,x)分别取其实部数据,记为f1=A1cosφ1(6)f2=A2cos(φ1+Δφ) (7)由于图像精确配准,可以认为A1=A2=A,φ1和φ2为随机分布变量,由散斑统计理论,可以认为在满足一定尺度(m×n)的窗口上<cosφ1>m×n=<cos(φ1+Δφ)>m×n=0(8)并假设相位变化量Δφ在m×n个像素窗口区域内保持不变,由式(6)和式(7)可得<f1>m×n=0 (9)<f2>m×n=0 (10)<f1f2>m×n=<A1A2cosφ1cos(φ1+Δφ)>m×n]]>=<A1A2·12·(cos(2φ1+Δφ)+cosΔφ)>m×n=12<A2>m×ncosΔφ]]>(11)<(f1-<f1>m×n)(f2-<f2>m×n)>m×n=<f1f2>m×n=12<A2>m×ncosΔφ---(12)]]><(f1-<f1>m×n)2>m×n=<f12>m×n=<A12cos2φ1>m×n=12<A2>m×n---(13)]]><(f2-<f2>m×n)2>m×n=<f22>m×n=<A22cos2(φ1+Δφ)>m×n=12<A2>m×n---(14)]]>将(12)(13)(14)代入(5)中,得C1=12<A2>m×ncosΔφ12<A2>m×n=cosΔφ---(15)]]>同理,分别取V1(r,x)和V2(r,x)的实部与虚部,记为f1=A1cosφ1(16)f2=A2sin(φ1+Δφ) (17)
用上面同样的方法进行推导可以得到C2=12<A2>m×nsinΔφ12<A2>m×n=sinΔφ---(18)]]>由式(15)与式(18),可以得到Δφ=arctan(C2/C1) (19)对比式(4)与式(19)可知二者得到干涉相位图的相位分布完全一致。
另外,将第一幅图的虚部与第二幅图的虚部进行相关运算也可以得到C1,将第一幅图的虚部与第二幅图的实部进行相关运算可以得到-C2,进而得到C2。
关于本发明的相关窗口选取。
由上述推导可知,上述结论是在条纹等值线窗口上才严格成立。因此,相关运算的最优窗口是条纹等值线窗口,用它可以得到质量和精度最好的干涉相位图。也可以选取矩形及其它形式窗口,仍可得到比较好的近似结果。条纹等值线窗口是一种曲线窗口,它是沿干涉相位图的条纹走向取一定长度和宽度所形成的窗口,可以从共轭相乘方法生成的干涉相位图得到,也可以从矩形等窗口相关方法生成的干涉相位图得到。可以用不同算法获取条纹等值线窗口,它不属本发明的内容,此处不赘述。
由以上可知,本发明为生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,它是一种用基于条纹等值线窗口、矩形等窗口的复图像实虚部相关方法生成无干涉斑干涉合成孔径雷达干涉相位图的方法;本发明方法在干涉合成孔径雷达数据处理过程中,用条纹等值线窗口实虚部相关方法、矩形等窗口实虚部相关方法代替传统的共轭相乘方法,由两幅精确配准后的复图像生成完全免除相干斑噪声的干涉相位图。从而极大地提高相位解缠的可靠性及生成数字高程图的精度,解决了干涉合成孔径雷达数据处理中一个最主要的困难。
图1是精确配准后两幅复图像用共轭相乘方法生成的干涉相位图,图像大小为2048×2048像素。
图2是精确配准后两幅复图像用矩形窗口相关方法生成的干涉相位图,所用矩形窗口大小为19×19。
图3是精确配准后两幅复图像用条纹等值线窗口相关方法生成的干涉相位图,所用条纹等值线窗口大小为41×5。
具体实施例方式
1.获取具有相干性的两幅SAR复图像数据,并将其精确配准;2.对于两幅复数图像中对应的每一像素点,以当前点为中心,取一大小为m×n的窗口(可以是条纹等值线窗口,也可以是矩形及其它形式窗口),在窗口内对两幅复图像数据的实部(或虚部)进行相关运算,求出其相关系数C1;3.用相同的方法对第一幅复图像数据的实部和第二幅复图像数据的虚部进行相关运算,求出其相关系数C2,或是对第一幅复图像数据的虚部和第二幅复图像数据的实部进行相关运算,求出其相关系数-C2,进而得到C2;4.对C2与C1的比值求反正切即可获得干涉相位图像。
权利要求
1.生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,其特征是,该方法为(1)对于两幅复数图像中对应的每一像素点,以当前点为中心,取一大小为m×n(m、n为大于0的数)的窗口,在窗口内对两幅复图像数据的实部或虚部进行相关运算,求出其相关系数C1;(2)用上述相同方法对第一幅复图像数据的实部和第二幅复图像数据的虚部进行相关运算,求出其相关系数C2,或对第一幅复图像数据的虚部和第二幅复图像数据的实部进行相关运算,求出其相关系数-C2,进而得到C2;(3)对C2与C1的比值求反正切即可获得干涉相位图像。
2.根据权利要求1所述的生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,其特征是,所述窗口是条纹等值线窗口或矩形及其它形式窗口。
3.根据权利要求2所述的生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,其特征是,所述条纹等值线窗口为曲线窗口,它是沿干涉相位图的条纹走向取一定长度和宽度所形成的窗口。
4.根据权利要求3所述的生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,其特征是,所述条纹等值线窗口由传统复图像共轭相乘方法生成的干涉相位图得到。
5.根据权利要求3所述的生成无干涉斑合成孔径雷达干涉相位图的实虚部相关方法,其特征是,所述条纹等值线窗口由矩形及其它形式窗口实虚部相关方法生成的干涉相位图得到。
全文摘要
本发明的方法是对于两幅复数图像中对应的每一像素点,以当前点为中心,取一大小为m×n(m、n为大于0的数)的等值线窗口或其它形式窗口,在窗口内对两幅复图像数据的实部或虚部进行相关运算,求出其相关系数C
文档编号G01S13/90GK1680826SQ200410023098
公开日2005年10月12日 申请日期2004年4月9日 优先权日2004年4月9日
发明者于起峰, 伏思华 申请人:中国人民解放军国防科学技术大学