专利名称:一种小管径超声波流量测量装置及方法
技术领域:
本发明涉及一种超声波流量测量装置及方法,特别涉及一种小管径、低流速超声波流量测量装置及方法。
本发明的另一个目的是提供实现上述装置的检测方法。
为达到上述目的,本发明采用的技术方案是包括基于ISA总线插在工业控制机底板插槽的超声波收发卡和数据采集卡,所说的超声波收发卡包括振荡电路、升压电路、超声波脉冲发射电路、同步触发控制电路、超声波换能器、增益控制电路和信号调理电路,振荡电路的输出端与升压电路的输入端相连,升压电路的输出端与超声波脉冲发射电路的一输入端相连,同步触发控制电路的输出端与超声波脉冲发射电路的另一输入端相连,超声波脉冲发射电路的输出端与超声波换能器的TRA、TRB相连,超声波换能器的TRA、TRB分别与信号调理电路的一输入端相连,增益控制电路的输出端与信号调理电路的另一输入端相连,信号调理电路的输出端通过信号线与数据采集卡的A/D输入端连接;所说的数据采集卡包括两路A/D单元、两路数据缓冲单元、两路32KSRAM单元、地址发生器、数据缓冲器和A/D及读写时序控制单元,两路A/D单元的输出端分别与两路数据缓冲单元的输入端相连,两路数据缓冲单元的输出端分别与两路32KSRAM13的另一输入端相连,地址发生器的输出端与两路32KSRAM单元的一输入端相连,两路32KSRAM单元的输出端与数据缓冲器的输入端相连,数据缓冲器的输出端通过ISA总线输入给工业控制机,工业控制机通过ISA总线给A/D及读写时序控制单元发出各类信号,A/D及读写时序控制单元的输出端分别送给两A/D单元、两路数据缓冲单元、两路32KSRAM单元和地址发生器。
实现上述装置的检测方法是首先将超声波换能器的TRA、TRB采用管外V型安装,且超声波换能器的TRA、TRB前端面的距离为L,超声波换能器的TRA、TRB在工业控制机的控制下,同时发射超声波脉冲,并同时接收对方发射的超声波信号,超声波信号发射后以θ0的角度穿过换能器斜楔,以θ1的角度穿过管壁,以θ2的角度穿过被测流体达到对面的管壁内侧面,经反射后超声波信号按相反的顺序进入另外一个换能器,超声波换能器的TRA、TRB将各自接收到的超声波信号送入数据采集卡的A/D输入端,对数据采集卡采集的数据序列CH1(n)、CH2(n)采用以下步骤进行快速搜索回波(1)原始数据预处理将两采集序列CH1(n)和CH2(n)减去各自的平均值后求绝对值得到两新的数据序列,将新序列分段求平均值,并把平均值赋给各段;(2)快速搜索,回波粗定位搜索计数标志预先置一,从前向后进行搜索,如果新数据序列值依次先大于后小于搜索高度,则搜索计数标志加1,直至搜索完整个数据序列,如果搜索计数标志小于三时,未搜索到回波,如果搜索计数标志为三时,记下搜索到的回波C1、C2的大概起始位置;(3)精确搜索,回波细定位对搜索到的回波向前向后延长相等采集长度,求得回波在这一范围内的最大点位置,即回波的峰值。在原始采集数据上,以回波峰值位置为对称点,确定回波计算的范围,初步确定两组回波计算的点及其始、终位置startPos1、startPos2和endPos1、endPos2,原始采集数据减去自身的平均值,得到的数据有正有负,存放在两个数组里,并且点的位置不变,分别从点startPos1、startPos2开始,向后搜索重新确定startPos1、startPos2,从点endPos1、endPos2向前搜索重新确定endPos1、endPos2,要求是startPos1、startPos2在过零点以下,endPos1、endPos2在过零点以上,这样确保startPos1、startPos2相差超出一个周期也能计算,计算两通道之间存在的时间差在时差计算部分,首先对所选取的有效数据区进行线性插值,每两个采样点间线性插入99个点,可得到两组离散的时间幅值序列X(0)、X(1)、X(2)、、、、X(N)Y(0)、Y(1)、Y(2)、、、、Y(N)当n<0或n>N时,X(t)、Y(t)均为0,其中Y(n)对应于逆流发射的超声波信号,X(n)对应于顺流发射的超声波信号;对X(t)、Y(t),求相关函数RXY(m)=Σn=0NX(n)Y(n+m)]]>由于经过筛选后的波形数据均具有很好的一致生,相关函数RXY(m)最大值所对应的m即反映了序列Y(n)相对于X(n)的时延长度,所以,顺逆流时间差为Δt=25100×m=0.25m(nS)]]>测得Δt,根据公式v=Δt*C024*d*tgθ2]]>得到线流速V;式中C0为超声波信号在被测流体中的声速、d为管内径;对所得的线流速V加以校正,获得面流速VA的大小υA=ηυ式中η-面速度对线速度的修正系数则通过被测管道的流量大小为Q=πd24υA]]>计算出的流量大小是在完全理想的测量前提下得到的,为了得到真实的流量值,需要对Q作进一步的修正Qt=KdQ=Kdπd24υA]]>式中Kd为仪表系数,其大小可以通过标定测试获得。
本发明突破了传统时差法流量测量采用高速计数器来计算时差所带来的不足,采用了40MSPS高速采样频率和插值相关技术,用数字信号处理方法使时差成为一个统计量,使时差测量精度达到±1ns,提高了时差、流量测量的分辨率和精度,而且适用于小管径、低流速流体流量的测量,同现有技术相比,方法简便可靠,仪器运行稳定,操作简便,测量精度高、实时生好。
参见
图1,本发明包括基于ISA总线插在工业控制机1底板插槽的超声波收发卡2和数据采集卡3,其工作原理为工业控制机1发出控制信号,超声波收发卡2工作,超声波换能器8的TRA、TRB同时发射超声波脉冲,经过一段时间后,TRA、TRB发射的超声波信号分别进入对方换能器。在接通超声波发射电路的同时,工业控制机1发出控制信号,数据采集卡3工作,以40MSPS的采样速率自动完成超声波信号采集,并将数据存放在64K×8的高速缓存中,实时记录下超声波换能器8的TRA、TRB上所出现的一切信号。由于流速的影响,两超声波换能器接收到的超声波信号的时刻不同,存在一个时间差Δt,测量出时间差Δt,即能测得流量。一次信号采集完成后,数据被送入工业控制机1进行分析处理,完成时间差、流量的计算,并以数据和图表的形式输出,可自动连续实时进行流量显示.
参见图2,超声波收发卡2包括振荡电路4、升压电路5、超声波脉冲发射电路6、同步触发控制电路7、超声波换能器8、增益控制电路9和信号调理电路10,振荡电路4的输出端与升压电路5的输入端相连,升压电路5的输出端与超声波脉冲发射电路6的一输入端相连,同步触发控制电路7的输出端与超声波脉冲发射电路6的另一输入端相连,超声波脉冲发射电路6的输出端与超声波换能器8的TRA、TRB相连,超声波换能器8的TRA、TRB分别与信号调理电路10的一输入端相连,增益控制电路9的输出端与信号调理电路10的另一输入端相连,信号调理电路10的输出端通过信号线与数据采集卡3的A/D输入端连接;超声波收发卡2发射超声波的工作原理是振荡电路4将+12V直流电压输入转变成交流正弦波输出,送给升压电路5,并经过升压电路5产生750V的高压,给超声波脉冲发射电路6的储能电路充电。工业控制机1发出控制信号,同步触发控制电路7输出触发脉冲,超声波脉冲发射电路6的储能电路放电,其冲击电压加到超声波换能器8的晶体上,由于逆压电效应,超声波换能器8的晶体受激振荡产生超声波。超声波收发卡2接收超声波的工作原理是工业控制机1发出控制信号,同步触发控制电路7输出一低脉冲,超声波脉冲发射电路6关断,放电过程结束,进入充电过程。超声波换能器8将接收到对方换能器发射的通过流体后的超声波信号,由于压电效应,输出电信号,在送数据采集卡3之前,通过信号调理电路10进行调理,以满足A/D转换的要求。
参见图3,数据采集卡3包括两路A/D单元11、两路数据缓冲单元12、两路32KSRAM单元13、地址发生器14、数据缓冲器15和A/D及读写进序控制单元16,两路A/D单元11的输出端分别与两路数据缓冲单元12的输入端相连,地址发生器14的输出端与两路32KSRAM单元的输入端相连,两路数据缓冲单元12的输出端分别与两路32KSRAM单元13的输入端相连,两路32KSRAM单元13的输出端与数据缓冲器15的输入端相连,数据缓冲器15的输出端通过ISA总线输入给工业控制机1,工业控制机1通过ISA总线给A/D及读写时序控制单元16发出各类信号,A/D及读写时序控制单元16的输出端分别送给两A/D单元11、两路数据缓冲单元12、两路32KSRAM单元13和地址发生器14。数据采集卡3基于ISA总线有两个8位A/D通道,采样频率为40Msps、20Msps、10Msps及5Msps可选,存储深度为32KB、16KB、8KB及4KB可选。由流量处理软件启动数据采集后,采集系统按所选的采样频率和存储深度对双通道同时进行数据采集,无需处理器的干预。在采样过程中,可以通过查询采集系统的状态寄存器来判断采样过程是否结束。采样结束后,可通过一个端口按顺序读取保存在SRAM中的采样数据。
参见图4,将超声波换能器8的TRA、TRB采用管外V型安装,且超声波换能器8的TRA、TRB前端面的距离为L,超声波换能器8的TRA和TRB在工业控制机1的作用下,将同时发射超声波脉冲,并同时接收对方发射的超声波信号。由于流速的影响,两超声波换能器接收到的超声波信号的时刻不同,存在一个时间差Δt,测量出时间差Δt,即能测得流量,超声波换能器8的K值(换能器倾斜角)决定了超声波信号入射角θ0的大小,而管道材料和K值将共同决定θ1的大小(不考虑存在管衬的情况),θ2将由管道材料和被测流体的类型所决定。超声波信号发射后以θ0的角度穿过换能器斜楔,在换能器界面发生折射后,超声波以θ1的角度穿过管壁,在管壁与被测流体的分界面上发生第二次折射,此后超声波信号以θ2的角度穿过被测流体达到对面的管壁内侧面,经反射后超声波信号按相反的顺序进入另外一个换能器。
设超声波信号在被测流体中的声速为C0,在管壁中的声速为C1,若超声波顺流时从TRA到达TRB所需要的时间为t1,逆流时从TRB到达TRA所需要的时间为t2,同时令L1=D-d2,]]>则t1=2L1/cosθ1C1+2L3/sinθ2C0+v*sinθ2+τ1.......(1)]]>t2=2L1/cosθ1C1+2L3/sinθ2C0-v*sinθ2+τ2.......(2)]]>式中τ1,τ2超声波换能器斜楔及电路延时、L1管壁厚度、D管外径、d管内径、L3超声波在流体中传播的声程在流体流速方向上的映射长度之半对式(1)、(2),近似的认为τ1,τ2是相等的,用式(2)减去式(1),可得Δt=2L3/sinθ2C0-v*sinθ2-2L3/sinθ2C0+v*sinθ2]]>即Δt=4vL3C02-υ2sin2θ2........(3)]]>在一般工业测量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500米/秒左右,所以式(3)中υ2sin2θ2项可以忽略不计。因此Δt=4vL3C02......(4)]]>式中L3可以用所测管道的外径D及内径d表示,换能器安装时前端面的距离为L,则Δt=4vdtgθ2C02.......(5)]]>对式(5)进行变换,可得v=Δt*C024*d*tgθ2.......(6)]]>对式(6)计算所得的线流速加以校正,获得面流速的大小υA=ηυ式中η-面速度对线速度的修正系数则通过被测管道的流量大小为Q=πd24υA........(7)]]>式(7)所计算出的流量大小是在完全理想的测量前提下得到的,为了得到真实的流量值,需要对Q作进一步的修正Qt=KdQ=Kdπd24υA........(8)]]>式中Kd-仪表系数,其大小可以通过标定测试获得。本发明流量测量时需要用户输入管道内外径、管道材料、被测流体种类以及当前温度下超声波在管壁和被测流体中的声速大小。系统在测出时差Δt之后,将按流量测量数学模型式(6)、(8)进行流速、流量及其它参数的计算。参见图5,图中的A1为TRA发射的超声波始波信号、B1为TRB经管壁传入TRA的信号、C1为TRB经流体一次反射传入TRA的信号、D1为TRB经流体多次反射传入TRA的信号(或A2、B2、C2、D2)仅仅回波C1、C2用来计算时差。
图6是对数据采集卡3采集的数据序列CH1(n)、CH2(n)处理并计算出流量的整个流程图快速搜索回波(1)原始数据预处理,将两采集序列CH1(n)和CH2(n)减去各自的平均值后求绝对值得到两新的数据序列,将新序列分段求平均值,并把平均值赋给各段。
(2)快速搜索,回波粗定位选一个搜索高度和搜索计数标志,搜索计数标志预先置一,从前向后进行搜索,如果新数据序列值依次先大于后小于搜索高度,则搜索计数标志加1,直至搜索完整个数据序列。如果搜索计数标志小于三时,未搜索到回波。如果搜索计数标志为三时,记下搜索到的回波C1、C2的大概起始位置。
(3)精确搜索,回波细定位为了提高可靠性,对搜索到的回波向前向后延长相等采集长度,求得回波在这一范围内的最大点位置,即回波的峰值。在原始采集数据上,以回波峰值位置为对称点,确定回波计算的范围,初步确定两组回波计算的点及其始、终位置startPos1、startPos2和endPos1、endPos2。原始采集数据减去自身的平均值,得到的数据有正有负,存放在两个数组里,并且点的位置不变,分别从点startPos1、startPos2开始,向后搜索重新确定startPos1、startPos2,从点endPos1、endPos2向前搜索重新确定endPos1、endPos2。原则是startPos1、startPos2在过零点以下,endPos1、endPos2在过零点以上。这样可以确保startPos1、startPos2相差超出一个周期也能计算。
计算两通道之间存在的时间差在完成波形畸变及杂波的剔除后,数据处理程序进入时差计算部分。在时差计算部分,程序首先对所选取的有效数据区进行线性插值,每两个采样点间线性插入99个点,可得到两组离散的时间幅值序列X(0)、X(1)、X(2)、、、、X(N)Y(0)、Y(1)、Y(2)、、、、Y(N)当n<0或n>N时,X(t)、Y(t)均为0,其中Y(n)对应于逆流发射的超声波信号,X(n)对应于顺流发射的超声波信号。
对X(t)、Y(t),求相关函数RXY(m)=Σn=0NX(n)Y(n+m)]]>由于经过筛选后的波形数据均具有很好的一致性,相关函数RXY(m)最大值所对应的m即反映了序列Y(n)相对于X(n)的时延长度。所以,顺逆流时间差为Δt=25100×m=0.25m(nS)]]>测得Δt,根据公式v=Δt*C024*d*tgθ2]]>得到线流速V;式中C0为超声波信号在被测流体中的声速、d为管内径;对所得的线流速V加以校正,获得面流速VA的大小
υA=ηυ式中η-面速度对线速度的修正系数则通过被测管道的流量大小为Q=πd24υA]]>计算出的流量大小是在完全理想的测量前提下得到的,为了得到真实的流量值,需要对Q作进一步的修正Qt=KdQ=Kdπd24υA]]>式中Kd为仪表系数,其大小可以通过标定测试获得。
本发明可用于化工、石油、自来水管道中的流量测量,同时又能满足液压等设备非介入式流量快速检测和故障诊断的需要。
权利要求
1.一种小管径超声波流量测量装置,包括基于ISA总线插在工业控制机(1)底板插槽的超声波收发卡(2)和数据采集卡(3),其特征在于所说的超声波收发卡(2)包括振荡电路(4)、升压电路(5)、超声波脉冲发射电路(6)、同步触发控制电路(7)、超声波换能器(8)、增益控制电路(9)和信号调理电路(10),振荡电路(4)的输出端与升压电路(5)的输入端相连,升压电路(5)的输出端与超声波脉冲发射电路(6)的一输入端相连,同步触发控制电路(7)的输出端与超声波脉冲发射电路(6)的另一输入端相连,超声波脉冲发射电路(6)的输出端与超声波换能器(8)的TRA、TRB相连,超声波换能器(8)的TRA、TRB分别与信号调理电路(10)的一输入端相连,增益控制电路(9)的输出端与信号调理电路(10)的另一输入端相连,信号调理电路(10)的输出端通过信号线与数据采集卡(3)的A/D输入端连接;所说的数据采集卡(3)包括两路A/D单元(11)、两路数据缓冲单元(12)、两路32KSRAM单元(13)、地址发生器(14)、数据缓冲器(15)和A/D及读写时序控制单元(16),两路A/D单元(11)的输出端分别与两路数据缓冲单元(12)的输入端相连,两路数据缓冲单元(12)的输出端分别与两路32KSRAM13的另一输入端相连,地址发生器(14)的输出端与两路32KSRAM单元的一输入端相连,两路32KSRAM单元(13)的输出端与数据缓冲器(15)的输入端相连,数据缓冲器(15)的输出端通过ISA总线输入给工业控制机(1),工业控制机(1)通过ISA总线给A/D及读写时序控制单元(16)发出各类信号,A/D及读写时序控制单元(16)的输出端分别送给两A/D单元(11)、两路数据缓冲单元(12)、两路32KSRAM单元(13)和地址发生器(14)。
2.一种基于权利要求1所述的小管径超声波流量测量方法,其特征在于首先将超声波换能器(8)的TRA、TRB采用管外V型安装,且超声波换能器(8)的TRA、TRB前端面的距离为L,超声波换能器(8)的TRA、TRB在工业控制机(1)的控制下,同时发射超声波脉冲,并同时接收对方发射的超声波信号,超声波信号发射后以θ0的角度穿过换能器斜楔,以θ1的角度穿过管壁,以θ2的角度穿过被测流体达到对面的管壁内侧面,经反射后超声波信号按相反的顺序进入另外一个换能器,超声波换能器(8)的TRA、TRB将各自接收到的超声波信号送入数据采集卡(3)的A/D输入端,对数据采集卡(3)采集的数据序列CH1(n)、CH2(n)采用以下步骤进行快速搜索回波(1)原始数据预处理,将两采集序列CH1(n)和CH2(n)减去各自的平均值后求绝对值得到两新的数据序列,将新序列分段求平均值,并把平均值赋给各段;(2)快速搜索,回波粗定位搜索计数标志预先置一,从前向后进行搜索,如果新数据序列值依次先大于后小于搜索高度,则搜索计数标志加1,直至搜索完整个数据序列,如果搜索计数标志小于三时,未搜索到回波,如果搜索计数标志为三时,记下搜索到的回波C1、C2的大概起始位置;(3)精确搜索,回波细定位对搜索到的回波向前向后延长相等采集长度,求得回波在这一范围内的最大点位置,即回波的峰值。在原始采集数据上,以回波峰值位置为对称点,确定回波计算的范围,初步确定两组回波计算的点及其始、终位置startPos1、startPos2和endPos1、endPos2,原始采集数据减去自身的平均值,得到的数据有正有负,存放在两个数组里,并且点的位置不变,分别从点startPos1、startPos2开始,向后搜索重新确定startPos1、startPos2,从点endPos1、endPos2向前搜索重新确定endPos1、endPos2,要求是startPos1、startPos2在过零点以下,endPos1、endPos2在过零点以上,这样确保startPos1、startPos2相差超出一个周期也能计算,计算两通道之间存在的时间差在时差计算部分,首先对所选取的有效数据区进行线性插值,每两个采样点间线性插入99个点,可得到两组离散的时间幅值序列X(0)、X(1)、X(2)、、、、X(N)Y(0)、Y(1)、Y(2)、、、、Y(N)当n<0或n>N时,X(t)、Y(t)均为0,其中Y(n)对应于逆流发射的超声波信号,X(n)对应于顺流发射的超声波信号;对X(t)、Y(t),求相关函数RXY(m)=Σn=0NX(n)Y(n+m)]]>由于经过筛选后的波形数据均具有很好的一致性,相关函数RXY(m)最大值所对应的m即反映了序列Y(n)相对于X(n)的时延长度,所以,顺逆流时间差为Δt=25100×m=0.25m(nS)]]>测得Δt,根据公式v=Δt*C024*d*tgθ2]]>得到线流速V;式中C0为超声波信号在被测流体中的声速、d为管内径;对所得的线流速V加以校正,获得面流速VA的大小υA=ηυ式中η-面速度对线速度的修正系数则通过被测管道的流量大小为Q=πd24υA]]>Qt=KdQ=Kdπd24υA]]>式中Kd为仪表系数,其大小可以通过标定测试获得。
全文摘要
一种小管径超声波流量测量装置及方法,包括基于ISA总线插在工业控制机底板插槽的超声波收发卡和数据采集卡,将一对超声波换能器TRA、TRB采用管外V型安装,TRA、TRB由工业控制机控制,同时发射超声波脉冲,并同时接收对方发射的超声波信号,将各自接收超声波信号送入数据采集卡的A/D输入端,通过工业控制机分析处理,完成时差、流量的计算。本发明提高了时差、流量测量的分辨率和精度,而且适用于小管径、低流速流体流量的测量,同现有技术相比,方法简便可靠,仪器运行稳定,操作简便,测量精度高、实时性好。
文档编号G01F1/66GK1442674SQ0311462
公开日2003年9月17日 申请日期2003年4月9日 优先权日2003年4月9日
发明者李艾华, 杨金岩, 王爱明, 冯永保, 郑应强 申请人:李艾华