专利名称:星载电子设备多余物及组件的识别方法
技术领域:
本发明涉及一种星载电子设备多余物及组件的识别方法,属于星载电子设备内部活动多余物的检测技术领域。
背景技术:
星载电子设备是卫星系统的功能模块和重要组成部分,是一种密封航天电子装置,它是在卫星系统中执行发射接收、遥测、遥控信号、姿态控制和信号处理等科学实验任务的模块或设备。星载电子设备的特殊工作环境对其提出很高的可靠性要求。存在活动多余物是星载电子设备较常见的一种失效模式。多余物是封装在星载电子设备内部,但不属于结构部件的一些颗粒物质。它是由生产制造过程中引入的金属屑或非金属微粒。星载电子设备经常处于振动冲击环境下或失重状态下工作,其内部的活动多余物将进行无规则运动,因此可能落在某功能部件上或者嵌进某动作部件内。可见活动多余物很有可能导致电子设备中电路间短路或线路异常,也可能形成动作部件卡死,造成重度故障。由于电子设备 生产环节多,在此期间产生的活动多余物难于控制,因此活动多余物导致的失效具有很强的随机性和突发性。由于活动多余物导致的故障具有无法预测性,因此难以控制其危害程度,常造成无法估量的事故。对多余物材质的识别有助于了解多余物的来源,以便于改进设计、生产流程,提高电子设备可靠性。可动组件为星载电子设备内部可活动的导线、功能部件等,或为松动的紧固件。前者会对多余物的识别造成干扰,后者使整个系统存在安全隐患,因此组件的识别对星载电子设备可靠性的提高同样有重大意义。目前,星载电子设备的多余物检测尚无标准,美军标、国军标中都没有给出明确规定。目前,国内的航天电子设备多余物检测主要依靠有经验员工手摇、耳听、眼看等人工方法。实际操作中经常出现由于操作人员疲劳、疏忽等原因引起漏检或误判现象。因此检测精度低,漏判率极高。现有对星载电子设备进行多余物的自动检测方法中,只能进行多余物有无及材质的判别,其对材质的判别方法采用单一特征量进行,判别结果的精度低,且误判率高。目前,还不能通过采集获得信号的方式对星载电子设备内部是否存在可动组件进行判别。
发明内容
本发明是为了解决现有对星载电子设备内部环境进行检测的方法中,不能在进行多余物判别的同时,判断获得是否存在可动组件的问题,提供一种星载电子设备多余物及组件的识别方法。本发明所述星载电子设备多余物及组件的识别方法,它基于四个声音传感器采集获得的被测星载电子设备的振动声音信号,被测星载电子设备四个侧面的每个侧面下半部中心位置分别设置一个声音传感器,所述四个声音传感器采集获得的四组振动声音信号分别经小波变换消噪后进行脉冲提取,获得四组声音信号的脉冲序列,其特征在于它包括以下步骤
步骤一将每个声音传感器采集获得的声音信号的脉冲序列取绝对值后,求取每个声音信号的脉冲序列平均值V_n,设定能量门限Th取值为Th=3V_n,向前搜索门限Tls和向后搜索门限Tle为Tls=Tle=Vmean ;步骤二 由每个声音信号的脉冲序列的起始点向终止点进行搜索,若搜索到能量门限Th信号,执行步骤三;否则,执行步骤四;步骤三由能量门限Th信号点处向声音信号的脉冲序列的起始点方向搜索向前搜索门限Tls信号点,作为多余物或组件信号的起始点;由能量门限Th信号点处向声音信号的脉冲序列的终止点方向搜索向后搜索门限Tle信号点,作为多余物及组件信号的终止点,该起始点与终止点之间为多余物或组件信号;然后执行步骤五;步骤四判定被测星载电子设备内部不含多余物及组件,完成识别;
步骤五将步骤三中搜索获得的多余物或组件信号以被测星载电子设备的驱动振动加速度信号的波形周期T为单位进行分割,获得多个单位周期信号,剔除不含脉冲的单位周期信号,获得多余物或组件的脉冲信号;步骤六将多余物或组件的脉冲信号中的每个单位周期信号的起始位置作为零相位0°,每个单位周期信号的终止位置作为末相位360°,计算每个单位周期信号中脉冲的起始位置Gls与脉冲的终止位置Θ le,将每个单位周期信号中脉冲的起始位置01S与脉冲的终止位置θ1ε之间置值为1,每个单位周期信号中位于脉冲的起始位置0ls与脉冲的终止位置Θ le之间以外的部分置值为O ;步骤七将步骤六中处理后的每个单位周期信号进行平移、叠加,并归一化至[O, I]区间;步骤八计算步骤七中归一化后的数据的标准差;步骤九将步骤八中获得的数据的标准差与预先由k_聚类算法确定的多余物或组件的聚类质心相比较,计算获得多余物或组件的脉冲信号所属的类,判定被测星载电子设备内部存在为多余物或为组件,若判定被测星载电子设备内部存在组件,则完成识别;若判定被测星载电子设备内部存在多余物,则执行步骤十;步骤十通过数据融合、特征提取和支持向量机分类方法判断获得被测星载电子设备内部多余物的材质;完成识别。所述步骤十中通过数据融合、特征提取和支持向量机分类方法判断获得被测星载电子设备内部多余物的材质的具体方法为十一)将步骤三中获得的四个多余物或组件信号分别取绝对值,然后分别计算该四个绝对值与其所在坐标横轴所围成的面积S ;十二)在四个多余物或组件信号中对应出现脉冲的所有位置处,分别取每个对应的四个脉冲中与其各自所在坐标横轴所围成面积最大的脉冲作为多余物脉冲,将所有多余物脉冲中的噪声信号消除后,拼接为单通道多余物连续脉冲;十三)计算单通道多余物连续脉冲中各脉冲的持续时间并取其平均值,得到时间特征量T ;十四)计算获得单通道多余物连续脉冲中各脉冲与其所在坐标横轴所围成的面积值,求取单通道多余物连续脉冲中各脉冲的持续时间与其面积值的比值并取其平均值,得到时间面积比值特征量Tpp ;十五)计算单通道多余物连续脉冲各脉冲的绝对值并取其平均值,得到脉冲特征量 Mean ;十六)计算单通道多余物连续脉冲在单位时间内信号波形与其所在坐标横轴相交的次数,获得脉冲过零率Zerorate ;十七)对单通道多余物连续脉冲进行傅里叶变换,得到脉冲频域分布信号;十八)根据脉冲频域分布信号计算获得多余物频域信号频谱质心,得到频谱质心特征量C ;十九)将脉冲频域分布信号归一化后计算频域数据序列标准差,得到标准差特征量A ;
二十)采用支持向量机,给分类器输入时间特征量T、时间面积比值特征量Tpp、脉冲特征量Mean、脉冲过零率Zerorate、频谱质心特征量C和标准差特征量A,得到分类结果权值,判定被测星载电子设备内部多余物的材质。本发明的优点是本发明以被测星载电子设备振动的数字信号为依据进行脉冲提取、聚类分析,来实现多余物与组件信号有无的精确判别,当存在多余物时,还可对多余物的材质进行判别。本发明提供的识别方法能够很容易的应用于星载电子设备多余物检测装置中,具有识别速度快并且识别精度高的特点。本发明方法能够排除噪声信号对判别结果的影响。
图I为本发明方法的流程图;图2为本发明方法中将振动声音信号经小波变换消噪后进行脉冲提取,获得的声音信号的脉冲序列图;图3为步骤三中获得的多余物或组件信号示意图;图中N。为多余物或组件信号主脉冲位置,N1为多余物或组件信号脉冲起始位置,N2为多余物或组件信号脉冲终止位置;图4为步骤九中,被测星载电子设备内部存在组件时的组件的脉冲信号示意图;图5为步骤九中,被测星载电子设备内部存在多余物时的多余物的脉冲信号示意图;图6为被测星载电子设备内部多余物的材质为金属材料时对单通道多余物连续脉冲进行傅里叶变换获得的曲线图;图7为被测星载电子设备内部多余物的材质为非金属材料时对单通道多余物连续脉冲进行傅里叶变换获得的曲线图。
具体实施例方式具体实施方式
一下面结合图I至图5说明本实施方式,本实施方式所述星载电子设备多余物及组件的识别方法,它基于四个声音传感器采集获得的被测星载电子设备的振动声音信号,被测星载电子设备四个侧面的每个侧面下半部中心位置分别设置一个声音传感器,所述四个声音传感器采集获得的四组振动声音信号分别经小波变换消噪后进行脉冲提取,获得四组声音信号的脉冲序列,其特征在于它包括以下步骤
步骤一将每个声音传感器采集获得的声音信号的脉冲序列取绝对值后,求取每个声音信号的脉冲序列平均值v_n,设定能量门限Th取值为Th=3V_n,向前搜索门限Tls和向后搜索门限Tle为Tls=Tle=Vmean ;步骤二 由每个声音信号的脉冲序列的起始点向终止点进行搜索,若搜索到能量门限Th信号,执行步骤三;否则,执行步骤四;步骤三由能量门限Th信号点处向声音信号的脉冲序列的起始点方向搜索向前搜索门限Tls信号点,作为多余物或组件信号的起始点;由能量门限Th信号点处向声音信号的脉冲序列的终止点方向搜索向后搜索门限Tle信号点,作为多余物及组件信号的终止点,该起始点与终止点之间为多余物或组件信号;然后执行步骤五;步骤四判定被测星载电子设备内部不含多余物及组件,完成识别;
步骤五将步骤三中搜索获得的多余物或组件信号以被测星载电子设备的驱动振动加速度信号的波形周期T为单位进行分割,获得多个单位周期信号,剔除不含脉冲的单位周期信号,获得多余物或组件的脉冲信号;步骤六将多余物或组件的脉冲信号中的每个单位周期信号的起始位置作为零相位0°,每个单位周期信号的终止位置作为末相位360°,计算每个单位周期信号中脉冲的起始位置Gls与脉冲的终止位置Θ le,将每个单位周期信号中脉冲的起始位置01S与脉冲的终止位置θ1ε之间置值为1,每个单位周期信号中位于脉冲的起始位置0ls与脉冲的终止位置Θ le之间以外的部分置值为O ;步骤七将步骤六中处理后的每个单位周期信号进行平移、叠加,并归一化至[O, I]区间;步骤八计算步骤七中归一化后的数据的标准差;步骤九将步骤八中获得的数据的标准差与预先由k_聚类算法确定的多余物或组件的聚类质心相比较,计算获得多余物或组件的脉冲信号所属的类,判定被测星载电子设备内部存在为多余物或为组件,若判定被测星载电子设备内部存在组件,则完成识别;若判定被测星载电子设备内部存在多余物,则执行步骤十;步骤十通过数据融合、特征提取和支持向量机分类方法判断获得被测星载电子设备内部多余物的材质;完成识别。本实施方式中,结合图3,首先,根据由能量门限Th来确定脉冲所处的大致位置,再选取向前搜索门限Tls向前搜索,确定脉冲的真正起点;再以向后搜索门限Tle向后搜索确定脉冲的真正结束点。上述三个门限的选取与颗粒碰撞噪声检测PIND试验信号的噪音水平和信号特征紧密相关。聚类分析结合图4,步骤六中处理后的每个单位周期信号归一化至
区间后以单位振动时间为周期将相位信息进行叠加,并计算叠加后数据标准差;计算标准差与预先由改进后的k-平均聚类分析法得到的聚类质心的距离,确定信号脉冲为组件信号或多余物信号;聚类质心由以下算法实现1)选取最大分类类别数K = 4和距离判别准则中ε =Τ/(2Κ+2),ε为聚类分析法中判别准则中的距离,第一个数据对象作为第一类聚类质
心;2)选取下一个数据对象Ix,若^ _ Cf <ε则Ix划入当前类,式中为第i次聚类后的第k类聚类质心;否则,依据判别准则,计入距离最近的一类;3)对当前数据对象进行分类后,对新的序列重新计算聚类质心
权利要求
1.一种星载电子设备多余物及组件的识别方法,它基于四个声音传感器采集获得的被测星载电子设备的振动声音信号,被测星载电子设备四个侧面的每个侧面下半部中心位置分别设置一个声音传感器,所述四个声音传感器采集获得的四组振动声音信号分别经小波变换消噪后进行脉冲提取,获得四组声音信号的脉冲序列,其特征在于它包括以下步骤 步骤一将每个声音传感器采集获得的声音信号的脉冲序列取绝对值后,求取每个声音信号的脉冲序列平均值v_n,设定能量门限Th取值为Th=3V_n,向前搜索门限Tls和向后搜索门限Tle为 τ =T =V . 1 Is 1 Ie mean 9 步骤二 由每个声音信号的脉冲序列的起始点向终止点进行搜索,若搜索到能量门限Th信号,执行步骤三;否则,执行步骤四; 步骤三由能量门限Th信号点处向声音信号的脉冲序列的起始点方向搜索向前搜索门限Tls信号点,作为多余物或组件信号的起始点;由能量门限Th信号点处向声音信号的脉冲序列的终止点方向搜索向后搜索门限Tle信号点,作为多余物及组件信号的终止点,该起始点与终止点之间为多余物或组件信号;然后执行步骤五; 步骤四判定被测星载电子设备内部不含多余物及组件,完成识别; 步骤五将步骤三中搜索获得的多余物或组件信号以被测星载电子设备的驱动振动加速度信号的波形周期T为单位进行分割,获得多个单位周期信号,剔除不含脉冲的单位周期信号,获得多余物或组件的脉冲信号; 步骤六将多余物或组件的脉冲信号中的每个单位周期信号的起始位置作为零相位0°,每个单位周期信号的终止位置作为末相位360°,计算每个单位周期信号中脉冲的起始位置Qls与脉冲的终止位置,将每个单位周期信号中脉冲的起始位置els与脉冲的终止位置Qle之间置值为1,每个单位周期信号中位于脉冲的起始位置els与脉冲的终止位置θ1ε之间以外的部分置值为O; 步骤七将步骤六中处理后的每个单位周期信号进行平移、叠加,并归一化至
区间; 步骤八计算步骤七中归一化后的数据的标准差; 步骤九将步骤八中获得的数据的标准差与预先由k-聚类算法确定的多余物或组件的聚类质心相比较,计算获得多余物或组件的脉冲信号所属的类,判定被测星载电子设备内部存在为多余物或为组件,若判定被测星载电子设备内部存在组件,则完成识别;若判定被测星载电子设备内部存在多余物,则执行步骤十; 步骤十通过数据融合、特征提取和支持向量机分类方法判断获得被测星载电子设备内部多余物的材质;完成识别。
2.根据权利要求I所述的星载电子设备多余物及组件的识别方法,其特征在于所述步骤十中通过数据融合、特征提取和支持向量机分类方法判断获得被测星载电子设备内部多余物的材质的具体方法为 十一)将步骤三中获得的四个多余物或组件信号分别取绝对值,然后分别计算该四个绝对值与其所在坐标横轴所围成的面积S ; 十二)在四个多余物或组件信号中对应出现脉冲的所有位置处,分别取每个对应的四个脉冲中与其各自所在坐标横轴所围成面积最大的脉冲作为多余物脉冲,将所有多余物脉冲中的噪声信号消除后,拼接为单通道多余物连续脉冲; 十三)计算单通道多余物连续脉冲中各脉冲的持续时间并取其平均值,得到时间特征曰-rp里I ; 十四)计算获得单通道多余物连续脉冲中各脉冲与其所在坐标横轴所围成的面积值,求取单通道多余物连续脉冲中各脉冲的持续时间与其面积值的比值并取其平均值,得到时间面积比值特征量Tpp ; 十五)计算单通道多余物连续脉冲各脉冲的绝对值并取其平均值,得到脉冲特征量Mean ; 十六)计算单通道多余物连续脉冲在单位时间内信号波形与其所在坐标横轴相交的次数,获得脉冲过零率Zerorate ; 十七)对单通道多余物连续脉冲进行傅里叶变换,得到脉冲频域分布信号; 十八)根据脉冲频域分布信号计算获得多余物频域信号频谱质心,得到频谱质心特征量C ; 十九):将脉冲频域分布信号归一化后计算频域数据序列标准差,得到标准差特征量A ;二十)采用支持向量机,给分类器输入时间特征量T、时间面积比值特征量Tpp、脉冲特征量Mean、脉冲过零率Zerorate、频谱质心特征量C和标准差特征量A,得到分类结果权值,判定被测星载电子设备内部多余物的材质。
全文摘要
星载电子设备多余物及组件的识别方法,属于星载电子设备内部活动多余物的检测技术领域。它解决了现有对星载电子设备内部环境进行检测的方法中,不能在进行多余物判别的同时,判断获得是否存在可动组件的问题。它首先在声音信号的脉冲序列中搜索能量门限Th信号,未搜到该信号则不含多余物及组件;否则首先对声音信号的脉冲序列进行聚类分析,然后判断星载电子设备内部为多余物或者为组件,若为多余物,进一步对多余物的材质进行判别。本发明适用于星载电子设备多余物及组件的识别。
文档编号G01V1/00GK102830421SQ201210282939
公开日2012年12月19日 申请日期2012年8月9日 优先权日2012年8月9日
发明者翟国富, 陈金豹, 王国涛, 邢通, 戚乐, 陈蕊, 刘贵栋, 牛鹏飞, 赵国强 申请人:哈尔滨工业大学