专利名称::一种球磨机磨矿产品的粒度分布预测方法
技术领域:
:本发明涉及一种球磨机磨矿产品的粒度分布预测方法。
背景技术:
:磨矿历来是选矿过程中耗能最高的环节,其能耗约占整个选矿过程的50%,而且,随着矿物资源的贫乏,一些矿物品位也随之变化频繁,从而导致了其磨矿效率低、选矿过程工艺指标波动大,造成资源和能源的浪费。采用仿真技术对磨矿过程进行产品粒度预测和生产条件优化是一种有效的提高磨矿效率的手段,并已在国外得到了比较广泛的应用。过程模型是实现过程仿真的基础。球磨机的模型描述了磨机输出粒度分布和输入粒度分布、磨矿条件以及矿物性质之间的关系。磨矿过程中,某个粒级含量的累积=该粒级的破碎+该粒级的生成。则采用物料平衡及破碎动力学表示的时间连续、粒度离散的球磨机分批磨矿总体平衡模型为其中,t为时间;i和j为粒级编号,η为总粒级数,粒级1表示最粗的粒级,η表示最细的粒级;Wi(t)为t时刻第i粒级的质量分数;S为破碎速率函数,粒度离散化为η个粒级后对应的S为对角矩阵;则Si(t)表示t时刻第i粒级的破碎速率;b为破碎分布函数,粒度离散化为η个粒级后对应的b为下三角矩阵,表示第j粒级破碎后进入第i粒级的量占第j粒级已破碎量的质量百分比。如果已知破碎速率函数S和破碎分布函数b,即可采用公式(1)对磨矿产品的粒度进行预测。而I^insiU)可以根据实际的磨矿数据,直接计算得到,或者采用式(ι)反算得到,然后再用于预测。在实际的磨矿中,S可能仅与粒径有关而不依赖于时间,也可能既与粒径有关也随着时间的变化而变化。当Si仅与粒径有关,而不依赖于时间时,则某粒级在磨矿产品中未破碎的量与其在给料中的量之比和时间的关系在半对数坐标上呈一条斜率为-S的直线(如附图1),称该粒级符合一阶破碎动力学。如果在磨碎过程中,第1粒级只有破碎没有生成,用公式表示其一阶破碎动力学为W1(t)=W1(0)exp(-S1O(2)则其破碎速率为研究发现,一些矿物在一定的磨矿条件下遵循一阶破碎的规律,此时可采用式(1)逐个粒级预测产品的粒度分布,也即首先计算第1粒级的粒度分布,然后将第1粒级的粒度分布代入式(1)中,计算第2粒级的粒度分布,从而逐步迭代实现对磨矿产品的粒度分布预测。当物料的破碎速率随磨矿时间的增加而变化时,称为非一阶破碎(如附图1所示)。此时,式(1)除了粒级间相互关联外,破碎速率和粒度分布同时为时间的函数,难以求解。对非一阶破碎,目前的处理方法有1)将不同粒级矿物的破碎速率采用相同的依赖于时间的加速度表示,从而将实际的磨矿时间转化到另一个时间域(称作伪时间,falsetime)内,即令Si0为0时刻第i粒级的破碎速率,是一个常数,k(t)为所有粒级的破碎速率随时间变化的速度。则所有粒级的破碎速率随着磨矿时间的增加而以相同的速度k(t)变化,令θ即称为伪时间。那么破碎速率随时间变化的非一阶破碎就可以在θ域上转化为一阶的(即破碎速率非时变)破碎模型进而可逐粒级迭代预测磨矿产品的粒度分布。很明显,该方法在不同粒级的破碎速率随时间变化的速度不同时,预测结果就会产生较大的误差。2)采用一个依赖于粒径的显函数k(x)和一个依赖于粒度分布的泛函ζ的乘积来表示破碎速率S=k(χ)ζ[P(χ,z)w(z)](7)其中,w(z)是粒径为ζ的颗粒的量,P(x,z)表示粒径为ζ的颗粒对粒径为χ的颗粒的破碎速率的影响程度。此种方法可以描述不同颗粒之间的相互作用造成的非一阶破碎,特别是细颗粒对其他颗粒的破碎速率的影响,但该方法比较复杂,寻找一个合适的泛函是比较困难的。
发明内容本发明的目的是提供一种球磨机磨矿产品的粒度分布预测方法。本发明的球磨机磨矿产品粒度分布预测方法基于分段磨矿的思想,即对时间连续的磨矿,将磨矿时间进行分段,可视每一个时间段的磨矿为一次独立的磨矿,上一个时间段的磨矿产品为下一个时间段的给料,且每一时间段内的破碎速率可线性描述。基于此思想,对不同粒级的破碎速率具有不同加速度的非一阶破碎,将磨矿时间T分为o-t1;trt2,t2_t3,…,t,_2_trt,t>、、等!·个段,根据已知的磨矿给料粒度分布和对应产品粒度分布,用O时刻的给料,求取O-ti时间段的破碎速率Sil,然后再以、时刻的产品作为给料,求取trt2时间段的破碎速率Si2,依此类推,求取每一个时间段上各粒级的破碎速率,在每一时间段上各粒级的破碎速率为且在所有时间段上,i=η时,Si=0;其中,Wi(t)为第i粒级在t时刻的百分含量。则在各时间段上第i粒级百分含量的预测公式为a0=f;/,其中Δ=\t2,其中,θ表示时间,b^.为破碎分布函数,表示第j粒级破碎后进入第i粒级的量占第j粒级已破碎量的质量百分比。则由式(8)计算得到破碎速率函数S后,根据式(9)以及磨矿给料和对应产品粒度分布数据,可反算求得破碎分布函数b。在对磨矿产品的粒度分布进行预测时,已知破碎分布函数b,由0时刻的给料,根据Ο-ti时间段的破碎速率Sil,预测得到、时刻的粒度分布,然后再以、时刻的粒度作为给料,根据t「t2时间段的破碎速率Si2,预测t2时刻的粒度分布,依此类推,从而分步预测得到最终磨矿产品的粒度分布,而不是以零时刻的给料直接预测最终产品的粒度分布。将该方法用于球磨机分批磨矿产品粒度分布的预测,预测结果的相对误差均位于士5%以内,绝对误差均位于士2%以内,从而可以代替人工试验,极大的减少了工作人员的劳动强度,提高了工作效率;将该方法扩展用于工业级球磨机连续磨矿产品粒度分布预测,预测精度85.7%的相对误差位于士10%以内,72.6%位于士5%以内,91.2%的绝对误差位于士5%内,71.5%位于士3%内,为实现工业磨矿过程的模拟和优化,达到节能降耗的目的奠定了基础。该方法适用于任何呈现非一阶破碎的矿物和球磨机磨矿过程。图1为一阶破碎和非一阶破碎示意图,一阶破碎表现为在不同磨矿时间下,某粒级在磨矿产品中的量与在给料中的量之比与时间的关系,在半对数坐标上为一条直线,即斜率且而非一阶破碎,其破碎速率随着时间的增加而减小,假设0<、<t2<T,其中,T为总的磨矿时间,则图2为分段线性化的非一阶破碎;图3为球磨机分批磨矿产品粒度分布预测值与实测值对比;图4为工业球磨机连续磨矿产品粒度分布预测值与实测值对比。具体实施例方式下面给出本发明中球磨机磨矿产品粒度分布预测方法的具体实施过程。实施例11.采用铜矿石,将球磨机分批磨矿给料和产品分为13个粒级,每一个粒级用其粒径的上限来表示该粒级的粒径,最细的粒级编号为13,最粗的粒级编号为1,则从最细到最粗,13个粒级的粒径为0.045,0.075,0.106,0.15,0.212,0.3,0.425,0.6,0.85,1.18,1.7,2.36,3.35,单位为_;2.将磨矿时间分为4个时间段,S卩0-lmin,l-4min,4-8min,>8min,采用式⑶计算每一个粒级在每一时间段上的破碎速率如表1所示;表1不同时间段上各粒级的破碎速率3.由第2步所得到的S和式(9),采用L.G.Austin的反算法,从磨矿给料及对应产品的粒度分布数据反算求取破碎分布函数b;4.预测过程为当磨矿时间小于Imin钟时,输入给料,由公式(9)和第一时间段各粒级的破碎速率,可以直接预测磨矿产品的粒度分布;当磨矿时间位于l-4min之间时,则先根据其给料和第一时间段的破碎速率,预测Imin的产品粒度分布,然后再以预测得到的Imin的粒度分布作为给料,根据第二时间段的破碎速率,预测最终的产品粒度分布;依此类推,从而可以预测4-8min和大于Smin时的产品粒度分布。用上述方法对分批磨矿0.5min,lmin,2min,4min和8min的产品粒度分布进行预测,所得结果如图3所示,预测结果的相对误差均位于士5%以内,绝对误差均位于士2%以内;将该方法扩展用于工业级球磨机的磨矿产品粒度分布预测,共分为14个粒级,即0.045,0.075,0.106,0.15,0.212,0.3,0.425,0.6,0.85,1.18,1.7,2.36,3.35,5.6,单位为mm,预测精度相对误差85.7%位于士10%以内,72.6%位于士5%以内,绝对误差91.2%位于士5%内,71.5%位于士3%内,部分预测结果如图4所示。权利要求一种球磨机磨矿产品的粒度分布预测方法,其特征在于基于球磨机磨矿的总体平衡模型<mrow><mfrac><mrow><msub><mi>dw</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mi>dt</mi></mfrac><mo>=</mo><mo>-</mo><msub><mi>S</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><munderover><munder><mi>Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow></munder><mrow><mi>i</mi><mo>></mo><mn>1</mn></mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></munderover><msub><mi>b</mi><mi>ij</mi></msub><msub><mi>S</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>n</mi><mo>≥</mo><mi>i</mi><mo>≥</mo><mi>j</mi><mo>≥</mo><mn>1</mn><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow>对不同粒级的破碎速率具有不同加速度的非一阶破碎,将磨矿时间T分为0-t1,t1-t2,t2-t3,…,tr-2-tr-1,t>tr-1共r个段,根据已知的磨矿给料和对应产品粒度分布,用0时刻的给料,求取0-t1时间段的破碎速率Si1,再以t1时刻的产品作为给料,求取t1-t2时间段的破碎速率Si2,依此类推,求取每一个时间段上各粒级的破碎速率,则在每一时间段上各粒级的破碎速率为<mrow><msub><mi>S</mi><mi>i</mi></msub><mfencedopen='{'close=''><mtable><mtr><mtd><msub><mi>S</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo>=</mo><mo>-</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mi>S</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo>=</mo><mo>-</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>,</mo></mtd><mtd><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>S</mi><mrow><mi>i</mi><mn>3</mn></mrow></msub><mo>=</mo><mo>-</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>3</mn></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>t</mi><mn>3</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>,</mo></mtd><mtd><msub><mi>t</mi><mn>2</mn></msub><mo><</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>3</mn></msub><mo>,</mo><mi>n</mi><mo>></mo><mi>i</mi><mo>≥</mo><mn>0</mn></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd></mtd></mtr><mtr><mtd><msub><mi>S</mi><mi>ir</mi></msub><mo>=</mo><mo>-</mo><mi>ln</mi><mrow><mo>(</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>r</mi></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mrow><mi>r</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mi>t</mi><mi>r</mi></msub><mo>-</mo><msub><mi>t</mi><mrow><mi>r</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd><mtd><msub><mi>t</mi><mrow><mi>r</mi><mo>-</mo><mn>1</mn></mrow></msub><mo><</mo><mi>t</mi></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow>且在所有时间段上,i=n时,Si=0;则在各时间段上第i粒级百分含量的预测公式为<mrow><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><munderover><mi>Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>i</mi></munderover><msub><mi>a</mi><mi>ij</mi></msub><msup><mi>e</mi><mrow><mo>-</mo><msub><mi>S</mi><mi>j</mi></msub><mi>θ</mi></mrow></msup><mo>,</mo></mrow>θ=t-Δt<mrow><msub><mi>a</mi><mi>ij</mi></msub><mo>=</mo><mfencedopen='{'close=''><mtable><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mi>i</mi><mo><</mo><mi>j</mi></mtd></mtr><mtr><mtd><msub><mi>w</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>Δt</mi><mo>)</mo></mrow><mo>-</mo><munderover><munder><mi>Σ</mi><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></munder><mrow><mi>i</mi><mo>></mo><mn>1</mn></mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></munderover><msub><mi>a</mi><mi>ik</mi></msub><mo>,</mo></mtd><mtd><mi>i</mi><mo>=</mo><mi>j</mi></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mrow><msub><mi>S</mi><mi>iq</mi></msub><mo>-</mo><msub><mi>S</mi><mi>jq</mi></msub></mrow></mfrac><munderover><mi>Σ</mi><mrow><mi>k</mi><mo>=</mo><mi>j</mi></mrow><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></munderover><msub><mi>S</mi><mi>kq</mi></msub><msub><mi>b</mi><mi>ik</mi></msub><msub><mi>a</mi><mi>kj</mi></msub><mo>,</mo></mtd><mtd><mi>i</mi><mo>></mo><mi>j</mi></mtd></mtr></mtable></mfenced><mo>,</mo></mrow>其中<mrow><mi>Δt</mi><mo>=</mo><mfencedopen='{'close=''><mtable><mtr><mtd><mn>0,0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo></mtd><mtd><mi>q</mi><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo></mtd><mtd><mi>q</mi><mo>=</mo><mn>2</mn></mtd></mtr><mtr><mtd><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><msub><mi>t</mi><mn>2</mn></msub><mo><</mo><mi>t</mi><mo>≤</mo><msub><mi>t</mi><mn>3</mn></msub><mo>,</mo></mtd><mtd><mi>q</mi><mo>=</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd></mtd></mtr><mtr><mtd><msub><mi>t</mi><mrow><mi>r</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>t</mi><mrow><mi>r</mi><mo>-</mo><mn>1</mn></mrow></msub><mo><</mo><mi>t</mi><mo>,</mo></mtd><mtd><mi>q</mi><mo>=</mo><mi>r</mi></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow>其中,t和θ为均表示时间;i和j为粒级编号,n为总粒级数,粒级1表示最粗的粒级,n表示最细的粒级;wi(θ)为θ时刻第i粒级的质量分数;S为破碎速率函数,粒度离散化为n个粒级后对应的S为对角矩阵则Si(t)表示t时刻第i粒级的破碎速率;b为破碎分布函数,粒度离散化为n个粒级后对应的b为下三角矩阵bij表示第j粒级破碎后进入第i粒级的量占第j粒级已破碎量的质量百分比;根据分段求得的破碎速率函数S,采用式(3)以及磨矿数据,反算求得破碎分布函数b,根据S和b,即可对磨矿产品的粒度分布进行预测;预测时,已知b,由0时刻的给料,根据0-t1时间段的破碎速率Si1,采用式(3)预测得到t1时刻的粒度分布,然后再以t1时刻的粒度作为给料,根据t1-t2时间段的破碎速率Si2,预测t2时刻的粒度分布,依此类推,分步预测得到最终磨矿产品的粒度分布。FSA00000155508900016.tif,FSA00000155508900021.tif全文摘要一种球磨机磨矿产品的粒度分布预测方法,对每一个粒级破碎速率随时间变化快慢不一致的非线性破碎,将磨矿时间进行分段求取每个时间段上各粒级的破碎速率,对磨矿产品粒度进行预测时,按时间顺序先预测第一时间段的产品粒度分布,再以第一时间段的预测结果作为第二时间段的给料,预测第二时间段的产品粒度分布,依此类推预测出最终产品的粒度分布。本发明用于球磨机分批磨矿产品粒度分布预测,相对误差均在±5%内,绝对误差均在±2%内,减少工人的劳动强度,提高工作效率;扩展用于工业球磨机产品粒度预测,85.7%和72.6%的相对误差分别位于±10%和±5%内,91.2%和71.5%的绝对误差分别位于±5%和±3%内,本发明为实现工业磨矿过程的模拟和优化、节能降耗奠定了基础。文档编号G01N15/02GK101869860SQ20101019150公开日2010年10月27日申请日期2010年6月4日优先权日2010年6月4日发明者刘国金,刘潇,徐德刚,桂卫华,王晓丽,王雅琳,阳春华,黎良伟申请人:中南大学