专利名称:时间分辨x射线衍射层析装置的制作方法
技术领域:
本发明有关X射线衍射,特别是涉及时间分辨X射线衍射层析装置,主要用来探测晶体材料中三维动态结构的变化过程。
背景技术:
在过去的20年里,可见光波段的超短脉冲的脉宽,由几皮秒压缩到了飞秒量级,原则上达到了可以探测一些瞬态或超快过程的速度水平,例如在单分子、液体或晶体中的原子运动、化学键的断裂与形成、电荷的转移、分子的异构化等等。这些过程大多发生在皮秒或更短的时间尺度,只有探测光脉宽比这个时间更短时,才有可能观察这些过程。因此,人们提出了用超短脉冲的泵浦探测方法来研究超快过程。先用一个超短光脉冲激活一个瞬态过程,再用另一个超短光脉冲作探针,在延迟一定的时间后去测量。然而,这些超短光脉冲仍然不能直接探知原子的位置变化,因为可见光实际上只对外层的价电子和自由电子的动态敏感,这些电子在许多原子的位置上是不定域的,由于不能和更深层的含有物质结构信息的中心电子层和原子核相互作用,因此,这些超短光脉冲几乎不能带回有关物质结构的真实信息。
超短X射线脉冲的出现,使人们获得了直接观察原子运动状态的有力工具。因为X射线的波长正好与原子间距同属于一个数量级,它可与原子的中心电子层相互作用,对物质的穿透深度比可见光大一至数个量级,因此能够探知物质深层的结构信息。这种超短X射线脉冲探测动态过程的方法与光脉冲的泵浦探测方法相似,只是将超快光脉冲换成了超快X射线脉冲作为探针,由于它往往与传统的X射线晶体学中的劳厄衍射方法相结合,因此被称为超快X射线衍射(Ultrafast X-rayDiffraction)或时间分辨的X射线衍射(Time-resolved X-rayDiffraction),在生物化学领域,又被称为时间分辨X射线结晶学(Time-resolved X-ray Crystallography)。
时间分辨的X射线衍射可以直接探测原子的位置,在这种方法中,散射振幅与原子位置间的关系,并不像可见光那么复杂,两者可以简单地由一个傅立叶变换相联系,因此理论上也可通过计算机模拟来预测。时间分辨的X射线衍射是目前观测生物化学反应和物理变化过程中原子瞬间运动状态的最有效方法,这一新兴的研究领域已吸引了众多的物理学家、化学家和生物学家来研究。目前,在材料科学方面,一些发达国家如美国、日本、德国、法国、意大利、韩国等都广泛开展了研究。
GaAs晶体是一个理想的系统,对于超快X射线衍射定量的观测来说,不仅晶体质量很高,而且它的物理参数也很精确地已知。实际上,对光脉冲泵浦后的晶体的超快晶格动态过程,已经能够由各种线性的、非线性的光学技术间接地推断出。入射激光的能量泵浦到晶体材料中,激励电子从价带跃迁到导带。在吸收泵浦能量的过程中,单光子吸收和多光子吸收促进这种带间激励。在几皮秒的时间内,大部分泵浦能量都能有效地耦合进晶格中。在10ps的时间内,晶格被热化成声频声子模式。在这个时候,晶格还没有发生膨胀,晶格间距没有变化,但由于受热,晶格表面受到极大的应变和压力。随着晶体表面的温度不断升高,晶体表面的晶格发生膨胀,热压力随着晶格的膨胀而减少,但表面晶格的膨胀又使下一层的晶格受到压力,产生很大的应变。
如图1所示,随着晶体的温度不断升高,一层层的晶格不断受到压力并产生膨胀,这就使得一个压缩的或膨胀的应变波不断向前传播,以声速(VL=5397m/s)的速度进入晶体内部。一个厚度为d的、被压缩的晶格层在d/VL的时间内发生机械弛豫。这里的d就是X射线在晶体内部的探测深度,为2μm左右,则晶格层发生机械弛豫的时间约为300ps。由于激光泵浦能量的注入和X射线探测明显比晶格机械的弛豫更快,因此,在这个时间内,相干晶格的动力学过程是可能发生并可能被观测到的。
但是,采用现有的时间分辨X射线衍射装置不能探测到这种三维的应变过程。
发明内容
为了克服在先技术的不足,本发明提供一种时间分辨X射线衍射层析装置,它是将时间分辨X射线衍射与常规的层析相结合的一种装置。
层析成像亦称计算机断层扫描、投影图像重现术等,简称CT(Computer Tomography)。用一句简单的话来说,就是借助物体的多重投影,采用计算机技术来恢复物体的三维图像。由于从投影数据还原三维结构,需要进行大量的数值计算,因此,这一技术从一开始就与计算机紧密相连,并被称为计算机辅助断层成像技术,简称CT。近年来,它的应用远远超过医学和生命科学范畴,已涉及材料科学、信息科学以及许多工业应用领域,并正向人们显示它巨大的潜在多学科应用前景。
本发明技术解决方案如下一种时间分辨X射线衍射层析装置,其特征在于它的构成为包括飞秒激光系统,在飞秒激光系统的激光输出光路上设一半反射半透过介质膜板,在该半反射半透过介质膜板的透射光路依次为经由三块全反射介质膜板构成的光学延迟线和位于转动平台上的样品,在该半反射半透过介质膜板的反射光路上依次为全反射介质膜板、凹面反射镜、固体靶、样品、探测器,所述的凹面反射镜、固体靶、转动平台和样品同处一真空室内。
在飞秒钛宝石激光系统的激光输出光路上安置一半反射半透过介质膜板,经该半反射半透过介质膜板被分成两束输出光束(A、B),该透射光束A经光学延迟线进入靶室和样品相互作用,产生一待研究的应变场,这束光称为作用光束。
而B束光经一反射镜进入靶室中去,被一凹面镜反射并汇聚射到固体靶上去,产生一特征X射线,并进入到样品中去,探测作用光束A产生应变的过程,B束光作为探测光束。
所说的全反射介质膜板,是一块100%全反射的介质膜板,其中三块全反射介质膜板组成的光学延迟线,用以调整A束和B束间的相对光学延迟。
所说的固体靶是一块可移动的固体靶,当飞秒钛宝石激光脉冲和其相互作用以后,将产生特征X射线Kα1和Kα2线,相应辐射波长为0.5~1.8。
所说的转动平台,是一个能作360°旋转的、并能装载样品的装置。
所说的样品,是一个待研究的晶体。
所说的凹面镜,是一块非球面凹面镜,用它来聚焦飞秒钛宝石激光,产生X射线。
所说的X射线探测器,是一台X射线波段的CCD相机。
本发明的技术效果如下1、当飞秒激光器运转之后,入射到45°半透半反射膜板上,分成强度相等的两束光A和B。A束进入经光学延迟入射到待测样品上。B束光经45°全反射膜板入射到固体靶上,产生特征X射线作为探测光束,当作用光束与样品作用之后产生应变,并且这种应变逐步向样品内部不断拓展,因此采用不同的延迟时间,对每一层进行常规的层析记录,就可以获得三维的应变动态过程。
2、本发明时间X射线衍射层析装置,能够记录和重构三维物体的动态过程,又由于使用了光学延迟线,能够给出不同时刻的瞬态空间动力学分布,对于晶体热熔化和非热熔化无序过程、以及晶体中的应变过程的观察特别适合。
图1为本发明的时间分辨X射线衍射层析装置示意图。
具体实施措施本发明的时间分辨X射线衍射层析装置如图1所示。它是由12部分组成包括飞秒激光系统1,在飞秒激光系统1的激光输出光路上设一半反射半透过介质膜板2,在该半反射半透过介质膜板2的透射光路依次为经由三块全反射介质膜板3,4,5构成的光学延迟线、位于转动平台8上的样品9,在该半反射半透过介质膜板2的反射光路上依次为全反射介质膜板6、凹面反射镜10、固体靶7、样品9、探测器11,所述的凹面反射镜10、固体靶7、转动平台8和样品9同处于一真空室12内。
所说的飞秒钛宝石激光系统1,是一台辐射波长为800nm、脉宽为100fs、输出能量为1mJ的台式装置。
所说的半反射半透过介质膜板2,是一块对800nm反射50%、透过50%的介质膜板,它将入射的飞秒钛宝石激光脉冲分成A束和B束。
所说的全反射介质膜板3、4、5、6,是一块块对800nm100%全反射的介质膜板,其中全反射介质膜板3、4、5组成一个光学延迟线,用以调整A束和B束间的相对光学延迟。
所说的固体靶7,是一块可移动的铜靶,当飞秒钛宝石激光脉冲和其相互作用以后,将产生特征X射线Kα1和Kα2线,相应辐射波长为1.540562和1.544398。
所说的转动平台8,是一个用来载有样品9、并能上下左右平动、360°自由转动的平台。
所说的样品9,是一块待测的晶体,在作用光束激发下,能产生应变。
所说的凹面镜10,是一块非球面凹面镜,它被用来聚焦作为打靶透镜。
所说的X射线探测器11,是一台X射线波段的CCD相机。
所说的真空室12,采用3台机械泵和3台扩散泵,可使靶室内真空度达到5×10-7τ的真空室,市场内可订购。
本发明的时间分辨X射线衍射层析装置的工作原理和基本过程是当飞秒钛宝石激光脉冲入射到半反射半透过介质膜板2以后,分成A束和B束。A束飞秒脉冲经延迟线3、4、5以后,进入真空靶室12,照射样品9。
B束飞秒脉冲经全反射镜6反射进入真空室12,被凹面镜10聚焦入射到固体铜靶7上,产生铜的Kα1线和Kα2线,这个X射线作为X射线源,探测样品9被A束照明以后所产生的应变过程,在同一延迟时间内,转动平台,每隔36°拍摄同一张X射线衍射图,计10张,当完成同一截面拍摄不同投影的衍射图以后,再调整延迟线重复上述过程。通常取8~10个不同的延迟时间,就可以获得晶体三维动态变化过程,时间分辨率可以达到2皮秒,空间分辨率可以达到毫埃间距。
权利要求
1.一种时间分辨X射线衍射层析装置,其特征在于它的构成为包括飞秒激光系统(1),在飞秒激光系统(1)的激光输出光路上设一半反射半透过介质膜板(2),在该半反射半透过介质膜板(2)的透射光路依次为经由三块全反射介质膜板(3,4,5)构成的光学延迟线、位于转动平台(8)上的样品(9),在该半反射半透过介质膜板(2)的反射光路上依次为全反射介质膜板(6)、凹面反射镜(10)、固体靶(7)、样品(9)、探测器(11),所述的凹面反射镜(10)、固体靶(7)、转动平台(8)和样品(9)同处于一真空室(12)内。
2.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的飞秒激光系统(1)是一台辐射波长为800nm、脉宽为100fs、输出能量为1mJ的飞秒钛宝石激光装置。
3.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的半反射半透过介质膜板(2)是一块对800nm反射50%、透过50%的介质膜板。
4.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的全反射介质膜板(3、4、5、6)是对800nm激光100%全反射的介质膜板。
5.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的固体靶(7),是一块可移动的铜靶。
6.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的转动平台(8)是一个用来置放样品(9)并能上下左右平动、360°自由转动的平台。
7.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的凹面镜(10)是一块非球面凹面打靶透镜。
8.根据权利要求1所述的时间分辨X射线衍射层析装置,其特征在于所述的X射线探测器(11)是一台X射线波段的CCD相机。
全文摘要
一种时间分辨X射线衍射层析装置,其特征在于它的构成为包括飞秒激光系统,在飞秒激光系统的激光输出光路上设一半反射半透过介质膜板,在该半反射半透过介质膜板的透射光路依次为经由三块全反射介质膜板构成的光学延迟线和位于转动平台上的样品,在该半反射半透过介质膜板的反射光路上依次为全反射介质膜板、凹面反射镜、固体靶、样品、探测器,所述的凹面反射镜、固体靶、转动平台和样品同处一真空室内。本发明装置能够记录和重构三维物体的动态过程,又由于使用了光学延迟线,能够给出不同时刻的瞬态空间动力学分布,对于晶体热熔化和非热熔化无序过程、以及晶体中的应变过程的观察特别适合。
文档编号G01N23/20GK1563959SQ20041001749
公开日2005年1月12日 申请日期2004年4月6日 优先权日2004年4月6日
发明者陈建文, 高鸿奕, 谢红兰, 朱化凤, 李儒新, 徐至展 申请人:中国科学院上海光学精密机械研究所