山东科威数控机床有限公司铣床官方网站今天是:2025-06-16切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

一种利用高光谱图像技术进行苹果粉质化无损检测方法

时间:2025-06-15    作者: 管理员

专利名称:一种利用高光谱图像技术进行苹果粉质化无损检测方法
技术领域
本发明涉及一种苹果粉质化无损检测方法,尤其是一种利用高光谱图像技术进行 苹果粉质化无损检测方法。
背景技术
中国苹果资源丰富、品种繁多。由于采后检测与分级技术的落后,我国苹果产业缺 乏市场竞争力。苹果的粉质化是指苹果非正常软化、汁液减少和果肉质地发棉等一系列生 理失调现象,是影响苹果等级的重要口感参数。苹果的粉质化是组织特性的负面参数,会严 重影响苹果的口感,难以被消费者接受。目前的苹果检测和分级技术中,苹果的粉质化检测 指标基本上采用专家小组对小批量样本进行破坏性的品尝来评价和分级;所述评价和分级 方法对品尝人员的素质要求较高,且经济费用较大。为了解决上述问题,国内外的专家对起 进行了不懈的努力,出现了磁共振成像、可视/近红外光谱、机械冲击、超声波无损检测等 技术;但是无论是可视/近红外光谱无损检测技术、机械冲击方法,还是超声波无损检测技 术都难以与现有广泛使用的基于计算机视觉的苹果外部品质检测设备相融合,且所获得的 准确度较低。

发明内容
本发明的目的是克服现有技术中存在的不足,提供一种利用高光谱图像技术进行 苹果粉质化无损检测方法,其能够实现无损检测检测,实时性好,方便便捷及可靠性高。按照本发明提供的技术方案,所述利用高光谱图像技术进行苹果粉质化无损检测 方法包括如下步骤a、选取苹果样本;b、将苹果样本放置在高光谱图像采集系统中,采集对应苹果样
本的高光谱图像,并将所述光谱图像量化成对应于不同光波长的数据矩阵Rw ;c、利用奇异
值分解方法,即Rw = UDVt ;对数据矩阵Rw进行奇异值分解,得到数据矩阵Rw的奇异值矩阵
D ;其中矩阵U和矩阵V为满足U-1 = UT, T1 = Vt的正交阵;d、利用破坏性仪器采集苹果样
本的汁液含量和压缩硬度指标,得到对应苹果粉质化结果1 ;e、利用支持向量机构建苹果
11
粉质化评价预估模型,即办)=sgn(Xa>,l(x,x,) + W;);其中,ζ表示苹果粉质化评价结果,
/=I
sgn(.)为符号函数,χ为未进行破坏性仪器检测苹果的奇异值矩阵D'特征参数,Xi为进 行破坏性仪器检测苹果的奇异值矩阵D特征参数;k(x,Xi)为支持向量机的核函数;a广和 Wi均为待定系数;η为用于建模的苹果样本总数;y为破坏性仪器得到的苹果粉质化结果; 通过交叉验证的网格搜索法确定支持向量机的核函数k(x,Xi)、<和《Λ从而得到苹果粉 质化评价预估模型;f、利用高光谱图像采集系统采集待测苹果的高光谱图像,并将得到的 高光谱图像的特征参数输入到步骤e得到的评价预估模型中,获得苹果粉质化评价结果ζ。所述步骤e中 < 和Wt;通过下述最优化问题得到<formula>formula see original document page 5</formula>所述支持向量机核函数k(x,Xi)选取k(Xi,
<formula>formula see original document page 5</formula>其中O2为高斯核宽度,C为惩罚系数,η为用于建模的苹果 样本总数;所述σ 2和C通过交叉验证的网格搜索法确定。所述高光谱图像采集系统包括采光室;所述采光室内设有CCD数字照相机与聚焦 透镜;所述CXD数字照相机上设置光谱仪,所述光谱仪的前端设有透镜,所述CXD数字照相 机的输出端与计算机连接;所述聚焦透镜通过光纤汇聚石英卤素钨灯发出的光线,并在采 光室内形成Imm的点光源;石英卤素钨灯的电源端连接电源;所述石英卤素钨灯上设有反 馈控制器,所述反馈控制器采集石英卤素钨灯的光亮强度,并反馈到电源。所述CXD数字照相机覆盖的波长为400 llOOnm。所述光谱仪的光谱分辨率为 2nm。所述石英卤素钨灯的输出功率为250W。所述高光谱图像采集系统采集图像步骤包括Si、将C⑶数字照相机、光谱仪及聚焦透镜放置在采光室内;s2、在采光室内放置 白色标准校正白板,所述白色标准校正白板放置在CCD数字照相机、光谱仪及聚焦透镜下 方,获取校正光源波段影响的参考图像及所述参考图像的光强值If ;S3、移出采光室内的白 色标准校正白板;s4、将待测苹果放置在CCD数字照相机、光谱仪及聚焦透镜下方,每个苹
果连续采集q幅图像;s5、对每个苹果的q幅高光谱图像进行平均处理,<formula>formula see original document page 5</formula>;其中,I
为q幅高光谱图像的平均光强值山为第i幅高光谱图像的光强值;s6、利用白色标准校正 白板的参考图像,计算每个苹果的高光谱图像的相对光强值<formula>formula see original document page 5</formula>其中,>为每个苹果的
相对光强值;I为每个苹果高光谱图像的平均光强值;IF为白色标准校正白板高光谱图像 光强值;S7、根据高光谱图像采集系统的空间分辨率和光谱分辨率,将每个苹果的高光谱图
像量化成对应于不同光波长的数据矩阵Rw,所述<formula>formula see original document page 5</formula>其中,m为波段
数,η为苹果空间采集位置点个数,riJ为第i个波段的第j个位置点的光强值;s8、当采集 的苹果个数大于t个时,在采光室内重新放置白色标准校正白板,对高光谱图像采集系统 进行光源波动校正;然后执行步骤。所述步骤d中采用苹果质地分析仪对苹果进行压缩硬度测试;在每个苹果对应于 图像采集的位置区域割去直径为17mm,长度为16mm的去皮柱状样本,并将所述去皮柱状样 本放在孔径为18mm苹果质地分析仪的圆盘内,以20mm/min的下落速度进行压缩,柱状样本 的最大变形为3mm ;同时,在检测苹果的底部利用试纸吸收柱状样本在压缩过程中释放出 的汁液,得到检测苹果的汁液含量;通过检测苹果的压缩硬度指标与汁液含量值得到苹果 粉质化结果y。
本发明的优点;利用破坏性仪器检测和高光谱图像采集系统首先获得待检测苹果 的评价预估模型,通过评价预估模型及高光谱图像采集系统获得苹果的粉质化评价结果, 能够在多数苹果无损的情况下,得到苹果粉质化评价结果。通过交叉验证的网格搜索法得 到支持向量机的评价预估模型,操作简单,实时性好,可靠性高。


图1为本发明高光谱图像采集系统的结构示意图。图2为本发明检测苹果的高光谱图像。图3为本发明检测方法流程图。
具体实施例方式下面结合具体附图和实施例对本发明作进一步说明。如图1所示本发明包括计算机1、CXD数字照相机2、光谱仪3、透镜4、苹果5、反 馈控制器6、电源7、石英卤素钨灯8、光纤9、聚焦透镜10及采光室11。如图1所示所述CXD数字照相机2上设置光谱仪3,所述光谱仪3上设置透镜 4 ;所述CXD数字照相机2的覆盖波长范围为400 llOOnm,所述光谱仪3的光谱分辨率为 2nm。CCD数字照相机2的输出端与计算机1相连,用于向计算机1输出采集到的高光谱图 像。所述石英卤素钨灯8的电源端与电源7连接,反馈控制器6采集石英卤素钨灯8的光 照强度值,并与电源7连接,用于保持石英卤素钨灯8功率输出的稳定性。所述石英卤素钨 灯8的输出功率为250W ;石英卤素钨灯8通过光纤9及聚焦透镜10形成Imm的点光源;所 述点光源照射在苹果5的赤道位置上,通过光谱仪3、CCD数字照相机2采集苹果5的高光 谱图像。所述C⑶数字照相机2、光谱仪3及聚焦透镜10均位于采光室11内,避免外来光 源的干扰。所述CCD数字照相机2、光谱仪3、透镜4、反馈控制器6、电源7、石英卤素钨灯 8、光纤9、聚焦透镜10及采光室11构成了高光谱图像采集系统。图2为利用高光谱图像采集系统获取某一苹果的高光谱图像,所述高光谱图像的 横轴提供了光在苹果内部扩散的空间信息;纵轴提供了苹果对不同波长光的反射信息;通 过将所述高光谱图像量化成数据矩阵民,且对数据矩阵Rw进行处理和变换后,得到高光谱 图像的特征参数,作为判断苹果粉质化程度的依据。如图3所示所述检测苹果粉质化的方法重要的步骤为构建苹果粉质化评价预估 模型及对苹果高光谱图像的处理。所述高光谱图像采集系统采集苹果高光谱图像的步骤包 括si、将CXD数字照相机2、光谱仪3及聚焦透镜10放置在采光室11内;所述采光 室11为光学屏蔽装置,能够避免外来光源的干扰,确保高光谱图像采集系统采集苹果高光 谱图像的准确度;s2、在采光室11内放置白色标准校正白板,所述白色标准校正白板放置在CCD数 字照相机2、光谱仪3及聚焦透镜10下方,获取校正光源波段影响的参考图像及所述参考图 像的光强值If ;S3、移出采光室11内的白色标准校正白板,便于在采光室11内对苹果5进行检 测;
s4、将待测苹果5放置在CXD数字照相机2、光谱仪3及聚焦透镜10下方,每个苹 果连续采集q幅图像;所述聚焦透镜10将石英卤素钨灯8在苹果5上形成Imm的点光源; 所述点光源照射在苹果5的赤道位置上,CCD数字照相机2通过光谱仪3、透镜4采集苹果 5赤道位置处的高光谱图像;CCD数字照相机2将采集到的高光谱图像传送到计算机1内, 由计算机ι对高光谱图像进行相应的处理;所述聚焦透镜10形成的点光源光束与CCD数字 照相机2、光谱仪3及透镜4形成的图像采集装置间的夹角为10 15° ;为了避免C⑶数 字照相机2的检测饱和,点光源的照射点与样本表面线扫描位置之间的距离为1. 5mm ;s5、计算机1接收CXD数字照相机2输出的高光谱图像,并对对每个苹果5的q幅 高光谱图像进行平均处理,即
<formula>formula see original document page 7</formula>其中,I为q幅高光谱图像的平均光强值山为第i幅高光谱图像的光强值;通过 对同一苹果5的q幅高光谱图像进行平均处理,减少了高光谱采集装置采集苹果5图像时 产生的误差;s6、利用白色标准校正白板的参考图像,计算每个苹果的高光谱图像的相对光强 值
<formula>formula see original document page 7</formula>其中,/为每个苹果的相对光强值;I为每个苹果高光谱图像的平均光强值;IF为 白色标准校正白板高光谱图像光强值;利用白色标准校正白板的高光谱图像对苹果5的高 光谱图像进行校正,避免计算机1及CCD数字照相机2采集苹果5的高光谱图像时产生的
误差;s7、根据高光谱图像采集系统的空间分辨率和光谱分辨率,将每个苹果5的高光 谱图像/量化成对应于不同光波长的数据矩阵Rw,所述Rw为
<formula>formula see original document page 7</formula>其中,m为波段数,η为苹果空间采集位置点个数,为第i个波段的第j个位置 点的光强值;s8、当采集的苹果个数大于t个时,在采光室11内重新放置白色标准校正白板,利 用CCD数字照相机2采集白色标准校正白板的高光谱图像,避免高光谱图像采集装置采集 过多时,会将检测误差进一步扩大,利用白色标准校正白板对高光谱图像采集系统进行光 源波动校正,确保高光谱图像采集系统能够准确采集苹果5的高光谱图像;使用白色标准 校正白板后,得到白色标准校正白板的光强值Γ F,利用光强值Γ F重新对采集苹果5的 光强值进行校正,然后执行步骤s3,实现对苹果5的高光谱图像采集。由高光谱采集步骤s7知,根据高光谱图像采集系统的空间分辨率和光谱分辨率,获得每个苹果5的高光谱图像/量化成对应于不同光波长的数据矩阵Rw,利用奇异值分解
原理,对数据矩阵Rw进行奇异值分解,即Rw = UDVt (4)其中,矩阵U和矩阵V为满足U-1 = UtjV-1 = Vt的正交阵;D为数据矩阵Rw的奇异值矩阵;VT为对矩阵V的转秩。为了构建苹果粉质化评价预估模型,需要选取少量的苹果样本。所述选取的苹果 样本,为了对评价预估模型进行优化,苹果样本可以分为试样集和校正集。对苹果5的高光 谱图像采集完后,需要利用破坏性仪器采集苹果样本的汁液含量和压缩硬度指标,为后续 构建评价预估模型提供依据。利用苹果质地分析仪对苹果5进行压缩硬度测试;在苹果5对应于图像采集位置 区域割去直径为17mm,长度为16mm的去皮柱状样本,并将所述去皮柱状样本放置在苹果质 地分析仪的18mm圆盘内。所述去皮柱状样本在圆盘内以20mm/min的下落速度进行压缩, 去皮柱状样本的最大变形为3mm,从而获得苹果5的压缩硬度。在获得苹果5压缩硬度的同 时,在苹果5的底部放置试纸,利用试纸吸收去皮柱状样本在压缩过程中释放的汁液量,所 述试纸的湿润面积及为苹果5的汁液含量指标值。通过苹果5的压缩硬度指标及汁液含量 指标,得到苹果样本的粉质化结果y ;根据破坏性仪器得到的苹果样本的粉质化结果,作为 后续构建评价预估模型的依据。采用支持向量机作为构建评价预估模型的工具,所述评价预估模型的形式为
<formula>formula see original document page 8</formula>
其中,其中,ζ表示苹果粉质化评价结果,sgn(0为符号函数,χ为未进行破坏性 仪器检测苹果的奇异值矩阵D'特征参数,Xi为进行破坏性仪器检测苹果的奇异值矩阵D 特征参数;k(x,xi)为支持向量机的核函数和Wn均为待定系数;y为破坏性仪器得到的 苹果粉质化结果;通过交叉验证的网格搜索法确定支持向量机的核函数k (X,Xi)、ai*和W(;, 从而得到苹果粉质化评价预估模型。选择支持向量机的核函数为<formula>formula see original document page 8</formula>(6)其中,ο2为高斯核函数宽度;Xj为苹果5高光谱图像奇异值矩阵D'的特征参数, Xi为进行破坏性仪器检测苹果的奇异值矩阵D特征参数。所述 *与《(;值的选取,可以转换为下述最优化问题的求解,即<formula>formula see original document page 8</formula>
其中,C为惩罚系数;所述σ 2与惩罚系数C由交叉验证的网格搜索法确定。所述 利用交叉验证的网格搜索法确定σ 2与惩罚系数C的具体步骤为I、将选取的苹果样本进行h等份;II、选择σ和C的寻优区间,σ G
,Ce
,寻优步长均为λ ;III、任意选取α等份为训练集合,剩余β份为校正集合;所述α +β =h;
IV、利用公式(5)和公式(7)进行寻优,获得训练误差和校正误差;V、重复步骤III和步骤IV,直到α等份为训练集合和β份为校正集合都被用作 校正集合为止;由于上述训练集合与校正集合均为随机选取,为了避免训练集合与校正集 合间选取上的误差,让所有集合都作为校正集合,作为寻优结束的条件;VI、计算机1计算步骤V获得的训练误差和校正误差的平均值;VII、重复步骤II VI,选择平均误差最小的σ和C为最优核函数,同时得到a广 与 < 的值,<与< 分别为最优的拉格朗系数和阈值;将σ、C、a广及‘代入公式(5)中, 即可得到评价预估模型。得到苹果样本的评价预估模型后,利用高光谱图像采集系统采集待检测苹果5的 高光谱图像,将所述高光谱图像进行处理后,输入到公式(5)的评价预估模型中,即可得到 苹果5的粉质化评价结果。如图3所示所述进行苹果粉质化检测的步骤概括为
a、选取苹果样本;b、将苹果样本放置在高光谱图像采集系统中,采集对应苹果样本的高光谱图像, 并将所述光谱图像量化成对应于不同光波长的数据矩阵Rw ;C、利用奇异值分解方法,即Rff = UDVt对数据矩阵Rw进行奇异值分解,得到数据矩阵Rw的奇异值矩阵D ;其中矩阵U和 矩阵V为满足U-1 = UT, V-1 = Vt的正交阵;d、利用破坏性仪器采集苹果样本的汁液含量和压缩硬度指标,得到对应苹果粉质 化结果y ;e、利用支持向量机构建苹果粉质化评价预估模型,即
ηz(x) = sgn(^ aty}k(x, X1 ) + w*0)其中,ζ表示苹果粉质化评价结果,sgn(.)为符号函数,χ为未进行破坏性仪器检 测苹果的奇异值矩阵D'特征参数,Xi为进行破坏性仪器检测苹果的奇异值矩阵D特征参 数;k(x,Xi)为支持向量机的核函数; *和均为待定系数;η为用于建模的苹果样本总 数;y为破坏性仪器得到的苹果粉质化结果;通过交叉验证的网格搜索法确定支持向量机 的核函数k (x, Xi)、a;和 <,从而得到苹果粉质化评价预估模型;f、利用高光谱图像采集系统采集待测苹果的高光谱图像,并将得到的高光谱图像 的特征参数输入到步骤e得到的评价预估模型中,获得苹果粉质化评价结果ζ。本发明利用破坏性仪器检测和高光谱图像采集系统首先获得待检测苹果的评价 预估模型,通过评价预估模型及高光谱图像采集系统获得苹果的粉质化评价结果,能够在 多数苹果无损的情况下,得到苹果粉质化评价结果。通过交叉验证的网格搜索法得到支持 向量机的评价预估模型,操作简单,实时性好,可靠性高。
权利要求
一种利用高光谱图像技术进行苹果粉质化无损检测方法,其特征是,所述检测方法包括如下步骤(a)、选取苹果样本;(b)、将苹果样本放置在高光谱图像采集系统中,采集对应苹果样本的高光谱图像,并将所述光谱图像量化成对应于不同光波长的数据矩阵Rw;(c)、利用奇异值分解方法,即RW=UDVT对数据矩阵Rw进行奇异值分解,得到数据矩阵Rw的奇异值矩阵D;其中矩阵U和矩阵V为满足U-1=UT,V-1=VT的正交阵;(d)、利用破坏性仪器采集苹果样本的汁液含量和压缩硬度指标,得到对应苹果粉质化结果y;(e)、利用支持向量机构建苹果粉质化评价预估模型,即 <mrow><mi>z</mi><mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow><mo>=</mo><mi>sgn</mi><mrow> <mo>(</mo> <munderover><mi>&Sigma;</mi><mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn></mrow><mi>n</mi> </munderover> <msubsup><mi>a</mi><mi>i</mi><mo>*</mo> </msubsup> <msub><mi>y</mi><mi>i</mi> </msub> <mi>k</mi> <mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub> <mi>x</mi> <mi>i</mi></msub><mo>)</mo> </mrow> <mo>+</mo> <msubsup><mi>w</mi><mn>0</mn><mrow> <mo>-</mo> <mo>*</mo></mrow> </msubsup> <mo>)</mo></mrow> </mrow>其中,z表示苹果粉质化评价结果,sgn(·)为符号函数,x为未进行破坏性仪器检测苹果的奇异值矩阵D′特征参数,xi为进行破坏性仪器检测苹果的奇异值矩阵D特征参数;k(x,xi)为支持向量机的核函数;ai*和w0*均为待定系数;n为用于建模的苹果样本总数;y为破坏性仪器得到的苹果粉质化结果;通过交叉验证的网格搜索法确定支持向量机的核函数k(x,xi)、ai*和w0*,从而得到苹果粉质化评价预估模型;(f)、利用高光谱图像采集系统采集待测苹果的高光谱图像,并将得到的高光谱图像的特征参数输入到步骤(e)得到的评价预估模型中,获得苹果粉质化评价结果z。
2.根据权利要求1所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述步骤(e)中和通过下述最优化问题得到所述支持向量机核函数k(X,Xi)选取k(X,Xi) = exp(-| x-xj |2/2o2),其中o2为高 斯核宽度,C为惩罚系数;n为用于建模的苹果样本总数;所述o 2和C通过交叉验证的网格 搜索法确定。
3.根据权利要求1所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述高光谱图像采集系统包括采光室(11);所述采光室(11)内设有C⑶数字照相机 (2)与聚焦透镜(10);所述CCD数字照相机(2)上设置光谱仪(3),所述光谱仪(3)的前端 设有透镜(4),所述CCD数字照相机(2)的输出端与计算机(1)连接;所述聚焦透镜(10)通 过光纤(9)汇聚石英卤素钨灯(8)发出的光线,并在采光室(11)内形成1mm的点光源;石 英卤素钨灯(8)的电源端连接电源(7);所述石英卤素钨灯(8)上设有反馈控制器(6),所 述反馈控制器(6)采集石英卤素钨灯⑶的光亮强度,并反馈到电源(7)。
4.根据权利要求3所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述(XD数字照相机⑵覆盖的波长为400 llOOnm。
5.根据权利要求3所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述光谱仪(3)的光谱分辨率为2nm。
6.根据权利要求3所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述石英卤素钨灯(8)的输出功率为250W。
7.根据权利要求1所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是,所述高光谱图像采集系统采集图像步骤包括(si)、将CCD数字照相机(2)、光谱仪(3)及聚焦透镜(10)放置在采光室(11)内; (s2)、在采光室(11)内放置白色标准校正白板,所述白色标准校正白板放置在CCD数 字照相机(2)、光谱仪(3)及聚焦透镜(10)下方,获取校正光源波段影响的参考图像及所述 参考图像的光强值IF;(s3)、移出采光室(11)内的白色标准校正白板;(s4)、将待测苹果放置在CCD数字照相机(2)、光谱仪(3)及聚焦透镜(10)下方,每个 苹果连续采集q幅图像;(s5)、对每个苹果的q幅高光谱图像进行平均处理,即<formula>formula see original document page 3</formula>其中,I为q幅高光谱图像的平均光强值山为第i幅高光谱图像的光强值; (s6)、利用白色标准校正白板的参考图像,计算每个苹果的高光谱图像的相对光强值<formula>formula see original document page 3</formula>其中,I为每个苹果的相对光强值;I为每个苹果高光谱图像的平均光强值;IF为白色 标准校正白板高光谱图像光强值;(s7)、根据高光谱图像采集系统的空间分辨率和光谱分辨率,将每个苹果的高光谱图 像/量化成对应于不同光波长的数据矩阵Rw,所述Rw为<formula>formula see original document page 3</formula>其中,m为波段数,n为苹果空间采集位置点个数,riJ为第i个波段的第j个位置点的 光强值;(s8)、当采集的苹果个数大于t个时,在采光室(11)内重新放置白色标准校正白板,对 高光谱图像采集系统进行光源波动校正;然后执行步骤(s3)。
8.根据权利要求1所述利用高光谱图像技术进行苹果粉质化无损检测方法,其特征 是所述步骤(d)中采用苹果质地分析仪对苹果进行压缩硬度测试;在每个苹果对应于图像 采集的位置区域割去直径为17mm,长度为16mm的去皮柱状样本,并将所述去皮柱状样本放在 孔径为18mm苹果质地分析仪的圆盘内,以20mm/min的下落速度进行压缩,柱状样本的最大变 形为3mm ;同时,在检测苹果的底部利用试纸吸收柱状样本在压缩过程中释放出的汁液,得到 检测苹果的汁液含量;通过检测苹果的压缩硬度指标与汁液含量值得到苹果粉质化结果y。
全文摘要
本发明涉及一种利用高光谱图像技术进行苹果粉质化无损检测方法。本发明的技术方案为a、选取苹果样本;b、将苹果样本放置在高光谱图像采集系统中,采集对应苹果样本的高光谱图像,并将所述光谱图像量化成对应于不同光波长的数据矩阵;c、利用奇异值分解得到数据矩阵的奇异值矩阵;d、利用破坏性仪器采集苹果样本的汁液含量和压缩硬度指标,得到苹果粉质化结果;e、利用支持向量机构建苹果粉质化评价预估模型;f、采集高光谱图像,并输入到评价预估模型中,获得苹果粉质化评价结果。本发明通过评价预估模型及高光谱图像采集系统获得苹果的粉质化评价结果,能够在多数苹果无损的情况下,得到粉质化评价结果;操作简单,实时性好,可靠性高。
文档编号G01N33/02GK101832926SQ20101013492
公开日2010年9月15日 申请日期2010年3月19日 优先权日2010年3月19日
发明者朱启兵, 黄敏 申请人:江南大学

  • 专利名称:一种隔离式高压泄漏电流测量方法及装置的制作方法技术领域:本发明涉及电力系统电子仪器测控技术领域,特别是涉及一种隔离式高压泄漏电流测量的方法及装置。背景技术:在电力系统中,常常需要在高电压发生装置的高压输出端测量输出电流,如在氧 化
  • 专利名称:利用了Dao1&lt;sup&gt;--&lt;sup&gt;小鼠的D-氨基酸相关疾病的评价筛选方法技术领域:本发明涉及试验条件对小鼠的活体组织或该活体组织来源的培养组织细胞造成 的影响的评价方法、
  • 专利名称:便携式坡度测量仪的制作方法技术领域:本实用新型涉及一种坡度测量仪器,确切地说是一种便携式坡度测量仪。 背景技术:水利工程建设中,坡度检测是常见的工程检测项目。传统的检验方法,例如,用皮 尺测量平距与高差再计算坡度虽简单但误差大,有
  • 专利名称:用于动态试验台的座架机构的制作方法技术领域:本实用新型是一种座架机构,特别涉及一种用于联轴器动态试验台的座架机构。 背景技术:现有技术中的没有专门用于联轴器动态试验台,导致试验数据不准确,产品质量无法掌握。发明内容本实用新型主要是
  • 专利名称:一种无线导航系统整周数模糊度的确定方法技术领域:本发明属于使用电磁波技术进行导航和定位的领域,如在无线导航系统,它特别涉及使用载波相位测量进行高精度导航定位的系统。背景技术: 众所周知,在现有的导航和定位系统中,广泛采用多个发射台
  • 专利名称:一种gps导航中自动更新地图的方法技术领域:本发明涉及导航方法,尤指一种GPS导航中可以自动更新地图信息的方法。 背景技术:全球定位系统(GlcAal Positioning System,GPS)利用导航了卫星系统进行定时、定位
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12