山东科威数控机床有限公司铣床官方网站今天是:2025-06-17切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

一种测风仪的制作方法

时间:2025-06-17    作者: 管理员

专利名称:一种测风仪的制作方法
技术领域
本实用新型涉及风速风向测量技术领域,特别是涉及一种测风仪。
背景技术
目前,在测量风速时所采用的测风仪主要包括两种,即机械式测风仪和热敏式测 风仪。机械式测风仪的原理是通过风力带动叶轮转动,将叶轮转动的角速度或叶轮的 转数转化为电信号,根据该电信号测算出风速。由于机械式测风仪不能密封,因此对测量环 境存在很高的要求,例如在沙尘环境中叶轮无法正常工作,在低温环境中很容易结冰而导 致叶轮无法转动。因此,机械式测风仪的应用范围受到限制,在恶劣环境中无法使用。热敏式测风仪的原理是将物体加热到一定温度后置于气流中,测量被加热物体 的温度,通过计算被加热物体的热量损失来计算风速。由于热敏式测风仪直接测量的物理 量为温度,因此风速的测量结果很容易受到外界环境温度的影响,测量准确性差。总之,现有的测风仪准确度不高,且受到外界环境的影响较大,这大大限制了测风 仪的应用范围和测量的准确性。

实用新型内容本实用新型提供了一种测风仪,该测风仪具有较高的测量准确度,且不受外界环 境的影响。为达到上述目的,本实用新型的技术方案是这样实现的本实用新型公开了一种测风仪,包括超声波模块、控制计算模块和输出模块;超声波模块,包括测量腔和至少三个传感器;其中,各传感器之间的距离为预设 值,测量腔内的空气与待测环境的空气连通,所述传感器发送的超声波信号在测量腔内传 播;超声波模块在控制计算模块的控制下确定工作状态;在超声波模块的每一种工作 状态下,只有两个传感器分别处于发送状态和接收状态,其余传感器均处于空闲状态;超声 波模块接收来自控制计算模块的第一电信号,处于发送状态的传感器将第一电信号转换成 超声波信号并发送到测量腔内的空气中;处于接收状态的传感器接收在测量腔内的空气中 传播的超声波信号,并将接收到的超声波信号转换成第二电信号传送给控制计算模块;控制计算模块,按照预设的工作状态轮换规则控制超声波模块在不同的工作状态 之间进行转换,其中,超声波模块处于不同工作状态下所发送并接收的超声波的传播方向 不同;向超声波模块发送第一电信号,接收来自超声波模块的第二电信号,根据第一电信号 的发送时间和第二电信号的接收时间计算并记录传播时间;根据处于发送状态的传感器与 处于接收状态的传感器之间距离的预设值确定传播距离;根据不同工作状态下的传播时间 以及传播距离计算风速和风向的测量结果;输出模块,将控制计算模块提供的风速和风向的测量结果输出。[0013]所述传感器的个数为三个,且各传感器之间的距离相等。所述控制计算模块包括中央处理器、传感器控制单元、信号发生单元、信号接收 单元和时钟单元;中央处理器,根据时钟单元提供的时钟信息,按照预设的工作状态轮换规则向传感器控制单元发送传感器状态指示;所述工作状态轮换规则为在一个时钟周期内,一个 传感器处于发送状态,一个传感器处于接收状态,其余传感器均处于空闲状态,在多个时钟 周期内,每个传感器在发送状态、接收状态与空闲状态之间轮换;在每一个时钟周期内,中 央处理器控制信号发生单元产生一个第一电信号,从信号接收单元接收一个第二电信号, 根据每个时钟周期内第一电信号的发送时间和第二电信号的接收时间计算并记录传播时 间;根据处于发送状态的传感器和处于接收状态的传感器之间的距离预设值确定传播距 离;根据预定个数的不同工作状态下的传播时间以及传播距离,计算出风速和风向的测量 结果;传感器控制单元,根据来自中央处理器的传感器状态指示,控制每个传感器处于 发送状态、接收状态或空闲状态;信号发生单元,包括信号发生器,用于在中央处理器的控制下产生电信号,该电信 号作为第一电信号发送给超声波模块;信号接收单元,包括信号采集器,用于从超声波模块接收第二电信号并传送给中 央处理器;时钟单元,向中央处理器提供时钟信息。所述控制计算模块根据不同工作状态下的传播时间以及传播距离计算风速和风 向的测量结果,包括通进1 = vc+vf.m^ 二vc+vff2(e)2 式联立,解得 和 Θ ;其中,tl、t2分别表示在2个不同的工作状态下的超声波的传播时间;L表示超声 波的传播距离;V。表示超声波的速度;vf表示风速值;θ表示风向与任意指定方向的夹角;
θ )、f2( θ )分别表示在2个不同的工作状态下的风向的影响因素;或,
LLLL
Vc+VfZ2(O)vc+vff%{0)vc+vffA(0)
立,消除V。并解得Vf和θ ;其中,t pt2、t3、t4分别表示在4个不同的工作状态下的超声波的传播时间;L表 示超声波的传播距离;V。表示超声波的速度;vf表示风速值;θ表示风向与任意指定方向 的夹角;f“ θ )、f2( θ )、f3( θ )、f4( θ )分别表示在4个不同的工作状态下的风向的影响因
ο所述信号发生单元进一步包括第一信号放大器,对信号发生器产生的电信号进 行放大后作为第一电信号传送给超声波模块;所述信号接收单元进一步包括第二信号放大器,对信号采集器接收的第二电信号进行放大后传送给信号滤波 器;[0029]信号滤波器,接收经过第二信号放大器放大后的第二电信号,进行滤波和整形后传送给中央处理器。所述测风仪进一步包括电源模块,连接外部电源和超声波模块、控制计算模块、输出模块,为超声波模块、 控制计算模块和输出模块提供电源。所述测风仪进一步包括电源保护模块,连接外部电源和电源模块,对电源模块进行过压保护和/或过流 保护,将外部电源的电压和/或电流变换到安全阈值后输送给电源模块。所述测风仪进一步包括输出保护模块,与输出模块相连,对输出模块进行电压、电流和/或隔离保护。所述测风仪进一步包括温度采集模块,用于测量测风仪的温度,并将测量温度发送给中央处理器;加热模块,根据中央处理器的控制,对所述测风仪进行加热;所述中央处理器中预设阈值温度,中央处理器对温度采集模块提供的测量温度与 预设的阈值温度进行比较,当测量温度低于阈值温度时控制加热模块开始加热,当测量温 度高于阈值温度时控制加热模块停止加热;所述电源模块为温度采集模块和加热模块提供电源。根据以上实用新型内容可见,本实用新型提出的测风仪在控制计算模块的控制 下,通过超声波模块完成电信号与超声波信号的转换并发送超声波信号,测量超声波信号 在空气中传播预设距离所需要的传播时间,按照工作状态轮换规则控制超声波模块的工作 状态,在不同的工作状态下超声波的传播方向不同,测量不同工作状态的传播时间,根据其 计算获得风速和风向的测量值。采用本实用新型的测风仪,利用超声波对风速和风向进行 测量,因为超声波在沙尘或低温的环境中仍然能够正常传播,避免了外界环境对测量结果 的影响。并且,本实用新型提出测量4个不同工作状态下的传播时间,在计算风速和风向时 不需要以超声波的速度为计算依据,进一步消除了传感器的差异对测量结果的影响,提高 了测量结果的准确度。并且本实用新型提出的测风仪因为不存在转动部件,所以有效的降 低了故障率。

图1为本实用新型第一较佳实施例的测风仪的结构示意图;图2为本实用新型第一较佳实施例的超声波模块11的结构示意图;图3为本实用新型第一较佳实施例的超声波模块11的俯视图;图4为本实用新型第一较佳实施例的控制计算模块12的结构示意图;图5为本实用新型第二较佳实施例的测风仪的结构示意图。
具体实施方式
本实用新型的核心思想是利用风速和风向对超声波的传输的影响,通过测量超 声波在不同方向上传播预设距离所需要的传播时间来推算出风速和风向。为了使本实用新型的目的、技术方案和优点更加清楚,
以下结合附图和具体实施例对本实用新型进行详细描述。本实用新型提出了一种测风仪,采用超声波对风速进行测量。图1为本实用新型 第一较佳实施例的测风仪的结构示意图,如图1所示,该测风仪包括超声波模块11和控制 计算模块12,还可以包括输出模块13和电源模块14。其中,超声波模块11包括测量腔和至少三个传感器。各个传感器之间的距离为预 设值。测量腔内的空气与待测环境的空气连通,供超声波信号传播。超声波模块11在控制 计算模块12的控制下确定工作状态,即确定超声波模块11的每个传感器分别处于发送状 态、接收状态或空闲状态,在超声波模块的每一种工作状态下,只有两个传感器分别处于发 送状态和接收状态,其余传感器均处于空闲状态。超声波模块11接收来自控制计算模块12 的第一电信号,处于发送状态的传感器将第一电信号转换成超声波信号并发送到测量腔内 的空气中,该超声波信号在测量腔内的空气中传播预设距离后,超声波模块11的处于接收 状态的传感器接收在测量腔内的空气中传播预设距离后的超声波信号,并将该超声波信号 转换成第二电信号传送给控制计算模块12。控制计算模块12按照预设的工作状态轮换规则控制超声波模块11在不同的工作 状态之间进行转换,超声波模块11处于不同工作状态下所发送并接收的超声波的传播方 向不同。控制计算模块12向超声波模块11发送第一电信号,并且接收来自超声波模块11 的第二电信号,根据第一电信号的发送时间和第二电信号的接收时间计算并记录超声波传 播预设距离的传播时间,根据预定个数的不同工作状态下的传播时间以及传播距离计算风 速和风向的测量结果,将风速和风向的测量结果传送给输出模块13。传播距离即处于发送 状态的传感器与处于接收状态的传感器之间的距离,根据各个传感器之间的距离的预设值 确定。输出模块13将控制计算模块12提供的风速和风向的测量结果输出到测风仪外 部,例如输出给计算机、处理器、显示器或打印机等。电源模块14连接外部电源,为超声波 模块11、控制计算模块12和输出模块13提供电源。图2为本实用新型第一较佳实施例的超声波模块11的结构示意图;图3为本实用 新型第一较佳实施例的超声波模块11的俯视图。参见图2和图3,超声波模块11包括测量 腔110和至少三个传感器,在本实施例中,以超声波模块11包括三个传感器为例,分别将这 三个传感器标记为传感器111、传感器112和传感器113。测量腔110为圆柱形,其底面为圆 形,测量腔110内的空气与待测环境的空气连通,供超声波信号传播,测量腔110可以选用 该超声波信号对应的谐振腔,超声波信号在测量腔内谐振传播。传感器111、传感器112和 传感器113均位于测量腔110的底面上并且俩俩之间的距离相等,即如图3所示,三个传感 器分别位于一个等边三角形的三个顶点,任意两个传感器之间的距离均为等边三角形的边 长,该等边三角形的边长即距离的预设值。在本实施例中,传感器111、传感器112和传感器 113为圆形,其圆心分别位于等边三角形的三个顶点,任意两个圆心之间的距离均为等边三 角形的边长。本实用新型实施例中的超声波模块11,其传感器111、传感器112和传感器113是 完全相同的传感器,发射出的超声波的波长相同。控制计算模块12,按照预设的工作状态轮换规则控制超声波模块11的工作状态, 即控制超声波模块11的每个传感器处于发送状态、接收状态或空闲状态,在超声波模块的每一种工作状态下,只有两个传感器分别处于发送状态和接收状态,其余传感器均处于空闲状态,处于发送状态的传感器将来自控制计算模块12的第一电信号转换成超声波信 号并发送到测量腔内的空气中,处于接收状态的传感器接收在测量腔内的空气中传播预设 距离后的超声波信号,并将接收到的超声波信号转换成第二电信号后发送给控制计算模块 12,处于空闲状态的传感器不进行任何操作。控制计算模块12控制超声波模块11所采用的工作状态轮换规则为在一个时钟 周期内,一个传感器处于发送状态,另一个传感器处于接收状态,其余的传感器处于空闲状 态;在多个时钟周期内,每个传感器在发送状态、接收状态与空闲状态之间轮换。超声波模 块11处于不同工作状态下所发送并接收的超声波的传播方向不同。图4为本实用新型第一较佳实施例的控制计算模块12的结构示意图。如图4所 示,控制计算模块12包括中央处理器120、时钟单元121、传感器控制单元122、信号发生 单元123以及信号接收单元124。中央处理器120根据时钟单元121提供的时钟信息,按照上述工作状态轮换规则, 每一个时钟周期向传感器控制单元122发送一次传感器状态指示,用于指示每个传感器处 于发送状态、接收状态或空闲状态;传感器控制单元122根据来自中央处理器120的传感 器状态指示控制超声波模块11中的每个传感器处于发送状态、接收状态或空闲状态。在 一个时钟周期内,传感器状态指示中,只有一个传感器处于发送状态,一个传感器处于接收 状态,其余传感器均处于空闲状态;在多个时钟周期内,每个传感器在上述三种状态之间轮 换。在本实施例中,中央处理器120向传感器控制单元122发送传感器状态指示,分别 指示传感器111、112和113的工作状态,一种较佳的轮换顺序是在第一个时钟周期内,传感器111处于发送状态,传感器112处于接收状态,传感 器113处于空闲状态;在第二个时钟周期内,传感器111处于发送状态,传感器113处于接收状态,传感 器112处于空闲状态;在第三个时钟周期内,传感器112处于发送状态,传感器111处于接收状态,传感 器113处于空闲状态;在第四个时钟周期内,传感器112处于发送状态,传感器113处于接收状态,传感 器111处于空闲状态;在第五个时钟周期内,传感器113处于发送状态,传感器111处于接收状态,传感 器112处于空闲状态;在第六个时钟周期内,传感器113处于发送状态,传感器112处于接收状态,传感 器111处于空闲状态;第七个时钟周期开始重复第一个时钟周期,各个传感器的状态按照此规律依次轮换。中央处理器120根据时钟单元121提供的时钟信息,控制信号发生单元123在每 一个时钟周期内产生一个第一电信号;信号发生单元123将产生的第一电信号发送给超声 波模块11。一种优选的方式是,该第一电信号为方波。在每一个时钟周期内,信号接收单 元124从超声波模块11接收一个第二电信号,并将接收到的第二电信号传送给中央处理器120。中央处理器120根据每个时钟周期内第一电信号的发送时间和第二电信号的接收时间计算并记录传播时间,根据预定个数的传播时间以及传播距离,计算出风速和风向的测
量结果。信号发生单元123至少包括信号发生器,信号发生器在中央处理器120的控制下 产生电信号,将该电信号作为第一电信号发送给超声波模块11。一种较佳的实施方式是,为 增强超声波模块11接收到的第一电信号的强度,信号发生单元123中进一步包括第一信号 放大器,信号发生器产生的电信号首先进入第一信号放大器,经过第一信号放大器放大后 的电信号作为第一电信号发送给超声波模块11。信号接收单元124至少包括信号采集器,信号采集器从超声波模块11接收第二电 信号并传送给中央处理器120。一种较佳的实施方式是,为增强中央处理器120接收到的 第二电信号的强度和清晰度,信号接收单元124中进一步包括第二信号放大器和信号滤波 器,信号采集器接收的第二电信号首先进入第二信号放大器,在第二信号放大器中进行放 大后进入信号滤波器,信号滤波器对经过放大的第二电信号进行滤波和整形,然后再将其 传送给中央处理器120。在第一较佳实施例的测风仪结构的基础上,进一步提出包括电源保护模块51、温 度采集模块52、加热模块53和输出保护模块54的测风仪的第二较佳实施例。图5为本实 用新型第二较佳实施例的测风仪的结构示意图。在第一较佳实施例的测风仪结构的基础 上,第二较佳实施例的测风仪可以仅增加电源保护模块51,或仅增加温度采集模块52和加 热模块53,或仅增加输出保护模块54,还可以同时增加电源保护模块51、温度采集模块52 和加热模块53以及输出保护模块54中任意一组或几组模块的组合。在第一较佳实施例的测风仪结构的基础上,为了保证供电安全,本实用新型第二 较佳实施例提出的测风仪中还可以进一步包括电源保护模块51,连接外部电源和电源模 块14,用于对电源模块14进行保护处理,包括过压保护或过流保护,或既进行过压保护又 进行过流保护,将外部电源的电压和/或电流变换到安全阈值后输送给电源模块14。由于测风仪在使用时通常置于室外环境,如果在寒冷环境下测风仪结冰,则会影 响正常测量,因此,为保证测风仪的正常工作,本实用新型第二较佳实施例提出的测风仪还 可以进一步包括温度采集模块52和加热模块53。温度采集模块52测量测风仪的温度, 并将测量温度发送给控制计算模块12,在控制计算模块12中预设阈值温度,控制计算模块 12对测量温度与阈值温度进行比较,当测量温度低于阈值温度时控制加热模块53开始加 热,当测量温度高于阈值温度时控制加热模块53停止加热。加热模块53采用电加热,电源 模块14进一步向温度采集模块52和加热模块53提供电源。因为输出模块13与计算机、处理器、显示器、打印机等外部设备连接,当这些外部 设备出现异常时,或者遇到雷击等自然灾害时,容易对输出模块13造成损害。为了保护输 出模块13,测风仪中还可以进一步包括输出保护模块54,输出保护模块54与输出模块13 相连,对输出模块13进行电压、电流和/或隔离保护。以上采用第一和第二较佳实施例介绍了本实用新型提出的测风仪的结构,控制计 算模块12在计算风速和风向时存在两种计算方式。以下仍以第一较佳实施例中所述的一 种较佳的工作状态轮换顺序作为一个具体实施例,来说明控制计算模块12计算风速和风 向的具体方式。[0075]控制计算模块12计算风速和风向的第一种计算方式是在第一个时钟周期内,传感器111处于发送状态,传感器112处于接收状态,传感 器113处于空闲状态,在此周期内计算出的传播时间以、表示;在第二个时钟周期内,传感器111处于发送状态,传感器113处于接收状态,传感 器112处于空闲状态,在此周期内计算出的传播时间以t2表示。并且,以L表示传感器111、传感器112、传感器113中任意两者之间的距离,即超 声波传播的预设距离;将传感器111、传感器112、传感器113所发出的超声波的速度视为恒 定的标准声速,以ν。表示;以θ表示待计算的风向与任意指定方向的夹角,例如θ表示风 向与正东方向的夹角,风向在风速计算中的影响因素以函数f( θ )表示,因为不同时钟周 期中超声波的传播方向不同,将第一个时钟周期和第二个时钟周期内的风向的影响因素分 别表示为^ θ )、f2( θ ),即风向在超声波传播方向上的投影,例如,风向与正东方向的夹角 为θ,第一个时钟周期内超声波的传播方向为正东方向,则θ ) = cos θ ,;以Vf表示待 计算的风速值。根据测量获得的、和t2可知<formula>formula see original document page 10</formula><formula>formula see original document page 10</formula>[0082]在以上2式中,t ”、、!^、均为已知量, 和θ为两个未知量,由以上两个二元 一次方程组成方程组,即能够计算得出风速Vf以及风向与任意指定方向的夹角θ。采用第 一种计算方式时,传播时间的预定个数为2个。在控制计算模块12计算风速和风向的第一种计算方式中,将各个时钟周期的超 声波的速度V。视为恒定的标准声速值,但是在实际测量中,由于传感器的差异,产生的超声 波的速度V。有可能与恒定的标准声速存在差异,为使测量更加准确,本实用新型提出控制 计算模块12计算风速和风向的第二种计算方式,在第二中计算方式中,计算结果不受超声 波的速度V。的影响。控制计算模块12计算风速和风向的第二种计算方式是在第一个时钟周期内,传感器111处于发送状态,传感器112处于接收状态,传感 器113处于空闲状态,在此周期内计算出的传播时间以、表示;在第二个时钟周期内,传感器111处于发送状态,传感器113处于接收状态,传感 器112处于空闲状态,在此周期内计算出的传播时间以t2表示;在第三个时钟周期内,传感器112处于发送状态,传感器111处于接收状态,传感 器113处于空闲状态,在此周期内计算出的传播时间以t3表示;在第四个时钟周期内,传感器112处于发送状态,传感器113处于接收状态,传感 器111处于空闲状态,在此周期内计算出的传播时间以t4表示。并且,以L表示传感器111、传感器112、传感器113中任意两者之间的距离,即超 声波的传播距离;以θ表示待计算的风向与任意指定方向的夹角,例如θ表示风向与正 东方向的夹角,风向在风速计算中的影响因素以函数f( θ )表示,因为不同时钟周期中超 声波的传播方向不同,将上述各个时钟周期内风向的影响因素分别表示为f\( θ )、f2( θ )、f3( θ )和f4( θ );以Vf表示待计算的风速值。 根据测量获得的、、t2、t3和t4可知
<formula>formula see original document page 11</formula>[0095]将⑴式与⑵式联立,得到<formula>formula see original document page 11</formula>将(3)式与(4)式联立,得到<formula>formula see original document page 11</formula>在(5)式和(6)式中,、、、、、、、和1^均为已知量, 和θ为两个未知量,由以 上两个二元一次方程组成方程组,即能够计算得出风速Vf以及风向与任意指定方向的夹角
θ O由此可见,采用第二种计算方式,根据以上(1)至(4)式,能够消除V。对计算结果 的影响,计算得出风速Vf以及风向与预先任意指定的方向的夹角θ。采用第二种计算方式 计算出的风速和风向更加准确。根据第二种计算方式,此种情况的风速测量中传播时间的 预定个数为4个。在上述实施例中,均以超声波模块11的传感器个数为3为例予以说明。在实际的 测量中,超声波模块11的传感器个数还可以大于3个。在测量风速时,传感器个数大于3 个的情况与上述实施例中3个传感器的情况相同,确定超声波模块11的工作状态时,发送 状态、接收状态、空闲状态在所有的传感器之间轮换,在超声波模块11的不同工作状态下, 发送并接收的超声波的传播方向不同,仍然根据预定个数的不同工作状态的传播时间计算 得到风速和风向的测量值。根据以上具体实施方式
可见,本实用新型提出的测风仪在控制计算模块的控制 下,通过超声波模块完成电信号与超声波信号的转换并发送超声波信号,测量超声波信号 在空气中传播预设距离所需要的传播时间,按照工作状态轮换规则控制超声波模块的工作 状态,不同的工作状态下的超声波的传播方向不同,测量不同工作状态的传播时间,根据其 计算获得风速和风向的测量值。采用本实用新型的测风仪,采用超声波对风速和风向进行 测量,因为超声波在沙尘或低温的环境中仍然能够正常传播,避免了外界环境对测量结果 的影响。本实用新型在测风仪中加入了温度采集模块和加热模块,在低温环境中可以对测 风仪进行加热处理,进一步增强了测风仪抵御低温环境干扰的能力。并且,本实用新型提出 测量4个不同工作状态的传播时间,在计算时不需要以超声波的速度为计算依据,进一步消除了传感器差异造成的影响,提高了测量结果的准确度。并且本实用新型提出的测风仪 因为不存在转动部件,所以有效的降低了故障率。 以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本 实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型 保护的范围之内。
权利要求一种测风仪,其特征在于,包括超声波模块、控制计算模块和输出模块;超声波模块,包括测量腔和至少三个传感器;其中,各传感器之间的距离为预设值,测量腔内的空气与待测环境的空气连通,所述传感器发送的超声波信号在测量腔内传播;超声波模块在控制计算模块的控制下确定工作状态;在超声波模块的每一种工作状态下,只有两个传感器分别处于发送状态和接收状态,其余传感器均处于空闲状态;超声波模块接收来自控制计算模块的第一电信号,处于发送状态的传感器将第一电信号转换成超声波信号并发送到测量腔内的空气中;处于接收状态的传感器接收在测量腔内的空气中传播的超声波信号,并将接收到的超声波信号转换成第二电信号传送给控制计算模块;控制计算模块,按照预设的工作状态轮换规则控制超声波模块在不同的工作状态之间进行转换,其中,超声波模块处于不同工作状态下所发送并接收的超声波的传播方向不同;向超声波模块发送第一电信号,接收来自超声波模块的第二电信号,根据第一电信号的发送时间和第二电信号的接收时间计算并记录传播时间;根据处于发送状态的传感器与处于接收状态的传感器之间距离的预设值确定传播距离;根据不同工作状态下的传播时间以及传播距离计算风速和风向的测量结果;输出模块,将控制计算模块提供的风速和风向的测量结果输出。
2.根据权利要求1所述的测风仪,其特征在于,所述传感器的个数为三个,且各传感器 之间的距离相等。
3.根据权利要求1所述的测风仪,其特征在于,所述控制计算模块包括中央处理器、 传感器控制单元、信号发生单元、信号接收单元和时钟单元;中央处理器,根据时钟单元提供的时钟信息,按照预设的工作状态轮换规则向传感器 控制单元发送传感器状态指示;所述工作状态轮换规则为在一个时钟周期内,一个传感 器处于发送状态,一个传感器处于接收状态,其余传感器均处于空闲状态,在多个时钟周期 内,每个传感器在发送状态、接收状态与空闲状态之间轮换;在每一个时钟周期内,中央处 理器控制信号发生单元产生一个第一电信号,从信号接收单元接收一个第二电信号,根据 每个时钟周期内第一电信号的发送时间和第二电信号的接收时间计算并记录传播时间;根 据处于发送状态的传感器和处于接收状态的传感器之间的距离预设值确定传播距离;根据 预定个数的不同工作状态下的传播时间以及传播距离,计算出风速和风向的测量结果;传感器控制单元,根据来自中央处理器的传感器状态指示,控制每个传感器处于发送 状态、接收状态或空闲状态;信号发生单元,包括信号发生器,用于在中央处理器的控制下产生电信号,该电信号作 为第一电信号发送给超声波模块;信号接收单元,包括信号采集器,用于从超声波模块接收第二电信号并传送给中央处 理器;时钟单元,向中央处理器提供时钟信息。
4.根据权利要求1或3所述的测风仪,其特征在于,所述控制计算模块根据不同工作状 态下的传播时间以及传播距离计算风速和风向的测量结果,包括通过<formula>formula see original document page 2</formula>2式联立,解得A和Θ ;其中,、、t2分别表示在2个不同的工作状态下的超声波的传播时间;L表示超声波的传播距离;V。表示超声波的速度;Vf表示风速值;θ表示风向与任意指定方向的夹角; θ )、f2( θ )分别表示在2个不同的工作状态下的风向的影响因素; 或,通过<formula>formula see original document page 3</formula>与<formula>formula see original document page 3</formula>式联立,消除V。并解得Vf和θ ;其中,ti、t2、t3、t4分别表示在4个不同的工作状态下的超声波的传播时间;L表示超声 波的传播距离;ν。表示超声波的速度;vf表示风速值;θ表示风向与任意指定方向的夹角; θ )、f2( θ )、f3( θ )、f4( θ )分别表示在4个不同的工作状态下的风向的影响因素。
5.根据权利要求3所述的测风仪,其特征在于,所述信号发生单元进一步包括第一信号放大器,对信号发生器产生的电信号进行放 大后作为第一电信号传送给超声波模块; 所述信号接收单元进一步包括第二信号放大器,对信号采集器接收的第二电信号进行放大后传送给信号滤波器; 信号滤波器,接收经过第二信号放大器放大后的第二电信号,进行滤波和整形后传送 给中央处理器。
6.根据权利要求1所述的测风仪,其特征在于,所述测风仪进一步包括电源模块,连接外部电源和超声波模块、控制计算模块、输出模块,为超声波模块、控制 计算模块和输出模块提供电源。
7.根据权利要求6所述的测风仪,其特征在于,所述测风仪进一步包括电源保护模块,连接外部电源和电源模块,对电源模块进行过压保护和/或过流保护, 将外部电源的电压和/或电流变换到安全阈值后输送给电源模块。
8.根据权利要求6或7所述的测风仪,其特征在于,所述测风仪进一步包括 输出保护模块,与输出模块相连,对输出模块进行电压、电流和/或隔离保护。
9.根据权利要求3所述的测风仪,其特征在于,所述测风仪进一步包括 温度采集模块,用于测量测风仪的温度,并将测量温度发送给中央处理器; 加热模块,根据中央处理器的控制,对所述测风仪进行加热;所述中央处理器中预设阈值温度,中央处理器对温度采集模块提供的测量温度与预设 的阈值温度进行比较,当测量温度低于阈值温度时控制加热模块开始加热,当测量温度高 于阈值温度时控制加热模块停止加热;所述电源模块为温度采集模块和加热模块提供电源。
专利摘要本实用新型公开了一种测风仪,在控制计算模块的控制下,通过超声波模块发送超声波信号并完成电信号与超声波信号的转换,测量超声波信号在空气中传播预设距离所需要的传播时间,按照工作状态轮换规则控制超声波模块的工作状态,在不同工作状态下的超声波传播方向不同,测量不同工作状态的传播时间,利用预设的传播距离和所测量的传播时间计算风速和风向的测量值。本实用新型的测风仪采用超声波对风速和风向进行测量,避免了外界环境对测量结果的影响,在低温、多风沙的恶劣环境中能够准确的测量风速风向,提高了测量结果的准确度和对环境的适应性,并且因为不存在转动部件,所以有效的降低了故障率。
文档编号G01P5/24GK201576003SQ20092035238
公开日2010年9月8日 申请日期2009年12月24日 优先权日2009年12月24日
发明者刘晓枫, 张彪, 张铁兵, 樊晓华 申请人:北京汉能华科技有限公司

  • 专利名称:有机溶液电解萃取和检测钢中非金属夹杂物的装置的制作方法技术领域:本实用新型涉及一种有机溶液电解萃取和检测钢中非金属夹杂物的装置。属于金属电化学技术领域。背景技术:众所周知,钢的质量在一定程度上取决于钢中夹杂物的数量、形态和尺寸分布
  • 专利名称:基于超声信号的智能开关柜局部放电检测装置的制作方法技术领域:本实用新型涉及一种局部放电信号检测装置,尤其涉及一种智能开关柜的局部放电信号检测装置。背景技术:开关柜是电力配电系统中的重要设备,而绝缘故障是严重威胁开关柜安全运行的重要
  • 专利名称:一种太阳能电池热阻测试装置及其测试方法技术领域:本发明涉及太阳能电池的测试,特别是涉及一种太阳能电池热阻测试装置及其测试方法。背景技术:太阳能电池在实际应用中,其效率会随着结温的升高而降低([I]D.Meneses-Rodrigu
  • 专利名称:一种有毒气体检测器的制作方法技术领域:本实用新型涉及一种气体检测器,尤其是一种有毒气体检测器。 背景技术:现有的检测有毒气体的设备体积比较庞大,价格昂贵,携带不方便,因此 应用不广泛。 发明内容为了解决现有现有检测有毒气体的设备体
  • 专利名称:悬挑式卸料平台用限载系统的制作方法技术领域:本实用新型涉及一种悬挑式卸料平台用限载系统,具体地说,是涉及一种解决悬 挑式卸料平台在使用过程中荷载控制问题的限载系统。背景技术:随着建筑物逐步向高层化发展,目前,在建筑施工过程中,高楼
  • 专利名称:一款双功能弹簧称的制作方法技术领域:本实用新型涉及一种称,尤其是涉及一款双功能弹簧称。技术背景 现在的称只能称一些物体的重量,却不能提供又能检测物体重要又能检测气体液体的压力,本实用新型很好的解决了现有的技术存在不足之处。发明内容
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12