山东科威数控机床有限公司铣床官方网站今天是:2025-06-18切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

磁共振成像系统以及方法

时间:2025-06-18    作者: 管理员


专利名称::磁共振成像系统以及方法
技术领域
:本发明的实施方式涉及磁共振成像(MagneticResonanceImaging:MRI)系统(system)以及方法。以下所述的MRI系统以及方法优选包含用于分离从不同的NMR(NuclearMagneticresonance:核磁共振)种(例如水分子以及脂肪分子)发出的NMR信号的功能的扩张。
背景技术
:以往,在MRI系统中,作为用于得到选择性地抑制脂肪或水的图像的技术,Dixon法被知道。Dixon法是利用质子的共振频率在水与脂肪之间稍有偏差,基于从质子发出的MR信号分别将水图像与脂肪图像图像化的方法。现有技术文献专利文献非专利文献I:W.Dixon,“SimpleProtonSpectroscopicImaging”,Radiology,Vol.153,No.I,Pages189-19
发明内容本发明要解决的问题在于,提供ー种能够对于数据(data)收集序列(sequence)中的參数(parameter)的自由度不增加时间限制而生成分离图像的磁共振成像系统Umagingsystem)以及万法。实施方式涉及的磁共振成像系统具备序列执行部以及图像生成部。序列执行部使用准备(prep)施加部分来在由该准备施加部分施加了前脉冲后执行规定的数据收集序列,该准备施加部分施加将共振频率不同的多个核素的磁化向量(vector)励磁成横向磁化的第I前脉冲(Prepulse),并在经过了上述多个核素中对象的核素与其他的核素之间产生规定的相位差的相位产生时间之后,施加使上述对象的核素的磁化向量返回到纵向磁化的第2前脉冲。图像生成部根据通过上述数据收集序列收集到的数据生成上述对象的核素的分离图像。根据实施方式涉及的磁共振成像系统以及方法,起到能够对于数据收集序列中的參数的自由度不增加时间限制而生成分离图像的效果。图I是表示使用用于分离NMR种(例如,水和脂肪)的強化后的准备性脉冲序列(pulsesequence)(即,在以往的MRI数据收集序列之前进行的脉冲序列)的MRI系统的实施方式的框(block)图。图2是表示跟着有基于以往的FSE(FastSpinEcho:快速自旋回波)法的MRI脉冲序列的水/脂肪对置相位(Water/FatOpposedPhaseWF0P)准备的概略的序列图。图3是表示3个比较用脑组织的MR(MagneticResonance:磁共振)图像的图。图4是表示用于比较3个比较用MR图像中的脂肪、白质以及灰白质的归一化后的柱状图的图。图5是表示使用了通过继续合成由多个收集而得到的数据(在本例子中,使用了平方和(SumofSquaresSSQ)的合成),来生成在非共振的NMR信号的所有的频谱中成为最大信号的最終合成图像的相位周期准备序列方式的实施方式中的NMR信号強度的图。图6是表示为了合成数据而提供4个输入图像的其他的相位周期方式的4个NMR信号收集的图。图7是表示示出信号极性的交差点附近的不准确的脂肪/水分配的3个比较用MR图像的图。图8是表示使用了多个相位偏移(offset)的脂肪/水图像处理中的MR图像的一个例子的图。符号说明22MRI系统控制部30MRI序列控制部42MRI数据处理部(μP、1/0、存储装置)具体实施例方式图I所示的MRI系统包括台架10(在概略截面中示出)、以及相互连接、并发挥作用的各种相关联的系统构成要素20。至少台架10通常被配置在屏蔽室(shieldedroom)内。图I所示的MRI系统的结构包含静磁场Btl磁铁12、Gx、Gy以及Gz倾斜磁场线圈组(coilset)14、以及无线频率RF(RadioFrequency:射频)线圈总成(coilassembly)16的实质上同轴圆筒状的配置。沿着配置成该圆筒状的要素(element)的水平轴线,存在以实质上包围由被检体台(table)11支承的被检体9的头部的方式示出的成像体(imagingvolume)18。MRI系统控制部22具备与显示部24、键盘(keyboard)/鼠标(mouse)26、以及打印机(printer)28相连接的输入/输出端ロ(port)。当然,显示部24也可以是如还具备控制输入那样的具有多样性的触摸屏(touch-screen)。MRI系统控制部22与MRI序列控制部30联动。MRI序列控制部30控制Gx、Gy、以及Gz倾斜磁场线圈驱动器(coildriver)32和RF发送部34以及发送/接收开关36(在同一RF线圈被用于发送以及接收双方时)。另外,MRI序列控制部30使用来自确定特定的序列參数的操作者(operator)或系统的输入,来访问(access)用于执行能够预先利用的MRI序列控制部30的各种指令系统(repertoire)的MRI数据收集序列的合适的程序代码(programcode)结构38。MRI系统包含对MRI数据处理部42提供用于制成向显示部24发送的处理完成图像数据的信息的RF接收部40。另外,MRI数据处理部42(μp、1/0、存储装置)构成为能够访问(例如,为了存储通过按照实施方式以及图像再生程序代码结构44的过程(process)而得到的MR图像数据)图像再生程序代码结构44以及MR图像存储部46。另夕卜,在图I中,也示出了将在能够访问MRI系统的各种的数据处理组件(component)的计算机可读存储介质中,存储了存储程序代码(storedprogramcode)结构(例如,用于生成使用了ニ项(binomial)RF化学位移(shift)的选择性前处理脉冲的水/脂肪对置相位序列等的強化后的前处理序列的存储程序代码构造)的MRI系统程序/数据存储部50进行一般化的图。另外,对于本领域的技术人员而言不言而喻,(不是普通地存储程序存储部50,或直接地连结MRI系统控制部22)也可以分割程序存储部50,并将至少一部分与系统构成要素20的处理计算机(computer)中通常的动作下最早需要这样的存储程序代码结构的处理计算机直接连结。实际上,对于本领域的技术人员来说不言而喻,图I是为了能够执行本说明书中后述的实施方式而将增加了若干变更的一般的MRI系统非常高度地简化了的图。系统的构成要素分割成各种逻辑上的“方框(box)”的集合,通常,包含多个数字信号处理装置(DigitalSignalProcessor:DSP)、微处理器(microprocessor)、面向特殊用途的处理电路(例如,高速A/D(Analog/Digital:模拟/数字)转换用处理电路、高速傅里叶转换用处理电路、阵列处理用处理电路等)。一般而言,这些处理装置是分别在每个时钟(clock)周期(或规定的时钟数的周期),物理数据处理电路从某个物理状态进入另ー物理状态的时钟动作型的“状态机器(statemachine)”。在动作中,不但处理电路(例如,中央运算处理装置(CentralProcessingUnitCPU)、寄存器(register)、缓冲器(buffer)、计算单元(unit)等)的物理状态渐进地从处于动作中的时钟周期向另ー时钟周期变化,被连结的数据存储介质(例如,磁性存储介质的位(bit)存储部)的物理状态也在那样的系统动作中从某个状态向另一状态变化。例如,MR图像的重建处理结束时,物理性的存储介质的计算机可读的可访问的数据值的存储位置(例如,像素(pixel)值的多位ニ进制表现)的阵列(array)从几个事前的状态(例如,全部一律为“O(zero)”值或全部为“I”值)变为新的状态。在该新的状态下,那样的阵列(例如,像素值)的物理位置的物理状态在最小值与最大值之间变动,表现现实世界的物理的事物现象及状况(例如,在摄像体积空间内的被检体的组织)。对于本领域的技术人员来说不言而喻,如所存储的数据值那样的阵列表示且构成物理性构造。也就是说,这样的阵列在依次被读入命令寄存器中并由MRI系统的ー个以上的CPU执行时,产生动作状态的特定序列,构成在MRI系统内转移的计算机控制程序代码的特定构造。下述说明的实施方式提供ー种方法,该方法是用于进行MRI数据的收集以及处理的一方或双方、与MR图像的生成以及显示的一方或双发的改良后的方法。标准的Dixon法的技术,在20年以上的期间内,为了脂肪抑制而被使用。在Dixon的自旋回波(SpinEchoSE)法中,在TE(EchoTime:回波时间)中,为了在脂肪与水之间生成所希望的相对相位,优选生成π弧度(radian)的相位偏移,改变RF重聚焦脉冲的时间。另外,Dixon的SE法能够扩大应用于快速自旋回波(FastSpinEchoFSE)法。在FSE法中,Dixon的效果通过最初的RF重聚焦脉冲(refocuspulse)的位置,或者回波信号中的读出回波(readecho)时间(kx=O)的位置上的与所希望的相位偏移对应的时间的改变(shift)来实现。另外,在改变RF重聚焦脉冲的方法中,由于以各角度(view)来交替切换RF回波的kx的位置,因此,存在生成典型的N/2散乱(ghost)的主要的缺点。另外,作为在回波间隔内改变读出回波的位置的其他的方法,存在将回波间的间隔扩大到全部周期(cycle)时间(在I.5T(Tesla:特斯拉)中为4.6ms,在3T中为2.3ms)的方法,或非対称地收集回波的方法。另外,在Dixon-SE法以及Dixon-FSE法中,不能同时得到RF回波与读出回波(kx=0)。从而,在该延迟时间之间,生成背景(background)相位。为了能够将水与脂肪分离,计算现场图(fieldmap)时,需要除去该背景相位。但是,无法简单地计算背景相位。另外,作为扩大了回波间隔的以往的Dixon-FSE法中的其他的缺点,通过长的回波间隔,降低现场图的计算中的稳健(robust)性被知道。为了分离水与脂肪而收集多个Dixon-FSE图像时,对每个图像都以回波间隔内的不同的定时(timing)收集读出回波。此时,由于时间依存性的相位产生源(即,基于现有的倾斜磁场的涡电流),各回波以稍稍不同的相位进行收集。从而,与能够说明的背景相位不同,为了在数据组整体中应对不均匀的该相位,需要特别的考虑。所谓“ニ项式(binomial)”NMRRF励磁脉冲从以前开始就作为用于选择性地将频谱(spectrum)(例如,水)励磁的脉冲来使用。例如,ニ项式脉冲以I:1、1:2:I、1:3:3:I那样的章动(nutation)角的比率具有多个RF章动分量(RFnutationcomponents),从脂肪分子产生的磁化作为沿着静磁场Bci的纵向磁化而残留,用于选择性地只将与水关联的NMR的磁化作为横向磁化来励磁。由此,ニ项式脉冲生成抑制了脂肪的图像。在以下所示的实施方式中,MRI系统具备序列执行部以及图像生成部。序列执行部使用准备施加部分来在由该准备施加部分施加了前脉冲后执行规定的数据收集序列,该准备施加部分施加将共振频率不同的多个核素的磁化向量励磁成横向磁化的第I前脉冲,在经过了上述多个核素中对象的核素与其他的核素之间产生规定的相位差的相位产生时间之后,施加使上述对象的核素的磁化向量返回到纵向磁化的第2前脉冲。图像生成部根据通过上述数据收集序列收集到的数据,生成上述对象的核素的分离图像。另外,序列执行部例如是图I所示的MRI序列控制部30,图像生成部是MRI数据处理部42。更具体而言,以下所示的实施方式提供了ー种使用了具有至少两个独立的阶段性的RF翻转角分量(RFFlipanglecomponents)的ニ项式RF脉冲的准备性的NMR序列(准备施加部分)。在此,RF翻转(flip)角分量为了在NMR频率不同的规定的NMR种之间产生相位差ΛΘ,空出时间τ的间隔地进行配置。并且,接着这样的ニ项式RF脉冲,施加了至少ー个倾斜磁场扰相脉冲(spoilerpulse)之后,执行以往的主要的MRI数据收集序列。在该以往的序列之间收集到的MRI数据与以往一祥,用于收集到的MRI数据的至少一部分生成以及显示被检体的组织的图像。特别是在优选的实施方式中,RF翻转角分量具有大致90°(31/2弧度)的章动翻转角,大致180°(π弧度)的相对RF相位差。另外,在本实施方式中,在不同的种之间产生的相位差大致为π弧度,通过化学的相位偏移分离的NMR种是频率具有约3.4ppm(partspermillion)的偏差的水和脂肪的种。更详细地进行说明,该准备扫描(prepscan)/MRI数据收集方法能够改变准备扫描的參数(例如,用于ニ项式脉冲分量的至少ー个的相対的RF相位的相位周期)来重复执行。并且,通过合成收集到的多组MRI数据,能够涵盖非共振(off-resonance)的NMR信号的频谱整体来提供更均匀的信号。另外,由此,能够提供(例如,通过使用平方和(SumofSquaresSSQ)或者最大亮度投影(MaximumIntensityProjectionMIP)或者类似的数据合成方法)更均匀的最终图像。接着特别的准备性的NMR序列而执行的以往的MRI收集序列能够包含例如基于快速自旋回波(FSE)法、单次激发快速自旋回波(SingleShotFastSpinEchoSSFSE)法、快速非对称自旋回波(FastAsymmetricSpinEcho:FASE)法、可变翻转角(VariableFlipAngleVFA)法、稳定态自由旋进(Steady-StateFreePrecessionSSFP)法等的数据收集序列或其他的任意的合适的MRI数据收集序列。本实施方式使用独特的(unique)前脉冲来描绘Dixon图像。本实施方式能够描绘Dixon的水/脂肪对置相位(Water/FatOopposed-PhaseWF0P)脂肪抑制图像。在更先进的方法中,该前脉冲能够用于生成(与LAVA(LiverAcquisitionwithVolumeAcquisition)、IDEAL(IterativeDecompositionofWaterandFatwithEchoAsymmetryandLeastSquaresEstimation)等类似的)脂肪/水分离图像。WFOP以及脂肪/水分离图像能够对于后续的主要的MRI数据收集脉冲序列中的TE/TR(RepetitionTime)或回波间隔、读出带宽等自由度不增加时间限制而进行收集。因此,本实施方式被认为适用于使用主要包含基于短的回波间隔的FSE(FASE或者VFA)法或者SSFP法的成像的积极的读出方法来生成脂肪/水分离图像的情況。图2所示的典型的准备施加部分(以下,称为WFOP准备)包含具有两个90°翻转脉冲的ニ项式RF章动脉沖。90°RF分量能够设为非选择、薄片(slice)选择、或者厚块(slab)选择。RF脉冲分量的相对发送相位是对水/脂肪的相位的产生有影响的设计參数。在最单纯、典型的方式中,RF翻转分量的发送相位正相反(+x、-x、例如,+90°、-90°)。图2所示的典型的WFOP准备与以往的FSE读出的主要的MRI数据收集序列相组合来使用。另外,脉冲间的相位产生时间τ在水/脂肪分离的情况下,优选在3Τ中设为I.15msο序列中的脂肪(黑色箭头)以及水(白色箭头)的等色线(isochromat)的发生通过与180°(例如,X=Ji/2)的相対的RF分量的相位对应地表现的、大概90°的顺时针(clockwise:CW)的翻转角以及大概90°的逆时针(counterclockwise:CCW)的翻转角来表示。另外,RF脉冲能够作为薄片选择或者厚块选择,但在图2中,示出作为非选择脉冲的情况。典型的RF分量偏离逆相位(out-of-phase)的时间间隔(水/脂肪分离的情况下,在3T中是I.15ms)。第IRF脉冲使纵向磁化倒向横截面。之后,在脉冲间的时间τ之间,在脂肪与水之间产生相对相位角。并且,经过能够自由地调节的时间τ(水/脂肪的对置相位分离的情况下,优选是与I.15ms相等的时间)之后,横向磁化相反地返回到纵轴方向。由此,保存脂肪与水之间产生的相位角。之后,不改变脉沖/回波,而使用以往的任意的MRI读出序列,来读出对置的相位的纵向磁化。FSE的情况下,回波链(echotrain)的重聚焦脉冲在各回波中,以(脂肪/水对置的)原来的相对相位来整编横向磁化。典型的WFOP准备使用与以往用于频谱选择的励磁的脉冲若干类似的ニ项式(I1)RF合成脉冲。但是,新的典型的WFOP准备设计成使双方(脂肪以及水)的向量残留在纵轴方向上。在以往的ニ项式频谱选择励磁中,一方的种(一般而言,水)的向量倒向横截面上,另一方的种(一般而言,脂肪)的向量残留在纵轴方向上。这样,WFOP准备与ニ项式频谱选择励磁脉冲相对照,与ニ项式频谱选择翻转脉冲类似。也就是,通过WFOP准备,与ー个向量选择性地励磁相对照,ー个向量选择性地反转。WFOP准备的前脉冲能够用于生成单纯的Dixon图像。最一般而言,该典型的实施方式在用于使用τ=π的WFOP准备,来进行若干脂肪除去的单纯的脂肪抑制中使用。然而,也能够合成相位产生时间(τ)不同的多个WFOP准备图像,来生成脂肪/水分离图像。另外,由于τ是能够自由地设定的參数,因此,WFOP准备能够作为基于多点(multi-point)Dixon法的脂肪/水分离的一部分来使用。此时,通过WFOP准备,能够以不同的τ得到多个图像组。并且,由于相对相位角不是在MRI收集或读出序列中产生而是在WFOP准备中产生,因此,在各时间τ,收集同样地受到其他的序列依存性的相位产生源(例如,涡电流)以及激励回波(stimulatedecho)影响的数据。根据该所有的数据组中的均一性,能够使作为结果得到的多点Dixon数据的分析简单化。通过接受了IRB(InstitutionalReviewBoard:机构审查委员会)的认可的3T全身用MRI研究机系统将男性志愿者(volunteer)的脑部进行扫描,并针对具有WFOP准备的情况与没有的情况,以下面的參数收集了部分傅立叶(partial-Fourier)3DFSE的轴向(axial)图像。TE/TR=80/3000ms、回波间隔=5.0ms、2次(shot)、ETL(EchoTrainLength:回波链长度)=80、矩阵(matrix)=256X256、部分傅立叶系数=5/8、F0V(Fieldofview:视野)=25X25cm、16枚3mm厚切片、以及读出BW(Bandwidth:带宽)=65IHz/像素。另外,为了进行比较,也收集了进行了基于CHESS(ChemicalShiftSelective:化学位移选择)的脂肪饱和的类似图像。为了测量脂肪抑制的效果,在位于头皮下的脂肪区域的4处、白质(WhiteMatter:WM)的4处、以及灰白质(GrayMatterGM)的4处设定ROI(RegionofInterest关心区域)。在图3中,示出没有脂肪饱和的图像(图3的A)、具有WFOP准备的图像(图3的B)、以及基于CHESS的具有脂肪饱和的图像(图3的C)。如图3所示,在WFOP准备的图像(图3的B)中,没有对水信号产生坏的影响,并除去了大部分的脂肪信号。用于讨论这样的单纯的一个执行可能性的图像(图3的B)不像CHESS图像(图3的C)那样良好,但通过合成多个图像来进行改善。并且,与CHESS不同,如果使用典型的WFOP准备扫描,则能够得到准确的只有水的图像以及只有脂肪的图像。WFOP准备能够通过以往的短的回波间隔的FSE读出,来收集Dixon图像。在此,回波间隔、读出带宽、以及其他的序列參数能够与时间τ没有关系地选择。根据该自由性,能够将基于FSE(base)的Dixon法与如单次激发FSE的那样的短的回波间隔的应用(application)组合使用。另外,作为单ー的收集的一部分来使用时,在图4所示的例子中很明显由于WM信号以及GM信号減少2025%,因此,WFOP准备易于损失信号。图4是表示没有脂肪饱和的图像、具有WFOP准备的图像、以及CHESS图像中的信号的比较的图。数据被归一化成没有脂肪饱和的图像中的脂肪信号。在WFOP中脂肪信号減少63%,在CHESS中脂肪信号減少了79%。另外,在WFOP准备中,WM信号减少25%,GM信号减少19%。另外,在CHESS数据中,水信号极其略微地減少。信号损失通过由于AB1RF磁场不均一性而90°变得不完全,或在自由的相位产生时间τ之间,由于背景的△Btl静磁场不均一性而产生相位而产生。因此,在単一的收集中,可以说WFOP准备只能够适用于具有适当的B。以及B1的均一性的区域。另外,基于背景相位的产生的信号损失是正弦波。该信号损失能够如以下说明的那样减轻。WFOP准备中的RF分量的相对发送RF相位为了使WFOP准备数据“相位周期”化而交替切換。该相位周期在概念以及设计的层面上,与SSFP(即,CISS(ConstructiveInterferenceSteady-state:有建设性的干扰稳定状态))相同。例如,在最初的WFOP准备收集中,能够使用90+x-(时间的延迟)_90_x。此时,如图5的A所示,在π/2的非共振(相当于3Τ时的IlOHz)处来自脂肪以及水的信号消失。但是,在下一WFOP准备中,使用90+x-(ji时间的延迟)_90+y。在该第2次收集中,如图5的B所示,共振自旋(on-resonantspin)(脂肪以及水)同样地消失,但π/2的非共振自旋(off-resonantspin)变成最大信号。通过合成分别根据这些数据组得到的图像(使用MIP、SSQ等),从而,如图5的C所示,能够涵盖非共振的频谱整体,生成信号更均匀的最终图像。在图5的C中,虚线表示图5的A的平方数据,点线表示图5的B的平方数据,实线表示合成虚线与点线而得到的数据。这样,最終图像变为与CISS图像酷似的图像。该最终图像由两个SSFP图像合成,成为更均匀的图像(即,涵盖非共振核的频谱整体,最大信号強度的图像)。图6表示在零交点发生信号损失的正弦波信号调制的其他的例子。如已经说明了的那样,通过调整RF脉冲的相对发送相位,来补偿信号损失。例如,以将发送相位设为90+x-90_x的方式(图6的A以及C)形成谷,以将发送相位设为90+x-90+y的方式(图6的B以及D)形成峰。这样,将RF发送相位改变/2与将正弦波响应改变π/2相同。在单纯的Dixon对置相位图像的收集中,(例如,使用图6的A所示的方式)必须只收集ー个图像。但是,根据上述的信号调制,通过(例如,使用图6的B所示的方式)进一歩得到相位周期化的图像,并组合作为其结果生成的数据(例如,使用SSQ、MIP等),从而能够生成实质上没有信号损失的Dixon对置相位图像。为了进行脂肪/水分离,需要以不同的相位π的时间间隔得到多个图像。无论哪样的基于Dixon的方法,都包含WFOP准备,并需要至少两个个别的图像。例如,这两个图像由与图6的A以及C对应的τ=以及τ=2π得到。但是,为了进行正弦波信号调制,建议收集附加的图像。最重要的是,需要收集(与图6的B对应的)发送相位以τ=^的周期变化的图像。另外,为了提高稳健性,收集(与图6的D对应的)发送相位以τ=2π的周期变化的图像即可。如图6的A所示,以90+χ-90_χ方式,涵盖非共振的π频谱将产生时间设为τ=π(I.15ms),则对于水(实线)以及脂肪(点线)的信号,在η/2的非共振处信号消失。另夕卜,如图6的B所示,将发送相位的方式设为(90+x_90+y),设定τ=π,则改变脂肪以及水的信号,在η/2非共振处脂肪以及水的信号(对置相位保持原样)变为最大信号。另外,如图6的C所示,将发送相位的方式设为(90+χ-90_χ),设定τ=2π,则脂肪与水进行排列,但由于非共振而使得周期继续。另外,如图6的D所示,假设发送相位的方式为(90+x-90+y),设定τ=2π,则脂肪与水再次进行排列。为了查明水与脂肪的成分,对线性系统输入图像(在此,与图6所示的时间τ以及发送相位的方式相对应,称为A、B、C、以及D)。在此,设水自旋密度为Pw,脂肪自旋密度为Pf,背景相位(与ABtl相同)为Φ,则数据组能够通过以下所示的简化的方程式来表/JnοA=(pw-pf)·cosΦB=(pw-pf)·βηφC=(pw+pf)·cos2ΦD=(Pw+Pf)·sin2Φ(式I)A、B、C以及D的输入数据是只通过带有符号的振幅(magnitude)数据来表示的数据,不是通过复数数据来表示的数据。根据该信息,能够使用B以及A(或者,D以及C)来导出单纯的相位图。另外,不需要相位展开。由于这样的相位图的导出在复数图像数据中不发挥作用,而只在带有符号的振幅数据中发挥作用,因此,不需要绝对相位,只与相对相位相关。或者,也可以使用外部相位图(例如,通过勻场数据(shimmingdata)的收集而得到的相位图),也可以重复(如IDEAL那样)相位图来查明。tan—1〔幻=tan—1=咖イぎ)=多(式2)式I能够如以下所示的式3那样,使用Φ的解来改写成行列的形式,能够通过使用线性代数法来求解从而得到PΛユ及pf。在该例子中,作为用于反转Φ的行列的方法选择了特异值分解(singularvaluedecomposition:SVD),但不言而喻,此外还有大量的能够利用的数值法。Acosφ-cosφCcoscosPwΚΙ=C°S2iiΖ°Ζ2ΦC(式3)Pfsinφ-smφBsm2φsin2φ_D_上述的数学公式是使用4个输入图像时的式子。当然,也能够以不同的τ或相关发送相位来得到更多的图像,并加入行列。图像的最小限的数量为两个。输入图像的理想的数量是背景相位的量以及SNR(Signal-to-NoiseRatio:信噪比)的函数。通过使用上述的解,能够得到各像素位置的PwW及Pf的推定值。但是,其结果易被输入的带有符号的振幅的重建中的极性影响。在正极与负极之间的连接点,脂肪与水之间的分配在几个像素中有时变得不准确。在图7中示出该问题的例子。在此,示出极性的交差点(參照箭头)附近的不准确的脂肪/水的分配的例子。图7的A是输入的带有符号的振幅的图像,灰色=0,亮=一方的极性,暗=另一方的极性。使用该输入数据,生成图7的A所示的极性的交差点附近被分配了不准确的像素的图7的B所示的脂肪的图像以及图7的C所示的水的图像。减轻这样的敏感性的ー个方法是以高质量来重建稳健的带有符号的振幅,文献公开了用于其的大量的方法。大部分的方法是依存于输入数据的良好的SNR的方法,或需要以缓慢地空间性地变化的相位来适当地动作的位相图的方法。但是,本实施方式的情况下,不需要关心带有符号的振幅自身,而需要关心最終的水与脂肪的分离图像。从而,为了除去对于带有符号的振幅的极性的敏感性,能够实施单纯且稳健的解决方法。例如,脂肪/水分离能够使用相位偏移来实施。如图8所示,对每个输入图像数据生成单纯的振幅图像以及相位(Θ)图像。使用该相位图像,对Θ彡O的各像素分配正扱,对Θ<O的各像素分配负极。并且,使用式2以及式3,进行脂肪/水的分离。将所有的处理重复N次,每次对输入相位图像增加一定的相位偏移。例如,以0°、30°、60°、90°、120°的相位偏移将处理重复6次。相位偏移的数量以及相位偏移的増量基本上是任意的。并且,如图8所示,根据每个相位偏移,生成脂肪图像以及水图像。相位偏移的效果在于改变输入的带有符号的振幅数据中的正扱/负极的交差点的位置。基于SVD的解法中的脂肪/水的输出值除了交差点附近的值,在所有的像素是相同的值。所有的组中最一般的值(模式)作为最终脂肪图像/最終水图像的值被分配。在图8中示出该算法(algorism)的一个实施例。在该例子中,使用3个相位偏移。通过操作模式将各相位偏移的输出脂肪图像/输出水图像进行结合,来制成最終的脂肪/水图像。通过调节WFOP准备的前脉冲中的RF分量的相对RF发送相位,从而能够生成不同的脂肪/水的正弦波响应。能够组合相对RF发送相位不同的多个图像,来生成稳健的非共振响应的Dixon图像。另外,严格来说不是必须具有RF分量不同的发送相位。具有RF分量相同的发送相位(即,+X,+X)时,将生成负的水与正的脂肪,即使那样大概也有效。这样,各分量独立地阶段性地执行,也可以分别不同,但这不是必须的。组合上述两段说明了的另ー实施方式,能够生成稳健的非共振响应的脂肪/水分离图像。另外,能够变更WFOP准备中的RF脉冲或RF分量的数量。例如,能够使用1:3:3:I的合成ニ项式RF脉冲。通过不同的ニ项式方式(I:1、1:2:I、1:3:3:I等),制成不同的非共振响应的形状。一般而言,合成ニ项式脉冲的分量越多,响应越接近棚车(boxcar)的形状。I:I的例子表示最单纯的响应形状(正弦波)。从而,这是现在最优的选择。单纯的脂肪/水的同相位(in-phase)图像能够通过收集完全没有使用WFOP准备的ー个图像组(这是以往的MR图像)而得到。该同相位图像能够与能够使用WFOP准备的其他的脂肪/水分离用扫描相组合。另外,虽然能够进行该组合,但在该实施方式中,存在混合具有ΛB1/ΛB。效果的数据(WF0P数据)与不具有这些效果的数据(以往的MR图像)的缺点。从而,在该实施方式中,能够预想到损害脂肪/水分离的质量。WFOP准备能够对于脉冲序列中的參数(TE/TR、回波间隔、读出带宽等)的自由度不增加时间限制,而进行Dixon成像。从而,WFOP准备能够与以往难以或者不可能用于Dixon成像的积极的读出方法(即,短的回波间隔的FSE以及短的TE的SSFP)同时使用。另外,WFOP准备不受包含使基于以往的Dixon法的脂肪/水分离方法(IDEAL)混乱的涡电流的时间依存性的背景相位的产生源的影响。另外,WFOP准备通过输入单纯的振幅图像以及相位图像,从而能够使用快速的、直接的处理。另外,与其他的方法不同,不需要复杂的相位展开(unwrapping)或背景相位的除去、零差(homodyne)处理。另外,如所有的基于Dixon的方法那样,为了使Dixon水图像/Dixon脂肪图像完全分离,WFOP准备需要至少两个输入图像。但是,输入图像能够以多重回波(multi-echo)的梯度回波(gradientecho)读出方法来进行收集,不能以相同的主要的数据收集序列来进行收集。从而,对于多重回波的梯度回波成像(即,LAVA)而言WFOP准备也许不是好的代替法。另外,WFOP准备可能产生基于非共振的信号损失。为了减轻该信号损失,有时希望或需要追加基于RF发送相位周期的图像。由于WFOP准备使磁化倒向横截面(发生相位产生的横截面),或从横截面立起,因此需要向下翻转RF脉冲以及向上翻转RF脉冲。从而,WFOP准备对于B1RF不均一性敏感即可。另外,当翻转角α的最初的向下翻转RF脉冲准确地不是90°时,若干磁化残留在纵轴方向(cosα)。并且,相位产生期间之后,在相同的翻转角α的纵轴方向,有时横向磁化向上翻转并返回。因此,最后的纵向磁化变为(以sin2a的系数进行调整)产生相位的磁化与(以cos2α的系数进行调整)没有产生相位的磁化的组合。如果混合产生相位的磁化与没有产生相位的磁化,则妨碍脂肪/水分离的处理。大致100%的脂肪或者水(Pw>0.9或者Pf>0.9)的像素的情况下,大的偏差(a<70°或者a>110°,约20%的AB1)有时引起脂肪/水像素值的不准确的分配。虽然说明了本发明的几个实施方式,但这些实施方式是作为例子而提示的,并不意图限定本发明的范围。这些实施方式能够以其他的各种形态进行实施,在不脱离发明的要旨的范围内,能够进行各种的省略、置換、变更。这些实施方式或其变形与包含于发明的范围或要g中一祥,包含于权利要求书记载的发明及其均等的范围中。权利要求1.ー种磁共振成像系统,其特征在于,具备序列执行部,其使用准备施加部分来在由该准备施加部分施加了前脉冲后执行规定的数据收集序列,该准备施加部分施加将共振频率不同的多个核素的磁化向量励磁成横向磁化的第I前脉冲,并在经过了上述多个核素中对象核素与其他核素之间产生规定的相位差的相位产生时间之后,施加使上述对象核素的磁化向量返回到纵向磁化的第2前脉冲;图像生成部,其根据通过上述数据收集序列收集到的数据,生成上述对象核素的分离图像。2.根据权利要求I所述的磁共振成像系统,其特征在干,上述准备施加部分施加包含以上述相位产生时间的间隔进行配置的上述第I前脉冲以及上述第2前脉冲的ニ项式脉冲。3.根据权利要求I或2所述的磁共振成像系统,其特征在干,上述准备施加部分在施加了上述第2前脉冲之后施加至少ー个倾斜磁场扰相脉冲。4.根据权利要求1、2或3所述的磁共振成像系统,其特征在干,上述第I前脉冲以及第2前脉冲各自具有的章动角的合计大致为180°。5.根据权利要求I4中任ー项所述的磁共振成像系统,其特征在干,上述相位产生时间是在上述对象核素与上述其他核素之间产生180°的相位差的时间。6.根据权利要求I5中任ー项所述的磁共振成像系统,其特征在干,在上述多个核素中包含水以及脂肪。7.根据权利要求I6中任ー项所述的磁共振成像系统,其特征在干,上述序列执行部一边改变上述第I前脉冲以及上述第2前脉冲的至少一方的发送相位ー边重复执行上述准备施加部分以及上述数据收集序列,上述图像生成部通过合成根据各数据得到的图像来生成上述分离图像。8.根据权利要求7所述的磁共振成像系统,其特征在干,上述图像生成部使用平方和或最大值投影来进行合成。9.根据权利要求I8中任ー项所述的磁共振成像系统,其特征在于,上述数据收集序列包含基于快速自旋回波(FSE)法、单次激发快速自旋回波(SSFSE)法、快速非对称自旋回波(FASE)法、可变翻转角(VFA)法、以及稳定态自由旋进(SSFP)法的序列中的至少ー个。10.ー种磁共振成像方法,其特征在于,包含使用准备施加部分来在由该准备施加部分施加了前脉冲之后执行规定的数据收集序列的步骤,其中该准备施加部分施加将共振频率不同的多个核素的磁化向量励磁成横向磁化的第I前脉冲,并在经过了上述多个核素中对象核素与其他核素之间产生规定的相位差的相位产生时间之后,施加使上述对象核素的磁化向量返回到纵向磁化的第2前脉冲;和根据通过上述数据收集序列收集到的数据来生成上述对象核素的分离图像的步骤。全文摘要本发明提供一种能够对于数据收集序列中的参数的自由度不增加时间限制而生成分离图像的磁共振成像系统以及方法。实施方式涉及的磁共振成像系统具备序列执行部以及图像生成部。序列执行部使用准备施加部分来在由该准备施加部分施加了前脉冲后执行规定的数据收集序列,该准备施加部分施加将共振频率不同的多个核素的磁化向量励磁成横向磁化的第1前脉冲,并在经过了上述多个核素中对象的核素与其他的核素之间产生规定的相位差的相位产生时间之后,施加使上述对象的核素的磁化向量返回到纵向磁化的第2前脉冲。图像生成部根据通过上述数据收集序列收集到的数据,生成上述对象的核素的分离图像。文档编号G01R33/54GK102692612SQ20121007865公开日2012年9月26日申请日期2012年3月22日优先权日2011年3月22日发明者安德鲁·J·惠顿申请人:东芝医疗系统株式会社,株式会社东芝

  • 专利名称:一种油标装置的制作方法技术领域:本实用新型涉及一种油标装置。 背景技术:通常泵用油标结构采用图1结构在轴承体上钻螺纹孔,在螺纹孔上加装带螺纹 的透明玻璃。采用这种结构的油标,只能从一个方向观察油位,且当油沾污透明玻璃视窗时 油位不
  • 专利名称:拉拔力检测工装的制作方法技术领域:本实用 新型涉及一种检测工装,特别涉及一种拉拔力检测工装。 背景技术:当焊接零件焊接到蒙皮本体上后,为了检测该零件与蒙皮本体的拉拔力强度, 现有技术中一般采用弹簧拉力器来进行检测。该弹簧拉力器一般
  • 专利名称:一种用于测量混凝土收缩的试验装置的制作方法技术领域:本实用新型涉及一种用于测量混凝土收缩的试验装置。 背景技术:水泥混凝土是现代最广泛使用的建筑材料,也是当前最大宗的人造材料,但收缩 是水泥混凝土的固有特性,混凝土因收缩而引起开裂
  • 专利名称:一种多用户用电计费装置的制作方法技术领域:本实用新型属于计费装置,具体地说涉及一种能够将用电信息转化为费用信息并 将费用从用户的账户中扣除的装置,是一种实现支持多用户使用公用供电设施的多用户用 电计费装置。背景技术:在当今日常生活
  • 专利名称:一种双层玻璃窗内层振动参数的测量装置和测量方法技术领域:本发明涉及一种双层玻璃窗内层振动参数的非接触测量装置及其测量方法。背景技术:现有一些隔音空间(例如房间、舱体和厢体)安装的是双层玻璃窗。双层玻璃又 名"隔声玻璃&q
  • 专利名称:一种激光干涉仪光路对准装置及方法技术领域:本发明涉及光刻领域,尤其涉及用于光刻装置的干涉仪光路对准装置。 背景技术:目前激光干涉技术已广泛应用于高精度位置测量,其具有精度高,可靠性强,误差干扰小的特点。而激光干涉仪光路对准的准确度
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12