专利名称:用于确定血样溶血的方法和装置的制作方法
技术领域:
本发明涉及用于确定血样溶血的技术。
背景技术:
所谓的血氧计用于测定血样。这里,其涉及用于测定总血红蛋白量(tHb)、血红蛋 白衍生物例如氧合血红蛋白(02Hb)、碳氧血红蛋白(COHb)、正铁血红蛋白(MetHb)和降解 产物胆红素的光学测量装置。这些参数是在朗伯比尔定律的基础上用光度法确定。对此, 通常测量可见区域内的多个不连续波长的相应组分的附加吸收,例如在459nm至666nm之 间。确定的测量值构成超定线性方程组,其可通过多线性回归手段求解,以确定所关注的浓 度。血红蛋白衍生物的测量在溶血产物即溶血血样中进行。这意味着所有的分散性微 粒血液组分,例如红血球和类似物,都在光学测量值记录之前尽可能地被完全破坏;这意味 着已经发生溶血。血细胞的溶血通常发生,因为超声结合到血样中。以这种方式的均勻媒 介为基础,朗伯比尔定律可用于组分浓度的实际确定,该定律描述了照射到被检测的血样 的光沿着穿过血样的路径持续减弱。在非溶血情况下,血液在光学方面呈现出一种浑浊的“彩色”的包含微粒的介质。 任何投射的光根据波长减弱并且分散。光的分散主要在血液中的细胞上发生。穿过血液的 短波蓝光的高程度吸收和红光/红外光相对低程度的吸收突出了血液的红色特性。各种血 液组分在特性波长范围方面影响光吸收。血液中包含的水非常强烈地吸收在lOOOnm以上 的红外光,而蛋白质和血红蛋白优选吸收绿色和蓝色的光谱区域。在非溶血的整个血液中,在血液中所包含的微粒上(特别是在细胞血液组分上) 存在入射光的吸收、分散和衍射。由于分散方法的复杂,形式条件高的各向异性和双拱形截 面和红血球的形式变化的上述情况,在血液中溶解的物质浓度与检测的光的减弱之间,没 有分析到简单的有价值的关系。为了能够实现再现的且提供信息的光学测量,所以进行血 液溶血。当血液完全溶血时,并且另外如果所有分散的细胞碎片被清除,在光度检测中落 在血样上的光,理想地只被血样里所包含的所述组分吸收。然后可用朗伯比尔定律确定血 液组分的浓度。因此对随后的血样光度检测来说,溶血是一个重大前提。因此需要确定溶血本身 的技术,尤其是为溶血血样随后的检测建立限定的输出条件,并因此改进分析检测的精度 和再现性。
发明内容
本发明的目的是提供用于确定血样溶血的改进技术,通过该技术可以更接近地确 定血样的溶血条件。本发明的目的通过独立权利要求1和8所述的确定血样溶血的方法,以及独立权利要求17和18所述的确定血样溶血的装置来实现。另外,提供了一种根据独立权利要求 21的溶血设备。本发明的有利形式是从属权利要求的主题。根据本发明的一方面,提供一种用于确定血样溶血的方法,期间确定溶血进程,其 中,所述方法包括如下步骤在溶血期间将从测量光源发出的测量光照射在血样上;通过检测装置在多个测量时间点检测穿过血样传输的和/或被血样反射的测量 光的测量光值;借助于计算装置,通过从检测的测量光值形成关于测量光值的时间相关过程并对 于该时间相关过程至少在一部分上(at least sectio-wise)确定在分配的测量曲线中的 梯度来作为用于比较不同测量时间点的测量光值的比较测量,从而比较不同测量时间点的 多个测量光值并确定用于溶血进程的测量;并且在梯度不同于零的测量周期之后,当在可选择的测量精度内的梯度下降到直到零 的最小值时,确定溶血结束。在方法实施的各种形式中,可提供溶血进程的测量通过输出装置输出。这可根据 溶血阶段的确定对所有或者单个确定进程的测量发生,例如通过显示器上的通知。通过这 样,可实施一种在线溶血进程确定,其中在溶血期间确定并显示连续的进程值。替代地,在 该方法中可以不输出方法测量,从而任选地只显示溶血的结束,例如,借助光学和/或声音信号。可以对曲线形状中的各个点或者经过曲线的多个点延伸的曲线部分确定分配的 测量曲线中的梯度。正和负的梯度值出现,其示出了曲线形状的上升和下降。关于溶血结束的确定,确保在非溶血血样中,照射测量光在内含的微粒中同时发 生吸收、散射和衍射。另一方面,如果血液完全溶血,且如果所有分散的细胞碎片被清除,入 射的测量光在理想的情形下,只被吸收。在结合了吸收、散射和衍射的情况下向纯吸收的转 变在与时间有关的测量曲线形状中可识别为不为零的梯度和测量曲线的最终到达零梯度 的渐减梯度之间的转变。当梯度在时间过程中不再变化,就当前溶血而言,表示溶血方法结 束。如果检测了在梯度过程中的特性变化,可在达到零梯度时或达到零梯度之前确定溶血 阶段。根据本发明的另一方面,提供一种用于确定血样溶血的方法,期间确定溶血进程, 其中,所述方法包括如下步骤在溶血期间将从测量光源发出的测量光照射在血样上;通过检测装置检测穿过血样传输的测量光的至少一个测量吸收光谱;在计算装置中比较血样的至少一个目标吸收光谱和至少一个测量吸收光谱;在至少一个目标吸收光谱和至少一个测量吸收光谱的比较中确定溶血度的测量; 和通过输出装置输出来自溶血度测量的信息信号,所述输出装置与计算装置在功能 上相连接。理论上或实验上可用各种方法得到目标吸收光谱,将在下面更详细说明。其对应 于已知溶血度优选为完全溶血的血样的吸收光谱。然后测量至少一个测量吸收光谱,用于 确定待检测血样的溶血,其中将测量吸收光谱与至少一个目标吸收光谱比较。
根据另一方面,一种确定血样溶血的装置,其构造成确定溶血进程,所述装置包 括测量光源,其构造成在溶血期间将测量光照射在血样上;检测装置,其构造成在多个测量时间点检测穿过血样传输和/或被血样反射的测 量光的测量光值;以及计算装置,其构造成比较不同测量时间点的多个测量光值,并据此通过从检测的测量光值形成关于测量光值的时间相关过程并对于该时间相关过程至少在一部分上确定在分配的测量曲线中的梯度来作为用于比较不同测量时间点的测量光值的比较测量,从而确定用于溶血进程的测量;并且在梯度不同于零的测量周期之后,当在可选择的测量精度内的梯度下降到直到零 的最小值时,确定溶血结束。根据本发明的另一方面,提供一种用于确定血样溶血的装置,其构造成确定溶血 过程,所述装置具有计算装置和输出装置,所述计算装置构造成比较血样的至少一个目标 吸收光谱和至少一个测量吸收光谱,所述输出装置与计算装置在功能上连接,并且构造成 输出来自溶血度测量的信息信号。上述装置可单独提供或结合在溶血设备中。本发明意味着已经可获得能够可靠确定血样溶血的改进技术。血样的溶血在此可 以采用已知各种形式的单个或多种溶血方法用任何期望的方式或方法实施。因此可提供对 位于测量腔内的血样加压,以便用超声溶血。另外或替代地,可通过添加一种或多种化学试 剂或通过降低血样的渗透值来影响血样的溶血。对于溶血进程的确定,检测穿过血样传输和/或从血样反射的测量光的测量光值 可连续或不连续地进行。在溶血进程确定的一优选形式中不提供光谱求解测量,使得不需 任何光谱分配(spectral assignment)来检测测量光值。替代地,可进行测量光值的选择 性波长的检测。这尤其是在单色光对于多个波长被单独照射和检测的情况下可以实现。血样溶血度测量的确定优选以光谱求解的方式进行,这意味着来自至少一个目标 吸收光谱的目标吸收值相应地与其光谱分配的测量吸收值比较。例如,分配给相同波长的 测量值可相互比较。溶血进程的确定和血样溶血度测量的确定促进了在确定血样中的提高的效率和 优化的再现性。附加效果导致它们可能的组合。例如,可以首先观察溶血进程,以便随后根 据溶血度测量的确定来确定是否充分溶血。如果不是充分溶血,进行随后的溶血,然后在溶 血进程的基础上再次观察该过程。通过这样,附加的信息出现,使得可以更可靠地确定随后 的溶血是否以及在何等范围内促进溶血血样的改进。另一方面,溶血度测量的确定可与溶 血并行,以得到关于当前进行的溶血程度的附加信息。在组合形式中,溶血进程的确定和溶 血度测量的确定因此增加了本发明实现的血样溶血确定的改进。优选地,血样的溶血通过直接在测量单元内的血样上应用超声进行。与其它溶血 方法例如通过在溶血中添加溶血剂相比,除了通过添加的溶血剂溶解细胞外,在超声溶血 中不会发生血样成分的变化。特别地,这在血样成分的任何随后分析性确定中是有利的。优选的,本发明的进一步的形式提供在进行用于血样溶血的溶血装置的溶血操作的同时至少部分地进行测量光值的检测。在溶血操作中,溶血装置,作为溶血设备,实际 上对血样产生作用以便溶血。这例如通过用超声冲击血样进行。在本发明的一个有利变形中,可提供至少部分在血样溶血操作中断期间进行测 量光值的检测。在操作中断期间,支持血样溶血的装置对血样不进行作用。例如,超声冲击 中断。同样可提供一方面在溶血操作期间和另一方面在操作中断期间的组合的测量光值的 记录。根据观察的溶血进度,可选择如下的方法步骤。例如,如果无法观察进一步的溶血进 程,可以现在将溶血的血样提交以进一步确定,例如光度法确定血红蛋白衍生物。溶血度的 确定也有序进行,以便确定随后的溶血是否应该进行,对它来说,可在溶血进程的过程中观 察。本发明的另一实施方式,可至少部分在支持血样溶血的一种或多种溶血剂作用期 间检测测量光值。还可提供通过一种或多种试剂以及通过超声冲击来进行溶血。在溶血期 间,稀释形式的功能表面活性剂例如Triton X-100,TWEEN 621和BRIJ(可从SigmaAldrich 获得)可用作试剂。本发明另一个优选实施方式提供至少部分在血样不受一种或多种支持血样溶血 的溶血剂的影响期间进行测量光值的检测。当溶血效果被消耗掉或者被抑制时,血样不受 一种或多种溶血剂的影响。在测量之后,可任选进一步添加溶血剂,特别用于随后的溶血。本发明另一优选实施方式提供为测量光检测测量光值的强度测量值。本发明一个方便的变形提供在溶血确定完成后,通过光学测量方法确定血样的 血红蛋白值。这些光学方法是已知的各种实施形式。光学测量部件在此部分使用,例如,用 于确定溶血进程的测量光源和/或检测装置。本发明一个有意义的形式提供通过溶血装 置例如通过超声溶血对血样溶血,同时对溶血确定溶血进程的测量,在溶血结束之后,进行 血氧定量测量,例如,进行血样的血红蛋白值的确定。对于通过光学测量方法的血氧定量测 量,各种实施方式是已知的。溶血、溶血试验和血氧定量测量优选在相同的测量单元中对相 同血样进行。这样的优点是排除了在方法步骤之间中血样的任何污染。接下来,描述与血样溶血度测量的确定有关的有利变形。一个有利的实施方式提供在比较中,来自至少一个测量吸收光谱的测量吸收值 以及来自至少一个目标吸收光谱的(被相应地分配光谱的)目标吸收值的局部曲线梯度值 被比较。与代表完全溶血血样的目标吸收光谱相比,不完全溶血导致了测量吸收光谱的变 化。这首先包括在吸收光谱中的增加,这是由于通过依赖于溶血度的偏移提升了吸收带。 另外,显示了在低吸收区域的边缘陡度的区别。再者,改善了更高溶血度的信噪比,这是像 素-像素噪音对溶血质量敏感的原因。这些指示可单独或结合用来确定溶血度的测量。局 部曲线增加值显示了特别是边缘陡度的区别。噪音行为同样通过此显示。通过比较确定的 值可任选地被进一步处理,包括特别对这些值进行平均、总和或加权。优选地,本发明的再一个实施方式提供在比较中,至少一个目标吸收光谱的(被 相应地分配光谱)的目标吸收值和来自至少一个测量吸收光谱的测量吸收值进行比较。特 别地,被相应地分配光谱的吸收值的比较实施为减法形式,因此可确定所谓的残余。它们与 或多或少形成的并且之前描述的依赖于溶血度的偏移提升相关。同样,对于这些比较值,可 任选地进行进一步处理。本发明的一个有利形式可提供对于至少一个目标吸收光谱,通过吸收带总和使用形成的模型吸收光谱。形成这种目标吸收光谱,其中对于关注的光谱区域内的每个已知 的吸收带的期望部分进行总和,从而产生总吸收光谱。通常,吸收带以线性方式添加。本发明的再一个实施方式可提供对于至少一个目标吸收光谱,使用测量的校准 吸收光谱。对确保溶血的血样,可实验确定测量的校准吸收光谱。还可提供一种形式模型 吸收光谱和测量的校准吸收光谱一起用于确定溶血度的测量。本发明的再一个优选实施方式提供通过信息信号,显示血样测试质量的质量控 制测量。特别在临床环境,血样溶血度测量的确定还可用于确定仍然或不再存在的现有血 样质量。根据应用目的,质量控制测量可以,在超过或达不到给定的测量阈值情况下,显示 被测血样仍然或不再可用,例如,因为过度老化。在本发明一个有利变形情况下,可提供如果溶血度的测量达不到给定的阈值测 量,开始随后的血样溶血。无论是否实施随后的溶血,可提供通过输出装置产生影响实现 溶血度阈值的信号。该信号可为声学的和/或视觉的形式。例如,相应的显示可吸引使用 者对此的注意力。另一方面,如果没有达到阈值测量,也同样可以报告给使用者。安装装置 在这种情况下,可以自动产生控制信号,给用于溶血的溶血设备,来开始随后的溶血,其中, 例如再一次用超声冲击血样。然后,再次确定对溶血的测量,以再次确定溶血是否已经充分 进行。通过这种方式,执行自动控制回路,根据对溶血程度的测量通过该回路控制溶血的操 作。在血样溶血度测量的确定的进一步的变形中,可提供确定溶血进程,其中通过测 量光源发出的测量光在溶血期间照射在血样上,通过检测装置检测测量时间点的穿过血样 传输和/或被血样反射测量光值,并且用计算装置比较各个测量时间点的多个测量光值, 并且据此确定溶血进程的测量。血样溶血度测量的确定可及时进行,以确定溶血进程。但 也可提供随后的进程确定。通过这种方式,能够进行附加的最终控制。在另一种形式中,溶 血的测量用于溶血装置操作中断中,作为一种关于溶血的间歇信息。另外,可通过光学测量 方法提供血样的血红蛋白值的确定。与确定血样溶血的装置的有利变形相关,给出的与用于确定溶血的方法相关的说 明相应地适用。可根据各种方法形式构造用于确定溶血的装置。
根据参照附图的优选实施方式更详细地说明本发明。其中图1是确定血样溶血的装置的示意图。图2示出了两种不同血样的传输测量光的测量强度I (相对单位)随时间t (ms) 的曲线图。图3示出了传输测量光(上述)的强度I (相对单位)随时间t (ms)变化的曲线形 状和表征曲线梯度的第一导数S(相对单位)随时间变化的曲线图,其中溶血被归类为“有序”。图4示出了传输测量光(上述)的强度I (相对单位)随时间t (ms)变化和表征 曲线梯度的第一导数S(相对单位)随时间变化的曲线图,其中溶血被归类为“临界”。图5示出了传输测量光(上述)的强度1(相对单位)随时间t(ms)变化的曲线形 状和表征曲线梯度的第一导数S(相对单位)随时间变化的曲线图,其中溶血被归类为“有序”。图6示出了血红蛋白衍生物和降解产物胆红素的相应吸收带的取决于波长 入(nm)的吸收率A(mmol cnT1 L—1)的曲线图。图7示出了取决于不同溶血程度的血样的波长\ (nm)的多个测量吸收光谱的相 关的吸收率A (相对单位)的曲线图。图8示出了在溶血程度)和多个血样的测量吸收光谱中的确定的曲线梯度 (相对单位)之间的关系的曲线图,和图9示出了在溶血程度)和多个血样的测量吸收光谱中的所谓的残余r (相 对单位)之间的关系的曲线图。
具体实施例方式图1所示为一种用于确定血样溶血的装置的示意图。为了溶血,在本实施方式中, 通过超声装置2用超声冲击测量腔1内的血样。测量光从光源3反射出,所述光源3可将 具有宽带光谱的光或者各种波长的单色光反射到测量腔。传输的测量光然后穿过血样到达 检测器。在检测器4的帮助下,记录了传输测量光的强度测量值,任选为光谱分辨形式。检 测器4连接到计算装置5,通过计算装置5计算记录的测量光值,用于确定传输和/或吸收。 补充地或替代地,可提供一检测器(未示出),其构造成测量从测量腔1中的血样反射的光, 用于确定溶血进程。另外,根据图1,计算装置5与超声装置2连接,因此这可根据计算结果控制。通过虚线,图1示出了任选的输出装置6,通过该输出装置6可以输出音频和/或 视频信号,显示计算结果。此外,提供了输入装置7,通过该输入装置7可记录用户输入。对于图1所示的实施方式,检测器4与计算装置5 —起使用,来确定血样的溶血进 程,并确定血样溶血度的测量。替代地,可提供单独形式的两种测量系统,因此它们可各自 集成或结合在溶血装置中,例如,作为单独的或集成的模块。图2所示为测量强度随时间变化的曲线图。在图1中提供的强度检测器5用于 接收待确定的血样溶血进程的曲线形状。结果显示,在曲线形状中的开始时期1(0到大约 4000ms),测量光的强度主要保持不变。溶血还没开始。在另一曲线部分II (从大约4000 到大约8000ms),记录的测量光的强度增加,显示溶血过程开始(在4000ms时)和进一步进 行。随着溶血的进行,曲线形状变化到饱和部分III (从大约8000到大约12000ms),其中传 输的测量光的强度几乎没有变化。这显示完全溶血。通过方形显示的测量曲线呈现成对的血样值,这样溶血过程和溶血结果有序。通 过方形显示的测量曲线呈现成对的血样值,这样溶血形状和溶血结果有序。另外,传输测量光的强度的时间相关曲线的形状可用于检查在溶血过程中是否形 成导致曲线形状变化的气泡。气泡导致传输测量光的突然增加,因为没有发生吸收和散射。 另外,可以通过气泡在测量光上产生聚焦。在测量曲线中产生不期望的局部梯度。在根据图2的溶血进程形状的基础上,可决定例如是否需要延长最初设定的溶 血。如果必要,还可决定是否重复溶血方法。图3示出了传输测量光的强度的时间相关曲线形状和表征曲线梯度的第一导数 的曲线图,其中溶血归类为“有序”。溶血导致在记录的测量数据中出现强的噪声(初始数
9据-图3中的交叉)。可以通过过滤来提供噪声抑制。通过这样简化测量数据记录。这些 过滤的数据表示为曲线s中的小圆。根据最不明显的曲线梯度的时间位置来对溶血进行分 类。当曲线梯度位于阈值之上时这是明显的。这些测量值位于图表的上部,还有开放的方 形。当最不明显的曲线梯度在有效的时间窗之内时,溶血有序。当最不明显的曲线梯度位 于时间窗的边缘时,溶血归类为“临界”(如图4所示)。当最不明显的曲线梯度位于时间 窗之外时,溶血不是“有序”。图4示出了传输测量光的强度的时间相关曲线形状和表征曲线梯度的第一导数 的曲线图,其中溶血归类为“有序”。图5示出了传输测量光的强度的时间相关曲线形状和表征曲线梯度的第一导数 的曲线图,其中溶血归类为“无序”。图6示出了血红蛋白衍生物和降解产物胆红素的相应吸收带的取决于波长的吸 收的曲线图。通过存在的物质的吸收带的总和,产生模型吸收光谱,其在溶血度测量的确定 中与待测血样的测量的测量吸收光谱比较。在确定溶血度的测量中所采取的目标吸收光谱 可以替代地通过利用光谱方法检测校准血样来获得,该校准血样的溶血度已知是可靠的。 例如,如果校准血样的溶血进行的完全,产生110%溶血度的校准吸收光谱结果。图7示出了各种溶血度的血样的多个吸收光谱的曲线图,在右上部显示了各种溶 血度。图8示出了在溶血度和多个血样的测量吸收光谱中确定的曲线梯度之间的关系 的曲线图。结果显示,可通过直线方程(有时在德语为线性“拟合”)描述溶血度和曲线梯 度之间的关系。为了比较,产生具有稳固设定的溶血度的血样,其中规定数量的溶血血液和 未溶血血液彼此混合。作为附加的控制,红血球在显微镜下计数。图8所显示的曲线梯度 值被确定,其中,对于检测区域内的波长,一方面通过100 %溶血度的血样的吸收曲线和另 一方面通过100%不同溶血度的测量曲线的分配给彼此的局部梯度彼此进行比较,从而由 此建立区别报告。图9示出了在多个血样的溶血度和所谓的残余之间的关系的曲线图。在溶血度和 残余之间产生二次关系(二次拟合函数)。残余是一种适应曲线的一致性的测量,所述适应 曲线通过实验测量值通过回归建立。
权利要求
一种用于确定血样溶血的方法,期间确定溶血进程,其中,所述方法包括如下步骤在溶血期间将从测量光源发出的测量光照射在血样上;通过检测装置在多个测量时间点检测穿过血样传输的和/或被血样反射的测量光的测量光值;借助于计算装置,通过从检测的测量光值形成关于测量光值的时间相关过程并对于该时间相关过程至少在一部分上确定在分配的测量曲线中的梯度来作为用于比较不同测量时间点的测量光值的比较测量,从而比较不同测量时间点的多个测量光值并且确定用于溶血进程的测量;并且在梯度不同于零的测量周期之后,当在可选择的测量精度内的梯度下降到直到零的最小值时,确定溶血结束。
2.如权利要求1所述的方法,其特征在于,测量光值的检测至少部分在用于血样溶血 的溶血装置的溶血操作期间进行。
3.如权利要求1或2所述的方法,其特征在于,测量光值的检测至少部分在用于血样溶 血的溶血装置的操作中断期间进行。
4.如前述权利要求中任一项所述的方法,其特征在于,测量光值的检测至少部分在支 持血样溶血的一种或多种试剂作用期间进行。
5.如前述权利要求中任一项所述的方法,其特征在于,测量光值的检测至少部分在血 样不受支持血样溶血的一种或多种试剂作用期间进行。
6.如前述权利要求中任一项所述的方法,其特征在于,检测测量光的强度值作为测量 光的测量光值。
7.如前述权利要求中任一项所述的方法,其特征在于,在确定溶血结束之后,通过光学 测量方法确定血样的血红蛋白值。
8.一种用于确定血样溶血的方法,期间确定溶血进程,其中,所述方法包括如下步骤在溶血期间将从测量光源发出的测量光照射在血样上;通过检测装置检测穿过血样传输的测量光的至少一个测量吸收光谱;在计算装置中比较血样的至少一个目标吸收光谱和至少一个测量吸收光谱;在至少一个目标吸收光谱和至少一个测量吸收光谱的比较中确定溶血度的测量;和通过输出装置输出来自溶血度测量的信息信号,所述输出装置与计算装置在功能上相 连接。
9.如权利要求8所述的方法,其特征在于,在比较中,来自至少一个目标吸收光谱的被 相应地分配光谱的目标吸收值的局部曲线梯度与来自至少一个测量吸收光谱的测量吸收 值的局部曲线梯度比较。
10.如权利要求8或9所述的方法,其特征在于,在比较中,来自至少一个吸收光谱的被 相应地分配光谱的目标吸收值与来自至少一个测量吸收光谱的测量吸收值进行比较。
11.如权利要求8至10中任一项所述的方法,其特征在于,对于至少一个目标吸收光 谱,采用通过吸收带总和形成的模型吸收光谱。
12.如权利要求8至10中任一项所述的方法,其特征在于,对于至少一个目标吸收光 谱,采用测量的校准吸收光谱。
13.如权利要求8至12中任一项所述的方法,其特征在于,通过信息信号显示用于血样的试样质量的质量控制测量。
14.如权利要求8至13中任一项所述的方法,其特征在于,当溶血度的测量低于给定的 阈值测量时,开始随后的血样溶血。
15.如权利要求8至14中任一项所述的方法,其特征在于,在确定溶血度之后,通过光 学测量方法确定血样的血红蛋白值。
16.如权利要求8至15中任一项所述的方法,其特征在于,通过如下事项确定溶血进程从测量光源发出的测量光在溶血期间照射在血样上;通过检测装置在多个测量时间点检测穿过血样传输和/或被血样反射的测量光的测 量光值;和通过计算装置比较不同测量时间点的多个测量光值,并据此确定溶血进程的测量。
17.一种用于确定血样溶血的装置,其构造成确定溶血进程,所述装置包括 测量光源,其构造成在溶血期间将测量光照射在血样上;检测装置,其构造成在多个测量时间点检测穿过血样传输和/或被血样反射的测量光 的测量光值;以及计算装置,其构造成比较不同测量时间点的多个测量光值,并据此通过从检测的测量光值形成关于测量 光值的时间相关过程并对于该时间相关过程至少在一部分上确定在分配的测量曲线中的 梯度来作为用于比较不同测量时间点的测量光值的比较测量,从而确定用于溶血进程的测 量;并且在梯度不同于零的测量周期之后,当在可选择的测量精度内的梯度下降到直到零的最 小值时,确定溶血结束。
18.用于确定血样溶血的装置,其构造成确定溶血过程,所述装置具有计算装置和输出 装置,所述计算装置构造成比较血样的至少一个目标吸收光谱和至少一个测量吸收光谱, 所述输出装置与计算装置在功能上连接,并且构造成输出来自溶血度测量的信息信号。
19.一种具有权利要求17和/或权利要求18所述的装置的溶血设备。
全文摘要
本发明涉及用于确定血样溶血的方法和装置,期间确定溶血进程,该方法包括如下步骤在溶血期间将从测量光源发出的测量光照射在血样上;通过检测装置在多个测量时间点检测穿过血样传输的和/或被血样反射的测量光的测量光值;借助于计算装置,通过从检测的测量光值形成关于测量光值的时间相关过程并对于该时间相关过程至少在一部分上确定在分配的测量曲线中的梯度来作为用于比较不同测量时间点的测量光值的比较测量,从而比较不同测量时间点的多个测量光值并确定用于溶血进程的测量;并且在梯度不同于零的测量周期之后,当在可选择的测量精度内的梯度下降到直到零的最小值时,确定溶血结束。
文档编号G01N21/31GK101876629SQ20091100017
公开日2010年11月3日 申请日期2009年12月18日 优先权日2008年12月19日
发明者M·施拉明杰 申请人:霍夫曼-拉罗奇有限公司