专利名称:基于激光诱导等离子体光谱的定标方法和装置及测量可燃气体与氧化剂当量比的方法和装置的制作方法
技术领域:
本发明涉及定标方法和装置及測量可燃气体与氧化剂当量比的方法装置。
背景技术:
当量比是指燃烧系统中实际供给氧化剂量与燃料完全燃烧时所需氧化剂量之比。燃料和氧化剂的当量比是燃烧领域中非常重要的參量,可以反应燃料和氧化剂的混合情况,在实际的扩散火焰中不同位置处的当量比不一样,很难判断出各点当量比的大小,然而只有当量比合适的情况下,才能保证充分燃烧。因此,当量比的精确测量对于燃烧技术的发展具有十分重要意义。在实际的燃烧系统中,如航空航天发动机、内燃机、エ业燃烧器等,可燃气体和氧 化剂被注入到燃烧室中进行混合、点火和燃烧。混合过程是是十分重要的,它是燃烧能够发生和稳定的必要条件。如果可燃气体与氧化剂混合不好,没有达到合适的当量比,则很难实现点火与稳定燃烧,因此,对可燃气体与氧化剂当量比实时、在线、快速、精确的测量对于研究和控制燃烧系统的燃料与氧化剂的混合过程是非常重要的。測量当量比的方法主要包括光学測量方法和非光学的測量方法。非光学測量方法主要有直接測量燃料和氧化剂的比率和间接测量尾气的气体成分。直接測量方法的不足是获得的是混合和燃烧前的当量比,不能反映实际混合和燃烧过程的燃料和氧化剂的当量比,误差较大。间接测量尾气的方法,反映的是燃烧过程之后的燃料和氧化剂的整体的当量比,不能反映燃烧室中燃料和氧化剂的空间与时间分布规律。此外,这两种方法都无法做到实时在线测量。光学測量方法包括拉曼散射、激光诱导荧光(LIF)等。拉曼散射法方法信号弱、信噪比低,对激光器能量要求高。激光诱导荧光方法,对激光波长有严格限制,设备复杂昂贵,较难实现。由此可见,如何准确、实时、在线、便捷地测量燃料和氧化剂的当量比成为相关研究的迫切需求。
发明内容
本发明是为了提高现有定标方法的定标的精度、提高现有燃烧系统中燃料和氧化剂当量比的測量精度,以及提高混合燃气当量比测量的便捷度,从而提供一种基于激光诱导等离子体光谱测量可燃气体与氧化剂当量比的方法及实现该方法的装置。步骤A、将可燃气体、氧气和氮气通入混气罐,形成混合气体,井分别控制所述可燃气体、氧气和氮气的流量;步骤B、将步骤A中形成的混合气体通入石英玻璃圆管,并使所述混合气体从石英玻璃圆管的管ロ流出;步骤C、采用激光器发出激光光束,并将所述激光光束聚焦到步骤B中所述管ロ位置,击穿管ロ流出的混合气体,产生等离子体,所述等离子体发出荧光信号;步骤D、将步骤C中所述等离子体发出荧光信号采用聚焦透镜聚焦到光纤的入口,该光纤将其入口入射的光信号传输到光谱仪;采用计算机分析光谱仪采集的荧光信号,获得等离子体光谱;步骤E、获取步骤D中所述等离子体光谱中的H特征峰和O特征峰,并计算所述H特征峰和O特征峰的強度比值;步骤F、改变步骤A所述的可燃气体、氧气和氮气流量和混合气体当量比M次,毎次改变之后重复执行步骤A至步骤E,分别获得M个H特征峰和O特征峰的強度比值;根据获得的M+1个H特征峰和O特征峰的強度比值获得光谱强度比值和当量比的线性关系,完成基于激光诱导等离子体光谱的定标;M为大于2的整数。步骤C中激光器输出的激光为单脉冲或重复频率为I-IOOOHz的多脉冲激光,输出激光中心波长为532nm ;激光脉宽为IOns ;激光能量在3mJ至IOmJ之间。步骤D中光谱仪的响应波段为200nm至IOOOnm ;所述光谱仪中使用的光电转换器件为ICXD,所述ICXD采用激光器脉冲进行触发采集信号,其门宽时间为10niT500nS。步骤F中每次改变混合气体当量比的范围在O. 2至2. O之间。实现上述方法的基于激光诱导等离子体光谱的定标装置,它包括燃料气瓶、氧气气瓶、氮气气瓶、一号流量计、二号流量计、三号流量计、混气罐、石英玻璃圆管、一号激光器、一号聚焦透镜、二号聚焦透镜、一号光纤、一号光谱仪和一号计算机;燃料气瓶内充入可燃气体,氧气气瓶内充入氧气,氮气气瓶内充入氮气;所述燃料气瓶的出气ロ、氧气气瓶的出气口和氮气气瓶的出气ロ分别与混气罐的三个进气ロ连通;一号流量计、二号流量计和三号流量计分别设置在燃料气瓶的出气ロ、氧气气瓶的出气ロ和氮气气瓶的出气ロ处;混气罐的出气ロ与石英玻璃圆管的末端进气ロ连通;一号激光器发出的激光光束入射至一号聚焦透镜,经一号聚焦透镜聚焦至石英玻璃圆管的管ロ,用于击穿该管ロ流出的混合气体,产生等离子体,所述离子体发出荧光信号;所述等离子体发出的荧光信号经二号聚焦透镜聚焦至一号光纤的一端,一号光纤的另一端与一号光谱仪的光信号接收端连接;所述一号光谱仪的光谱信号输出端与一号计算机的光谱信号输入端连接。基于激光诱导等离子体光谱测量可燃气体与氧化剂当量比的方法,它由以下步骤实现步骤一、采用激光器发出激光光束,并将该激光光束聚焦到目标燃烧器中,击穿目标燃烧器中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出荧光信号;步骤ニ、将步骤一中的等离子体发出荧光信号采用聚焦透镜聚焦到光纤中,并经光纤传输到光谱仪,采用计算机分析光谱仪采集的荧光信号,获得待测可燃气体和氧化剂的等离子体光谱;步骤三、获取步骤ニ中所述待测可燃气体和氧化剂的等离子体光谱中的H特征峰和O特征峰,计算所述H特征峰和O特征峰強度比值,并根据光谱强度比值和当量比的线性关系获得待测气体的当量比。 步骤一中所述待测可燃气体为碳氢燃料或氢燃料。步骤一中激光器输出的激光为单脉冲或重复频率为I-IOOOHz的多脉冲激光,输出激光中心波长为532nm ;激光脉宽为IOns ;激光能量在3mJ至10mJ(3mJ是击穿产生等离子体的阈值)之间。所述光谱仪中使用的光电转换器件为ICCD,所述ICCD采用激光器脉冲进行触发采集信号,其门宽时间为10nS 500nS。实现上述装置的測量可燃气体与氧化剂当量比的装置,它包括二号激光器、三号聚焦透镜、燃烧器、四号聚焦透镜、二号光纤、二号光谱仪和二号计算机,燃烧器中充入待测可燃气体和氧化剂;二号激光器出的激光光束入射至三号聚焦透镜,经三号聚焦透镜聚焦至燃烧器,并击穿燃烧器中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出荧光信号;所述等离子体发出的荧光信号经四号聚焦透镜聚焦至二号光纤的一端,二号光纤的另一端与至二号光谱仪的光信号接收端连接;所述二号光谱仪的光谱信号输出端与二号计算机的光谱信号输入端连接。
有益效果本发明的定标精度高,并且基于定标获得的可燃气体和氧化剂被击穿产生等离子的特征光谱强度与当量比的线性关系,提出通过测量上述等离子体光谱强度来測量当量比的方法。由于等离子体荧光信号强,信噪比高,光谱仪中作为光信号接收设备的CCD响应灵敏高,因此该方法測量精度高于其他现有当量比測量方法。该方法为非接触式测量方法,激光束和荧光信号接收设备不受空间位置限制,后期信号处理方便快捷,因此该方法可以满足实时在线测量的要求;激光诱导等离子体过程对激光波长无严格要求可用普通的商用激光器,等离子体荧光信号强,对光谱仪及探测器无特殊要求,当量比与荧光信号成线性关系,信号处理简单,所以该方法较其他測量方法更为便捷,成本更低。
图I是本发明的基于激光诱导等离子体光谱的定标装置的结构示意图;图2是本发明的測量可燃气体与氧化剂当量比的装置的结构示意图;图3是本发明的当量比测量的理论模型示意图。
具体实施例方式具体实施方式
一、基于激光诱导等离子体光谱的定标方法,它由以下步骤实现步骤A、将可燃气体、氧气和氮气通入混气罐,形成混合气体,井分别控制所述可燃气体、氧气和氮气的流量;步骤B、将步骤A中形成的混合气体通入石英玻璃圆管,并使所述混合气体从石英玻璃圆管的管ロ流出;步骤C、采用激光器发出激光光束,并将所述激光光束聚焦到步骤B中所述管ロ位置,击穿管ロ流出的混合气体,产生等离子体,所述等离子体发出荧光信号;步骤D、将步骤C中所述等离子体发出荧光信号采用聚焦透镜聚焦到光纤的入口,该光纤将其入口入射的光信号传输到光谱仪;采用计算机分析光谱仪采集的荧光信号,获得等离子体光谱;步骤E、获取步骤D中所述等离子体光谱中的H特征峰和O特征峰,并计算所述H特征峰和O特征峰的強度比值;步骤F、改变步骤A所述的可燃气体、氧气和氮气流量和混合气体当量比M次,毎次改变之后重复执行步骤A至步骤E,分别获得M个H特征峰和O特征峰的強度比值;根据获得的M+1个H特征峰和O特征峰的強度比值获得光谱强度比值和当量比的线性关系,完成基于激光诱导等离子体光谱的定标;M为大于2的整数。步骤C中激光器输出的激光为单脉冲或重复频率为I-IOOOHz的多脉冲激光,输出激光中心波长为532nm ;激光脉宽为IOns ;激光能量在3mJ至IOmJ之间。步骤D中光谱仪的响应波段为200nm至IOOOnm ;所述光谱仪中使用的光电转换器件为ICXD,所述ICXD采用激光器脉冲进行触发采集信号,其门宽时间为10niT500nS。ICCD (ICCD即增强型CCD,为所用光谱仪中的光电转换器件)由激光器脉冲进行触发采集信号,门宽时间为lOns^OOns。该门宽的设置能够达到如下效果1、时域滤波去噪声效果好;2、保证足够强荧光信号;3、保证实时在线性。步骤F中每次改变混合气体当量比的范围在O. 2至2. O之间。
具体实施方式
ニ、实现具体实施方式
一的基于激光诱导等离子体光谱的定标装置,它包括燃料气瓶I、氧气气瓶2、氮气气瓶3、一号流量计41、二号流量计42、三号流量计43、混气罐5、石英玻璃圆管6、一号激光器71、一号聚焦透镜81、二号聚焦透镜82、一号光纤
91、一号光谱仪101和一号计算机111 ;燃料气瓶I内充入可燃气体,氧气气瓶2内充入氧气,氮气气瓶3内充入氮气;所述燃料气瓶I的出气ロ、氧气气瓶2的出气口和氮气气瓶3的出气ロ分别与混气罐5的三个进气ロ连通;一号流量计41、二号流量计42和三号流量计43分别设置在燃料气瓶I的出气ロ、氧气气瓶2的出气口和氮气气瓶3的出气口处;混气罐5的出气ロ与石英玻璃圆管6的末端进气ロ连通;一号激光器71发出的激光光束入射至一号聚焦透镜81,经一号聚焦透镜81聚焦至石英玻璃圆管6的管ロ,用于击穿该管ロ流出的混合气体,产生等离子体,所述离子体发出荧光信号;所述等离子体发出的荧光信号经二号聚焦透镜82聚焦至一号光纤91的一端,一号光纤91的另一端与一号光谱仪101的光信号接收端连接;所述一号光谱仪101的光谱信号输出端与一号计算机111的光谱信号输入端连接。
具体实施方式
三、基于具体实施方式
一的基于激光诱导等离子体光谱测量可燃气体与氧化剂当量比的方法,它由以下步骤实现步骤一、采用激光器发出激光光束,并将该激光光束聚焦到目标燃烧器中,击穿目标燃烧器中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出荧光信号;步骤ニ、将步骤一中的等离子体发出荧光信号采用聚焦透镜聚焦到光纤中,并经光纤传输到光谱仪,采用计算机分析光谱仪采集的荧光信号,获得待测可燃气体和氧化剂的等离子体光谱;步骤三、获取步骤ニ中所述待测可燃气体和氧化剂的等离子体光谱中的H特征峰和O特征峰,计算所述H特征峰和O特征峰強度比值,并根据光谱强度比值和当量比的线性关系获得待测气体的当量比。步骤三中观察步骤ニ中所述待测可燃气体和氧化剂的等离子体光谱,在656. 9nm附近明显高出的特征峰为H656nm谱线,在777. 9nm附近明显高出的特征峰为O777nm的谱线;读出上述H656nm和O777nm两条谱线的光谱强度,并计算所述H656nm和O777nm两条谱线的强度比值;根据光谱強度比值和当量比的线性关系获得待测气体的当量比。
步骤一中所述待测可燃气体为碳氢燃料或氢燃料。步骤一中激光器输出的激光重复频率为100Hz,输出激光中心波长为532nm ;激光能量在3mJ至7mJ之间。步骤ニ中光谱仪的响应波段为200nm至lOOOnm,所述光谱仪中使用的光电转换器件为ICXD,所述ICXD采用激光器脉冲进行触发采集信号,其门宽时间为10niT500nS。ICCD (ICCD即增强型CCD,为所用光谱仪中的光电转换器件)由激光器脉冲进行触 发采集信号,门宽时间为lOns^OOns。该门宽的设置能够达到如下效果1、时域滤波去噪声效果好;2、保证足够强荧光信号;3、保证实时在线性。
具体实施方式
四、实现具体实施方式
三的測量可燃气体与氧化剂当量比的装置,其特征是它包括二号激光器72、三号聚焦透镜83、燃烧器12、四号聚焦透镜84、二号光纤
92、二号光谱仪102和二号计算机112,燃烧器12中充入待测可燃气体和氧化剂;二号激光器72发出的激光光束入射至三号聚焦透镜83,经三号聚焦透镜83聚焦至燃烧器12,并击穿燃烧器12中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出突光信号;所述等离子体发出的荧光信号经四号聚焦透镜84聚焦至二号光纤92的一端,ニ号光纤92的另一端与至二号光谱仪102的光信号接收端连接;所述二号光谱仪102的光谱信号输出端与二号计算机102的光谱信号输入端连接。原理假设Ia和Ib分别是a和b两种元素的发射谱线强度,根据波尔兹曼定律,强度比IノIb可以通过下面的方程得到其中,分布函数U(T)由下面的式子给出IΚΠ = X g, exp(-^ 2 ノ式中gi表示简并度或者能级Ei的统计权重,表达式为gi=2Ji+l(3)Ji是角动量量子数;T是等离子体的电子温度。大量研究结果表明,采用激光击穿诱导产生的等离子体满足两个条件①局部热力学平衡;②等离子体在光学上是稀薄的。基于这两个条件可以认为公式(I)中等离子体电子温度T为确定不变的。因此,如果我们通过实验測量得到光谱线的強度比IノIb,通过上面的公式(I)就可以得到粒子数密度比NノNb。在预混合火焰中,燃料和氧化剂的浓度比和当量比相关。当量比是指可燃混合气体中实际的燃料和氧化剂的的质量比除以完全燃烧时的燃料和氧化剂的质量比。表达式为
_9] ^=(^=(OT⑷其中,m代表质量,η代表摩尔质量。分母右下角的角标st表示用化学计算的方法得到的結果。
如果在燃烧炉中不存在反应物扩散或泄漏的情况下,当量比Φ可以用原子的粒子数密度来表示。表达式如下将式子(5)代入式(I)可得
I X (Α ) emTΦ =」■·」■·も mn gm)b ·--(b)
h 4 (Al^gJa (NJNh)st其中
Jl (j[ ) βび一~^bm),灯画 gmh·---(7)
Λ (Λ" ·gm)a (NJN丄是个常量,在标准光谱数据表中都可以查到。因此式(5)可以化简为Φ = Ky-(8)其中
J(Λ^ JEam-EbmVKT-
A(A^gJa (NaINb)st为常数;理论上,利用式(8),可以得到如图3所示的模型。因此,从图3中可以看出,理论上,当量比Φ和谱线强度比f存在一定的线性关
h
系O本发明就是利用这个关系,通过谱线的強度比来研究当量比。
权利要求
1.基于激光诱导等离子体光谱的定标方法,其特征是它由以下步骤实现 步骤A、将可燃气体、氧气和氮气通入混气罐,形成混合气体,并分别控制所述可燃气体、氧气和氮气的流量; 步骤B、将步骤A中形成的混合气体通入石英玻璃圆管,并使所述混合气体从石英玻璃圆管的管口流出; 步骤C、采用激光器发出激光光束,并将所述激光光束聚焦到步骤B中所述管口位置,击穿管口流出的混合气体,产生等离子体,所述等离子体发出荧光信号; 步骤D、将步骤C中所述等离子体发出荧光信号采用聚焦透镜聚焦到光纤的入口,该光纤将其入口入射的光信号传输到光谱仪;采用计算机分析光谱仪采集的荧光信号,获得等离子体光谱; 步骤E、获取步骤D中所述等离子体光谱中的H特征峰和O特征峰,并计算所述H特征峰和O特征峰的强度比值; 步骤F、改变步骤A所述的可燃气体、氧气和氮气流量和混合气体当量比M次,每次改变之后重复执行步骤A至步骤E,分别获得M个H特征峰和O特征峰的强度比值; 根据获得的M+1个H特征峰和O特征峰的强度比值获得光谱强度比值和当量比的线性关系,完成基于激光诱导等离子体光谱的定标;M为大于2的整数。
2.根据权利要求I所述的基于激光诱导等离子体光谱的定标方法,其特征在于步骤C中激光器输出的激光为单脉冲或重复频率为I-IOOOHz的多脉冲激光,输出激光中心波长为532nm ;激光脉宽为IOns ;激光能量在3mJ至IOmJ之间。
3.根据权利要求I所述的基于激光诱导等离子体光谱的定标方法,其特征在于步骤D中光谱仪的响应波段为200nm至IOOOnm ;所述光谱仪中使用的光电转换器件为ICCD,所述ICXD采用激光器脉冲进行触发采集信号,其门宽时间为lOnslOOns。
4.根据权利要求I所述的基于激光诱导等离子体光谱的定标方法,其特征在于步骤F中每次改变混合气体当量比的范围在0. 2至2. 0之间。
5.实现权利要求I的基于激光诱导等离子体光谱的定标装置,其特征是它包括燃料气瓶(I)、氧气气瓶(2)、氮气气瓶(3)、一号流量计(41)、二号流量计(42)、三号流量计(43)、混气罐(5)、石英玻璃圆管(6)、一号激光器(71)、一号聚焦透镜(81)、二号聚焦透镜(82)、一号光纤(91)、一号光谱仪(101)和一号计算机(111); 燃料气瓶(I)内充入可燃气体,氧气气瓶(2)内充入氧气,氮气气瓶(3)内充入氮气;所述燃料气瓶(I)的出气口、氧气气瓶(2 )的出气口和氮气气瓶(3 )的出气口分别与混气罐(5)的三个进气口连通;一号流量计(41)、二号流量计(42)和三号流量计(43)分别设置在燃料气瓶(I)的出气口、氧气气瓶(2)的出气口和氮气气瓶(3)的出气口处;混气罐(5)的出气口与石英玻璃圆管(6)的末端进气口连通; 一号激光器(71)发出的激光光束入射至一号聚焦透镜(81),经一号聚焦透镜(81)聚焦至石英玻璃圆管(6)的管口,用于击穿该管口流出的混合气体,产生等离子体,所述离子体发出荧光信号; 所述等离子体发出的荧光信号经二号聚焦透镜(82)聚焦至一号光纤(91)的一端,一号光纤(91)的另一端与一号光谱仪(101)的光信号接收端连接;所述一号光谱仪(101)的光谱信号输出端与一号计算机(111)的光谱信号输入端连接。
6.基于激光诱导等离子体光谱测量可燃气体与氧化剂当量比的方法,其特征是它由以下步骤实现 步骤一、采用激光器发出激光光束,并将该激光光束聚焦到目标燃烧器中,击穿目标燃烧器中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出荧光信号; 步骤二、将步骤一中的等离子体发出荧光信号采用聚焦透镜聚焦到光纤中,并经光纤传输到光谱仪,采用计算机分析光谱仪采集的荧光信号,获得待测可燃气体和氧化剂的等离子体光谱; 步骤三、获取步骤二中所述待测可燃气体和氧化剂的等离子体光谱中的H特征峰和O特征峰,计算所述H特征峰和O特征峰强度比值,并根据光谱强度比值和当量比的线性关系获得待测气体的当量比。
7.根据权利要求6所述的基于激光诱导等离子体光谱测量可燃气体与氧化剂当量比的方法,其特征在于步骤一中所述待测可燃气体为碳氢燃料或氢燃料。
8.根据权利要求6所述的基于激光诱导等离子体光谱技术测量混合燃气当量比的方法,其特征在于步骤一中激光器输出的激光为单脉冲或重复频率为I-IOOOHz的多脉冲激光,输出激光中心波长为532nm ;激光脉宽为IOns ;激光能量在3mJ至IOmJ之间。
9.根据权利要求6所述的基于激光诱导等离子体光谱技术测量混合燃气当量比的方法,其特征在于步骤二中光谱仪的响应波段为200nm至lOOOnm,所述光谱仪中使用的光电转换器件为ICCD,所述ICCD采用激光器脉冲进行触发采集信号,其门宽时间为10ns^500nso
10.实现权利要求6的测量可燃气体与氧化剂当量比的装置,其特征是它包括二号激光器(72)、三号聚焦透镜(83)、燃烧器(12)、四号聚焦透镜(84)、二号光纤(92)、二号光谱仪(102)和二号计算机(112),燃烧器(12)中充入待测可燃气体和氧化剂; 二号激光器(72)发出的激光光束入射至三号聚焦透镜(83),经三号聚焦透镜(83)聚焦至燃烧器(12),并击穿燃烧器(12)中待测可燃气体和氧化剂,产生等离子体;所述等离子体发出荧光信号; 所述等离子体发出的荧光信号经四号聚焦透镜(84)聚焦至二号光纤(92)的一端,二号光纤(92)的另一端与至二号光谱仪(102)的光信号接收端连接;所述二号光谱仪(102)的光谱信号输出端与二号计算机(102)的光谱信号输入端连接。
全文摘要
基于激光诱导等离子体光谱的定标方法和装置及测量可燃气体与氧化剂当量比的方法和装置,涉及定标方法和装置及测量可燃气体与氧化剂当量比的方法装置。它是为了提高现有定标方法的定标的精度、提高现有燃烧系统中燃料和氧化剂当量比的测量精度,以及提高混合燃气当量比测量的便捷度。由于等离子体荧光信号强,信噪比高,光谱仪中作为光信号接收设备的ICCD响应灵敏高,因此该方法测量精度高于其他现有当量比测量方法。该方法为非接触式测量方法,激光束和荧光信号接收设备不受空间位置限制,后期信号处理方便快捷,因此该方法可以满足实时在线测量的要求。本发明适用于基于激光诱导等离子体光谱的定标方法和装置及测量可燃气体与氧化剂当量比。
文档编号G01N21/64GK102706850SQ20121020944
公开日2012年10月3日 申请日期2012年6月25日 优先权日2012年6月25日
发明者于杨, 于欣, 孙锐, 彭江波, 李晓晖, 杨振, 杨晓川, 樊荣伟, 贾博阳, 赵永蓬, 陈德应, 韩于朝 申请人:哈尔滨工业大学