专利名称:在线微波水分仪水分检测的非线性性自动校正方法
技术领域:
本发明涉及的是一种在线微波水分仪在水分检测中检测数据非线性性进行实时在线的自动校正方法,具体地说是一种解决复杂的数据非线性性自动校正方法,校正在线微波水分仪检测装置在检测数据过程实时产生的非线性性。
背景技术:
基于微波检测技术的水分检测装置,因其无放射性核源,无污染,安全可靠性高。 广泛应用于煤炭,冶金,食品,粮食,化学制品等领域。因此有着广泛的应用前景。随着水分检测的环境、领域的不断扩展,对水分检测提出了更高的要求,人们逐渐认识到微波水分仪具有适应不同应用环境,不同应用领域,检测范围广,检测水分精度高的特点。但是由于水分在各种物料中的含量以及物料的形状等千差万别,导致了水分检测过程所获得的水分值具有严重的非线性。对于在线的动态水分检测仪表,很多情况下实时性要求高,不允许离线校正。利用传统的非线性性校正方法,如最小二乘法拟合函数法,逼近法等,需要建立相应的数学模型。而且大多数的数学模型都是利用近似的方法得到的,在利用此模型为基础进行非线性性的校正,使得误差进一步增大,因而对非线性性校正的结果也存在着较大的误差。对于需要对水分进行高精度测量的场合,利用传统的校正方法将有很大的限制。这无疑会导致测量精度的下降,使得精度要求较高的场合无法应用。而本发明所述的高精确度的在线微波水分仪在水分检测中检测数据非线性性自动校正的方法,不需要建立任何的数学模型,只需要根据检测的数据样本去估计其要求的决策,通过神经网络的自适应学习性进行自动校正,同时利用遗传算法的适应性匹配进一步提高精度,使输出得到高精度的水分检测结果。本发明所采用的方法与现存的传统非线性性校正方法具有显著的不同。通过将微波检测装置检测的数据样本,采用基于生物进化原理的遗传算法为核心的模糊神经网络, 在自适应学习性下进行实时自动的非线性性校正和输出,使得在线微波水分仪获得准确的水分检测结果。本发明的优点在于1、校正方法新颖,不需要建立任何数学模型;2、校正系统易于实现;3、自动化,智能化程度高。
发明内容
本发明的目的是提供一种新的非线性性自动校正方法,应用于高精确度的在线微波水分仪在水分检测中进行检测数据非线性性自动校正。以满足对水分检测精度高,水分检测实时性高的应用环境和领域。本发明的目的是这样实现的根据当前水分检测中非线性性校正方法存在的缺陷,提出一种新颖的不需要建立任何数学模型的应用于高精度在线微波水分仪在水分检测中进行检测数据非线性性自动校正的方法。
附图1是本发明的校正系统示意图。附图2是本发明实例的模糊系统中模糊函数映照示意图。附图3是本发明实例的神经网络算法非模糊化的映射示意图。
(五)具体实施方案本发明的具体实现过程大致有如下几个步骤1、获取在线微波水分仪检测水分所得数据样本,根据遗传算法中基于自然选择和基因遗传的优化搜索方法,将微波水分仪采集的数据样本引入到待优化参数的数据编码群,按照一定的适配性,及相应的一系列遗传操作对数据样本中的个体进行筛分,优化得到适配性高的个体,组成新的群体,新群体中的个体,不断提高自身的适应性,以满足设定的极限条件,达到待优化参数的最优解群。2、将待优化参数的最优解群,在论域上,转化成模糊系统所需的模糊量输入到模糊非线性系统,用隶属函数中的隶属度来表示,在模糊规则和模糊推理的控制下,映照得到模糊函数。如附图2。3、将此模糊函数作为校正函数,在神经网络算法的自适应规则学习性控制下,自动进行非线性性校正和非模糊化处理,最终决策推理出准确的检测结果进行输出。如附图 3。下面结合附图举例对本发明作更详细的描述当在线微波水分仪进行物料水分检测时,如附图1中主控制箱获得检测信号,校正系统通过主控箱抽样获得数据样本,根据遗传算法的优化搜索原理,将数据样本引入到待优化参数的数据编码群,在该模块进行优化搜索的适应性筛分,获得满足极限条件的待优化参数最优解群。该模块主要是利用遗传算法独具的自然选择和基因遗传原理,利用它能够在复杂空间进行全局优化搜索,同时该算法还具有很强的鲁棒性。例如,1、在线微波水分仪在采样时间内获得数据样本如下{6. 00,5. 89,5. 80,5. 95,5. 98,5. 96,5. 86,5. 78,5. 94,6. 05}2、采用遗传算法中的浮点数编码法,根据决策变量的个数物料介电常数,环境温度,物料厚度,物料密度这四个因素的个数来决定浮点数编码的长度,如前所述,决策变量个数为4个,故浮点数编码法编码长度为4,在决策变量的决微范围内(纯净物料介电常数<混合后的介电常数<水的介电常数,-10°C<环境温度< 55°C,IOcm <物料厚度 < 100cm,水密度<物料密度)进行适应性筛分,得到满足极限条件的高适配性的最优化解群。采用物料介电常数,环境温度,物料厚度,物料密度为决策变量,对以上样本进行适应性筛分得到的最优化解群为{5. 95,5. 98,5. 96,5. 94}。在遗传算法优化搜索获得最优解群后,根据论域上的模糊系统理论,对水分样本进行最优解群的模糊化,获得需要的模糊集合。如附图2中的论域X,在该论域中划分出Al,
A2,A3,A4,......Ai,......,这样的模糊子集,都包含于论域X。根据被检测物料影响因
数物料介电常数,环境温度,物料厚度,物料密度。构建相应的模糊规则物料介电常数 1.4 6. 7 6. 8 15 16 30
环境温度(°C ) -10 0 0 30 30 昍
物料厚度(cm) 10 20 20 60 60 100
物料密度(kg/m3) 1. 2 3. 5 3. 6 6. 5 6. 6 13根据以上决策变量和实际情况的应用组合可以构建9种模糊规则,本实例采用的模糊规则为{6. 8 15,0 30,20 60,3. 6 6. W。在该模糊规则要求下,建立目标论域
Y,同样的在该论域中进行划分,得到目标模糊子集B1,B2,B3,B4,......,Bi,.......在模
糊关系和模糊规则的要求下,采用隶属度来进行表示,他所建立的是输入模糊区域块与目标模糊区域块之间的映照,如图2所示的模糊映照关系,获得非线性系统的模糊函数Y(Bi) =F(Ai)。在我们所实施实例中的最优化解群{5. 95,5. 98,5. 96,5. 94},利用模糊化的论域思想,获得的需要的模糊集合为优化解群的多个范围模糊集合Al = {5. 94 5. 98},
A2 = {5. 94 5. 96},A3 = {5. 94 5. 95},A4 = {5. 95 5. 98}......Ai= {5. 96
5.98},......在模糊规则的要求下,进行隶属度的映照。获得非线性系统的模糊函数。即
由隶属度最高的映照构成。所实施的实例获得的目标模糊集合的论域集合为Bi = {5. 95 5. 96}。在该论域集合下,建立相应的模糊函数F = P(Bi)。在获得该模糊函数后将该模糊函数作为校正非线性性的函数,送到前馈神经网络算法模块,该模块由输入节点、隐层节点和输出节点组成。其中,隐层可以是一层,也可以是多层。对于输入信号,要向前传播到隐层节点,经作用函数变换后,再把隐节点的输入信号传播到输出层节点。利用前馈神经网络算法的自适应学习性,进行水分检测的非线性性的自动校正,同时将自动校正的准确结果进行非模糊化处理如附图3。输入的集合域为X,
其中包含的元素xl,x2,x3,x4,......,xi,......,在神经网络的输入层,由自动校正后的
模糊目标论域中的检测结果转化得到。在神经网络算法中的自适应学习性,通过输入层,隐层,输出层之间的训练学习,将获得检测结果,转化成点对点的映射关系得到输入层和输出层之间关系yi = f(xi),同时完成非模糊化处理,最终获得准确的检测结果。在输出的集合
域为Y,其中包含的元素yl,y2,y3,y4,......,yi,......,即是通过自适应学习性,和非模
糊化处理,获得的准确检测结果,再通过主控制箱的显示屏进行数字化显示。正是利用了输入和输出之间的一一映射关系实现了非模糊化处理,使得检测结果的输出是确定量,而且准确。所以这样一个系统的非线性性自动校正方法能够使微波水分仪针对各种不同的物料进行水分检测时,根据实际的情况进行高精度的水分检测。对于如上所实施的实例,进行非模糊化处理,即利用前馈神经网络算法的自学习性在输入层和输出层之间实现一一映射。最后将数据传送回主控箱,最终在显示屏上所得的数字化显示结果为5. 96。如有检测相关的非线性性校正,根据实际情况,按如上步骤进行即可实施获得该设备的非线性性校正,提高仪器设备的检测精度,实现仪器设备的在线实时自动校正。
权利要求
1. 一种高精确度的在线微波水分仪在水分检测中对检测数据进行非线性性自动校正的方法。其特征在于该方法实现了在线微波水分仪检测时的水分数据非线性性实时在线的高精确度自动校正;首先根据在线微波水分仪采集的水分数据样本,利用遗传算法中的浮点数编码法,根据被检测物料介电常数,环境温度,物料厚度,物料密度的决策变量进行最优化筛分,获得最优化解群;接着根据论域模糊系统理论,建立模糊控制系统,获得以上决策变量的模糊函数F = P (Bi),并以此函数作为校正函数,在前馈神经网络系统自适应, 自学习性下,利用被检测物料的决策变量检测物料介电常数、环境温度、物料厚度、物料密度,对该微波水分仪检测的水分进行实时在线的高精确度自动校正;同时利用神经网络的自学习性,进行非模糊化处理,获得最终的水分仪检测值,并传送到主控箱显示窗口进行数字化显示。
全文摘要
本发明提供的是一种高精确度的在线微波水分仪对水分检测数据进行非线性性自动校正的方法。它采用遗传算法与智能模糊神经网络算法相结合的方式。首先将微波水分仪采集的水分数据样本在遗传算法上进行适应性最优化;其次,将检测的水分最优化解建立相应的模糊系统,映照得到模糊函数F=P(Bi)作为非线性性校正函数;然后利用神经网络算法的自学习性进行水分检测数据非线性性的自动校正和非模糊化的处理,获得被测物料水分的结果。本发明的优点在于充分利用遗传算法对水分采集样本进行宏观性搜索;模糊神经网络算法适应性,快速性,自学习性和有效性等。该方法将遗传算法、智能模糊神经网络算法结合起来发挥各自的优势,避免了局部极小的局限性。
文档编号G01N22/04GK102590232SQ20111002011
公开日2012年7月18日 申请日期2011年1月18日 优先权日2011年1月18日
发明者信美华, 吴强, 尹毅强, 崔祜林, 王有卫, 白纯, 谭想, 赵辉 申请人:丹东东方测控技术有限公司