山东科威数控机床有限公司铣床官方网站今天是:2025-06-24切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

具有校准基板和电路的测量装置的制作方法

时间:2025-06-24    作者: 管理员

专利名称:具有校准基板和电路的测量装置的制作方法
技术领域
本发明涉及具有至少一个校准标样的校准基板,其包括至少两个电接点,每个电接点均用于矢量网络分析仪(vector network analyser)的一个测量端口。本发明还涉及具有嵌入在电路中的至少一个待测电子器件(DUT)的所述电路,所述电路具有电连接至所述电路的电触点。本发明还涉及包括校准基板和电路的测量装置。本发明还涉及使用矢量网络分析仪确定待测电子器件(DUT)的散射参数的方法,所述待测电子器件(DUT)包括一个以上的彼此连接的电子部件,其中,所述待测电子器件嵌入在电路中,矢量网络分析仪的至少一个端口特别地两个端口电连接至包括至少一个校准标样的校准基板,并且所述矢量网络分析仪被校准,接着,校准基板与矢量网络分析仪断开并且所述至少一个端口电连接至电路的电触点。
背景技术
例如,在由多个辅助电路构建成的复杂平面微波电路的发展中,为每个辅助电路或者适当地为各个电子部件分别地确定散射参数是有用的。以此,可以独立地分析和测试各辅助电路或者电子部件的效率。
利用矢量网络分析仪(VNA)进行待测电子器件(DUT)的散射参数的确定。因为在校准期间对于嵌入的DUT的每次测量都必须考虑周围电气环境,因此矢量网络分析的缺点在于只有付出大量的努力才能对嵌入的待测器件(DUT)进行非破坏性测量。

发明内容
本发明的目的是简化与确定嵌入在电路中的待测电子器件的散射参数相关的前述类型的校准基板、电路和测量装置。
根据本发明,该目的借助于具有如下所述的前述类型的校准基板、借助于具有如下所述的的前述类型的电路、和借助于具有如下所述的前述类型的测量装置而实现。本发明的有利实施方式在其它的权利要求中说明。
在前述类型的校准基板中,根据本发明提供如下校准基板至少一个校准标样的至少一个电接点构造有开关,其中所述开关包括一个第一电触点,其电连接到所述校准标样的电接点;第二电触点,其构造为用于电连接到所述矢量网络分析仪的测量端口 ;和第三电触点,其中所述开关构造成使得在所述第二电触点悬空并且未与任何部件电连接的状态下,所述开关在所述第一电触点和所述第三电触点之间建立电连接,其中所述第一电触点与所述第二电触点之间的电连接和所述第二电触点与所述第三电触点之间的电连接均断开,在所述第二电触点电连接到所述矢量网络分析仪的测量端口的状态下,所述开关断开所述第一电触点与所述第三电触点之间的电连接并建立所述第一电触点与所述第二电触点之间的电连接,其中所述第三电触点与所述第二电触点之间的电连接断开。
这样的校准基板的优点在于多个校准标样能够布置于一个校准基板上,其中所述矢量网络分析仪的测量端口能够总是被正确地连接到的一个校准标样。
在优选实施方式中,所述校准基板被构造为电路板、印刷电路板或者晶圆,所述校准标样利用至少一个开关被构造为所述电路板、所述印刷电路板或者所述晶圆上的集成电路。
在优选实施方式中,从HF技术的观点出发,为使开关的第三电触点以预定的波阻抗终结,所述第三电触点被电连接于HF终端电阻器或者功率转换器。
适当地,所述开关构造成以电学、机械或光学方法进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
在优选实施方式中,所述开关构造成通过施加预定电压而进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
对应前述类型的电路,根据本发明提供如下电路至少一个待测电子器件的至少一个电接点构造有开关,其中所述开关包括一个第一电触点,其电连接到所述待测电子器件的电接点;第二电触点,其构造为用于电连接到矢量网络分析仪的测量端口 ;和第三电触点,其电连接到所述电路,其中所述开关构造成使得在所述第二电触点悬空并且未与任何部件电连接的状态下,所述开关在所述第一电触点和所述第三电触点之间建立电连接, 其中所述第二电触点与所述第一电触点之间的电连接断开且所述第二电触点与所述第三电触点之间的电连接断开,在所述第二电触点电连接到所述矢量网络分析仪的测量端口的状态下,所述开关断开所述第一电触点与所述第三电触点之间的电连接并建立所述第一电触点与所述第二电触点之间的电连接,其中所述第三电触点与所述第二电触点之间的电连接断开。
这样的电路的优点在于矢量网络分析仪能够直接电连接到嵌入在电路中的待测电子器件,而不与电路电接触,且不必将待测电子器件与电路机械分离,从而能够与电路的其余部分的电特性无关地确定待测电子器件的散射参数。
在优选实施方式中,所述电路、至少一个待测电子器件和至少一个开关被构造为电路板、印刷电路板或者晶圆上的集成电路。
适当地,所述开关构造成以电学、机械或光学方法进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
在优选实施方式中,所述开关构造成通过施加预定电压而进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
在前述类型的测量装置中,根据本发明提供如下测量装置所述校准基板的和所述电路的、被分配给所述矢量网络分析仪的相同测量端口的所述开关具有相同的电特性。
这样的测量装置的优点在于使校准的工作量最小化,这是因为能够仅用一个校准基板表征(characterized)电路的全部待测电子器件。因为在校准矢量网络分析仪时也考虑到了所述开关或者它们的电特性,所以测量结果是明确的。
适当地,校准基板和电路的全部开关具有相同的电特性。
在优选实施方式中,具有相同电特性的开关还具有相同的机械特性。特别地,具有相同电特性的开关被同样地构造。
在特别优选的方式中,电路和校准基板被构造在同一电路板、同一印刷电路板或者同一晶圆上。
在前述类型的方法中,所述矢量网络分析仪的所述至少一个端口分别借助于集成在所述校准基板中的至少一个开关电连接到所述校准基板,所述矢量网络分析仪的所述至少一个端口分别借助于集成在所述电路中的至少一个开关电连接到所述电路,均与所述矢量网络分析仪的同一端口相连的、集成在所述校准基板中的所述至少一个开关和集成在所述电路中的所述至少一个开关具有相同的电特性。
这样的方法的优点在于使校准所涉及的工作量最小化,这是因为能够仅用一个校准标样表征电路的全部待测电子器件标样。
在优选实施方式中,一个以上的校准标样布置在所述校准基板上,至少一个、特别地两个开关与每个校准标样相连。
由于至少一个开关以位于待测电子器件和嵌入了待测电子器件的电路之间的方式布置于电路上,所以能够与电路的其余部分的电特性无关地或者与所述电特性分离地确定待测电子器件的散射参数。
适当地,在各情况中,以将开关布置于所述待测电子器件和所述电路之间的至少一个、特别地两个或者全部的电触点上的方式将所述开关布置于所述电路。
实现了特别地在HF品质方面具有高的电气品质的简单、快速和功能可靠的电连接,原因在于,当矢量网络分析仪的端口电连接到各个开关时,所述开关断开待测电子器件与电路之间的电连接并且在待测电子器件与矢量网络分析仪的各个端口之间建立电连接。
在优选实施方式中,所述校准基板的和所述电路的具有相同电特性所述开关还构造有相同的机械特性。
适当地,所述校准基板的和所述电路的具有相同电特性的所述开关被以相同的方式构造而成。
在优选实施方式中,使用电子微型开关作为所述开关。
适当地,以电学、机械或光学方法进行在第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
在优选实施方式中,通过施加预定电压而进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。


现在将参考附图更为详细地说明本发明,在附图中 图1示出了根据本发明的具有开关的校准基板的第一优选实施方式的示意性布置, 图2示出了开关的第一优选实施方式的示意性图示, 图3示出了图2中的开关处于第一开关状态的示意性图示, 图4示出了图2中的开关处于第二开关状态的示意性图示, 图5示出了根据本发明的具有待测电子器件的电路的第一优选实施方式的示意性图示, 图6示出了根据本发明的具有待测电子器件的电路的第二优选实施方式的示意性图示, 图7示出了根据本发明的具有开关的校准基板的第二优选实施方式的示意性图示, 图8示出了根据本发明的测量装置的优选实施方式的示意性图示, 图9示出了处于第一开关位置的开关的第二优选实施方式的示意性图示, 图10示出了图9中的开关处于第二开关位置的示意性图示,和 图11示出了图9中的开关处于第三开关位置的示意性图示。
具体实施例方式图1中示出根据本发明的采用平面TLR(直通/传输线反射,Thru-Line-Ref lect) 校准基板形式的校准基板100的第一优选实施方式,其包括三个校准标样12、14和16,该三个校准标样例如被构造为校准基板100上的印刷电路。校准标样12、14和16分别借助于第一波导18被电连接到第一开关20和第二开关22。开关20、22转而分别被电连接到终端电阻26。第一波导18例如是平面波导。
如图2至图4所示,每个开关20、22均包括第一电触点30、第二电触点32和第三电触点34。第一电触点30借助于第一波导18电连接到校准标样12、14和16。第三电触点34借助于第一波导18电连接到终端电阻26。第二电触点32能够可选地电连接到被构造成例如同轴波导的第二波导36。第二波导36的一部分可以构造在校准基板100上。
如图1所示,第一开关20的第二电触点32可选地能够被连接到矢量网络分析仪 40的第一测量端口 38,第二开关22的第二电触点32可选地能够被连接到第二测量端口 42。
如图3中所示,开关20、22被构造成使得,在第二电触点32悬空(free)、即第二电触点未电连接到矢量网络分析仪40的测量端口 38或42的第一开关位置或者基本位置时,第一电触点30电连接到第三电触点34。此时,第二电触点32与第一电触点30和第三电触点34均电断开,其中,通过开关20、22在第一电触点30和第二电触点32之间以及在第二电触点32和第三电触点34之间设置足以满足应用要求的电绝缘阻尼。
一旦第二电触点32借助于第二波导36电连接到矢量网络分析仪40的测量端口 38或42,开关20、22切换到图4中所示的开关位置。第一电触点30和第三电触点34之间的电连接由此被断开,并且代替此,第一电触点30电连接到第二电触点32。此时,第三电触点34与第一电触点30和第二电触点32均电断开,其中,通过开关20、22在第一电触点30 和第三电触点34之间以及在第二电触点32和第三电触点34之间设置足以满足应用要求的电绝缘阻尼。通过这种方式,因此,借助于一个测量端口 38、42或者第二波导36与一个第二电触点32的简单的电连接,各个测量端口 38或42通过开关20、22与校准基板100上的对应的校准标样12、14和16形成各自的电连接。
在图5中,具有相同功能的部件用与图1至图4相同的附图标记标识,为此,参考上述对图1至图4的说明,以说明这些部件。图5示出了电路200的第一优选实施方式,所述电路200被构造成在电路中嵌入有多个待测电子器件(DUT)210、212和214的平面电路的形式。借助于矢量网络分析仪40表征第二 DUT212。开关20、22嵌入在电路200中,其中开关20、22的第一电触点30均连接到DUT212,并且开关20、22的第三电触点34均连接到电路200。附图标记218指代基准面。
如上参考图1至图4所述,由于在校准时考虑到了开关20、22的特性,因此,在表征DUT212期间也必须考虑相同开关20、22。这里,表述“相同开关”是指至少具有相同电特性的开关,其中,优选地,电路200中的开关20、22被构造成与校准基板100中的开关20、22 相同。如图5所示,开关20、22被提供在从待测的DUT212到电路200的剩余部分的所有馈线(feed line)上。开关被安装成能够在矢量网络分析仪40的测量端口 38或42与待表征的DUT (在本示例中,为DUT212)之间建立连接。在表征和错误校验DUT212之后,开关20、 22留在电路中。一旦矢量网络分析仪40的测量端口 38、42与开关20、22的对应的第二电触点32之间的电连接断开,则各个开关20、22再次将DUT212连接到电路200的其它相邻部分,具体地如先前参考图3和图4所做出的说明,连接到DUT210、224。
使用与图1中的校准基板100相同的校准基板,平面电路200的其它的DUT210、 214也能够被表征。为此,各个开关20、22应当简单地被置于待测的DUT210、214的各馈线。 图6中示出了表征DUT210的示例。在图6中,具有相同功能的部件用与图1至图5相同的附图标记标识,为此,参考上述对图1至图5的说明,以说明这些部件。图6示出了采用平面电路形式的电路300的第二优选实施方式,其中作为与按照图5中的第一优选实施方式的不同点,附加的开关20a和22a被布置于DUT210的两侧。这些开关20a和22a以与开关 20、22相同的方式构造而成。为表征DUT210,矢量网络分析仪40的测量端口 38和42电连接到开关20a和22a的对应的第二电触点32,而不是连接到开关20、22的第二电触点32。
开关20、20a、22、22a的使用意味着如电路200或300的其余部分的其它DUT212和 214及其它DUT210、214等电环境不影响DUT210或210的测量和表征。精确测量的前提在于,一方面,开关20、20a和/或开关22、22a在如图1至图4所示的校准期间和另一方面如图5和图6所示的测量期间具有尽可能相同的特性,特别地具有相同的电特性。电触点32 和对应的电触点34之间的绝缘阻尼应尽可能地大。开关20和22的第二电触点32悬空, 即,它们未电连接到矢量网络分析仪40的测量端口 38、42。这意味着开关20、22分别在第一电触点30和第三电触点34之间建立电连接。
借助于开关20、20a、22、22a将信号能量从矢量网络分析仪40传输到各个校准元件12、14、16或者传输到各个0肌210、212、214。校准基板100包括各种校准元件12、14、 16(例如,短路标样、断路标样、电阻标样、传导标样等),其中校准元件12、14、16经由测量端口被连接到第一波导18(例如,微带线、共面线等),其中第一波导18本身连接到换向开关或者信号开关20、22。换向开关或者信号开关20、22的终端连接终端阻抗Zab。
如需要,其它的待测器件或者验证标样能够布置在校准基板100上,用于校验该校准。校准元件12、14、16通常具有N个端口、N个第一波导18和至少N个开关20、22 (至少一个第一波导18对应一个开关),其中对于每个端口,第一波导18与开关20、22在几何形状和在校准基板上的位置方面可以不同。开关20、20a、22、22a的目的在于将矢量网络分析仪40的各个测量端口 38或42连接到标准/验证标样12、14、16或者连接到待测器件 (DUT) 210、212、214,从而使电路200、300的其余部分的周边线路连接环境对测量结果没有影响。开关20、20a、22、22a的功能已经参考图2和图4进行了说明。开关20、20a、22、22a 能够具有任何所需要的外观或者形式。但是,重要的是所述开关具有所说明的功能,至少与特定测量端口 38或42相连的开关20、20a或22、2加具有相同的电特性或者被相同地构造而成。不同测量端口 38或42的开关20、20£1、22、2加能够不同地构造而成并且能够具有不同的电特性。上面对于全部测量端口 38或42处的相同的开关20、20a、22、22a的说明纯粹是示例性的。
开关20、20a、22、22a也能够由不同的开关构成。
校准基板100例如被构造为印刷电路板(PCB)、晶圆等,其中支撑材料由任意固态的、非导电性的或者弱导电性基板材料制造(比如,例如玻璃、陶瓷、FR4、Rogers RO 4003、 环氧树脂材料等)。校准基板100例如被制成为由多个基板层构成的多层板,其中开关20、 20a、22、2h被布置于与第一波导18的相同的同一基板层。校准标样12、14、16在校准基板 100上的布置/位置或者DUT210、212、214在电路200、300上的布置/位置是任意的。开关 20.20a.22.22a的位置和实施方式及第一波导18的位置和实施方式能够对于校准标样12、 14、16的N个测量端口中的每个测量端口而不同,但是对于一个端口,校准所需的全部校准标样12、14、16和全部的DUT210、212、214、第一波导和各个开关20、20a、22、22a必须是相同的,即至少具有相同的电特性。图7通过示例示出了具有不同的1端口校准标样/DUTs 102、2端口校准标样/DUTs 104和3端口校准标样/DUTs 106的校准基板100或者电路。 在图7中,具有相同功能的部件用与图1至图6相同的附图标记标识,为此,参考上述对图 1至图6的说明,以说明这些部件。3端口校准标样或者3端口 DUT106除了包括用于第一端口的、能够被连接到矢量网络分析仪40的第一测量端口 38的第一开关20和用于第二端口的、能够被连接到矢量网络分析仪40的第二测量端口 42的第二开关22之外,还包括能够被连接到矢量网络分析仪40的相应的第三测量端口(未示出)的第三开关对。开关M 以与开关20和22类似的方式被构造和设计。换句话说,上面关于开关20、22的说明类似地适用于第三开关对。例如,在校准基板100上布置有用于各种校准的多个N端口校准标准件。附图标记108标识了转换器。如果102、104和106不表示校准标样,而是表示DUT, 则替代终端电阻26,可以设置功率转换器或者到电路中的其余部分的转换器。
如图8中通过示例所示,校准基板100和校准元件12、14、16能够与包含相关的 DUT210、212、214的用户电路一起被布置于一个基板400上。图8示出了具有输入/输出 402和输入/输出404的用户电路。另外,在图8中,具有相同功能的部件用与图1至图7 相同的附图标记标识,为此,参考上述对图1至图7的说明,以说明这些部件。
辅助结构能够沿着第一波导18延伸,而且还能够在横切第一波导18的方向上延伸。
开关20、22、M优选地以阻抗受控的方式被构造而成。重要的是,在未彼此电连接的触点30、32、34之间设置尽可能大的绝缘阻尼。优选地,在与第二电触点32连接的第二波导36的端部处布置有连接到另一波导的转换器,比如微带-共面转换器、微带-同轴转换器、共面-同轴转换器、共面-微带转换器等。以此,能够借助于同轴线、PCB测量探针或者在片测量探针进行功率输入。校准基板可以具有基部金属覆层(base metal covering) 0 对于实际的操作,开关20、20a、22、22a中的两个开关能够一起布置在一个壳体中。这样,该两个开关能够构造为一个开关结构。在图6中,例如在DUTs 210和212之间的开关2 和开关20的组合就是一个这样的开关结构。
开关20、22、M是三端部件。如果开关20、22、M布置在借助于第一电触点30和第三电触点34电连接的两个波导之间,则所述开关电连接该两个波导。一旦另外的波导或者矢量网络分析仪40的测量端口 38或42电连接到开关20、22、M的第二电触点32,则能够自动地切换。如果该另外的波导被再次移除,则开关变换回初始位置。替代地,通过其它机制执行切换。例如,能够通过电学方法、机械方法或者光学方法执行切换。开关20、22、M 还可以是有源元件。这样,例如能够通过变换所施加的电压执行切换处理。
如图9至图11所示,开关20、22、M还可以例如通过施加电压44而使触点30、32、 34之间的成对的各自组合电连接,包括第二电触点32电连接至第三电触点34,成对的组合的电连接是电控的。在图9至图11中,具有相同功能的部件用与图1至图8相同的附图标记标识,为此,参考上述对图1至图8的说明,以说明这些部件。在图9中,例如,施加例如 OV的电压44,在图10中,例如,施加例如-5V的电压44,在图11中,例如施加+5V的电压 44。以此方式,例如在图6中,两个开关2 和20被一起组合成单个的组合开关28,组合开关观在测量DUT210时被分配到第二测量端口 42,而在测量DUT212时被分配到第一测量端口 38。有利地,也在校准基板的各个校准标样的相应端口处布置相同的组合开关观。
为正确测量N-端口件的散射参数,必须校准测量系统。根据该校准,需要已知或者部分已知的M个不同的N-端口校准标样(校准元件)。对于使用M个校准标样的校准, 开关20、22、M的电特性和第一波导18的电特性和另外可能的第二波导36的电特性对于每个端口必须是相同的,但是它们在N个端口之间可以是不同的。
例如,将测量2端口对象的散射参数。对于LLR(TRL)校准,需要三个2端口校准标样。例如,这些标样能够是例如不同长度的两根线和两个短路电路,其中每个短路电路均表示1端口对象,但两个短路电路一起就对应于2端口对象。三个2端口标样的每个端口能够具有两个不同的馈线(第一波导18)。开关20、22、M还能够在每个馈线(每个第一波导18处)具有不同的特性(例如,损耗)。但是,在校准标样12、14、16和DUTs 210,212, 214的各个端口 1处的第一波导18和开关20、22、对必须是相同的。在校准标样12、14、16 的端口 2、第一波导18和辅助结构还必须彼此匹配,但是它们能够与端口 1处的不同。
本发明还涉及权利要求15。该方法的优点在于使校准所需要的工作量最小化, 这是因为电路的全部待测器件能够仅使用一个校准基板来表征。
在根据前述段落中的一个段落所述的方法中,一个以上的校准标样被布置于校准基板,其中至少一个特别地两个开关被与每个校准标样相连。
在根据前述段落中的一个段落所述的方法中,所述至少一个开关被布置于待测器件和嵌入有所述待测器件的电路之间的电路上。由此,能够与电路的其余部分的电特性独立地并且无关地确定待测电子器件的散射参数。
在根据前述段落中的一个段落所述的方法中,在每个示例中,开关在待测电子器件与电路之间的至少一个特别地两个或者全部的电触点处被布置于电路。
在根据前述段落中的一个段落所述的方法中,实现了特别地在HF品质方面具有高的电气品质的简单、快速和功能可靠的电连接,原因在于,当矢量网络分析仪的端口电连接到对应的开关时,所述开关断开待测电子器件与电路之间的电连接并且在待测电子器件与矢量网络分析仪的对应的端口之间建立电连接。
在根据前述段落中的一个段落所述的方法中,校准基板的具有相同电特性的开关和电路的具有相同电特性的开关还具有相同的机械特性。
在根据前述段落中的一个段落所述的方法中,校准基板的具有相同电特性的全部开关和电路的具有相同电特性的全部开关被相同地构造而成。
在根据前述段落中的一个段落所述的方法中,电子微型开关被用作所述开关。
在根据前述段落中的一个段落所述的方法中,第二电触点到矢量网络分析仪的测量端口的连接或者第二电触点与矢量网络分析仪的测量端口的电连接的断开的切换是以电学方法、机械方法或者光学方法而执行的。
在根据前述段落中的一个段落所述的方法中,第二电触点到矢量网络分析仪的测量端口的连接或者第二电触点与矢量网络分析仪的测量端口的电连接的断开的切换是通过施加预定电压的方式而执行的。
权利要求
1.一种校准基板(100),其具有至少一个校准标样(12、14、16 ;102、104、108,所述校准标样包括至少两个电接点,每个所述电接点用于矢量网络分析仪(40)的一个测量端口 (38,42),其特征在于,至少一个校准标样(12、14、16 ;102、104、108)的至少一个电接点构造有开关(20、22、 24),其中所述开关(20、22、24)包括一个第一电触点(30),其电连接到所述校准标样(12、 14、16;102、104、108)的电接点;第二电触点(32),其构造为用于电连接到所述矢量网络分析仪(40)的测量端口 (38,42);和第三电触点(34),其中所述开关(20,22,24)构造成使得在所述第二电触点(32)悬空并且未与任何部件电连接的状态下,所述开关(20、22、 24)在所述第一电触点(30)和所述第三电触点(34)之间建立电连接,其中所述第一电触点(30)与所述第二电触点(32)之间的电连接和所述第二电触点(32)与所述第三电触点 (34)之间的电连接均断开,在所述第二电触点(32)电连接到所述矢量网络分析仪(40)的测量端口(38、42)的状态下,所述开关(20、22、24)断开所述第一电触点(30)与所述第三电触点(34)之间的电连接并建立所述第一电触点(30)与所述第二电触点(32)之间的电连接,其中所述第三电触点(34)与所述第二电触点(32)之间的电连接断开。
2.根据权利要求1所述的校准基板(100),其特征在于,所述校准基板(100)被构造为电路板、印刷电路板或者晶圆,所述校准标样利用至少一个开关(20、22、24)被构造为所述电路板、所述印刷电路板或者所述晶圆上的集成电路。
3.根据权利要求1或2所述的校准基板(100),其特征在于,所述开关(20、22、24)的第三电触点(34)电连接到HF终端电阻(26)或者功率转换器。
4.根据前述权利要求中至少一项所述的校准基板(100),其特征在于,所述开关(20、 22,24)构造成以电学、机械或光学方法进行在所述第二电触点(32)连接到所述矢量网络分析仪(40)的测量端口(38、42)或者从所述矢量网络分析仪(40)的测量端口(38、42)断开时的电连接切换。
5.根据前述权利要求中至少一项所述的校准基板(100),其特征在于,所述开关(20、 22,24)构造成通过施加预定电压(44)而进行在所述第二电触点(32)连接到所述矢量网络分析仪(40)的测量端口(38、42)或者从所述矢量网络分析仪(40)的测量端口(38、42) 断开时的电连接切换。
6.一种电路(200、300、400),其包括嵌入在所述电路中的至少一个待测电子器件 (DUT) (210、212、214),所述待测电子器件具有电连接到所述电路的电接点,其特征在于,至少一个待测电子器件(210、212、214)的至少一个电接点构造有开关(20、22、24),其中所述开关(20、22、24)包括一个第一电触点(30),其电连接到所述待测电子器件(210、212、 214)的电接点;第二电触点(32),其构造为用于电连接到矢量网络分析仪(40)的测量端口 (38,42);和第三电触点(34),其电连接到所述电路,其中所述开关(20,22,24)构造成使得在所述第二电触点(32)悬空并且未与任何部件电连接的状态下,所述开关(20、22、 24)在所述第一电触点(30)和所述第三电触点(34)之间建立电连接,其中所述第二电触点(32)与所述第一电触点(30)之间的电连接断开且所述第二电触点(32)与所述第三电触点(34)之间的电连接断开,在所述第二电触点(32)电连接到所述矢量网络分析仪(40) 的测量端口(38、42)的状态下,所述开关(20、22、24)断开所述第一电触点(30)与所述第三电触点(34)之间的电连接并建立所述第一电触点(30)与所述第二电触点(32)之间的电连接,其中所述第三电触点(34)与所述第二电触点(32)之间的电连接断开。
7.根据权利要求6所述的电路(200、300、400),其特征在于,所述电路(200、300、400)、 至少一个待测电子器件(210、212、214)和至少一个开关(20、22、24)被构造为电路板、印刷电路板或者晶圆上的集成电路。
8.根据权利要求6至7中的至少一项所述的电路(200、300、400),其特征在于,所述开关(20、22、24)构造成以电学、机械或光学方法进行在所述第二电触点(32)连接到所述矢量网络分析仪(40)的测量端口(38、42)或者从所述矢量网络分析仪(40)的测量端口(38、 42)断开时的电连接切换。
9.根据权利要求6至8中的至少一项所述的电路(200、300、400),其特征在于,所述开关(20、22、24)构造成通过施加预定电压(44)而进行在所述第二电触点(32)连接到所述矢量网络分析仪(40)的测量端口(38、42)或者从所述矢量网络分析仪(40)的测量端口 (38,42)断开时的电连接切换。
10.一种测量装置,其包括根据权利要求1至5中至少一项所述的校准基板(100)和根据权利要求6至9中至少一项所述的电路(200、300、400),其特征在于,所述校准基板 (100)的和所述电路(200、300、400)的、被分配给所述矢量网络分析仪(40)的相同测量端口(38、42)的所述开关(20、22、24)具有相同的电特性。
11.根据权利要求10所述的测量装置,其特征在于,所述校准基板(100)的和所述电路 (200、300、400)的全部开关(20、22、24)具有相同的电特性。
12.根据权利要求10至11中的一项所述的测量装置,其特征在于,具有相同电特性的所述开关(20、22、24)还具有相同的机械特性。
13.根据权利要求10至12中的一项所述的测量装置,其特征在于,具有相同电特性的所述开关(20、22、24)被以相同方式构造而成。
14.根据权利要求10至13中的一项所述的测量装置,其特征在于,所述电路(200、 300,400)和所述校准基板(100)构造在同一电路板(400)、同一印刷电路板或者同一晶圆上。
15.一种利用矢量网络分析仪确定待测电子器件的散射参数的方法,所述待测电子器件(DUT)包括一个以上的彼此电连接的电子部件,其中所述待测电子器件嵌入在电路中, 所述矢量网络分析仪的至少一个端口、特别地两个端口电连接到包括至少一个校准标样的校准基板,所述矢量网络分析仪被校准,然后所述校准基板与所述矢量网络分析仪断开,且所述至少一个端口电连接到所述电路的电接点,所述方法的特征在于,所述矢量网络分析仪的所述至少一个端口分别借助于集成在所述校准基板中的至少一个开关电连接到所述校准基板,所述矢量网络分析仪的所述至少一个端口分别借助于集成在所述电路中的至少一个开关电连接到所述电路,均与所述矢量网络分析仪的同一端口相连的、集成在所述校准基板中的所述至少一个开关和集成在所述电路中的所述至少一个开关具有相同的电特性。
16.根据权利要求15所述的方法,其特征在于,一个以上的校准标样布置在所述校准基板上,至少一个、特别地两个开关与每个校准标样相连。
17.根据权利要求15至16中的至少一项所述的方法,其特征在于,将所述至少一个开关在所述待测电子器件和嵌入有所述待测电子器件的所述电路之间布置于所述电路。
18.根据权利要求15至17中的至少一项所述的方法,其特征在于,在各情况中,以将开关布置于所述待测电子器件和所述电路之间的至少一个、特别地两个或者全部的电触点上的方式将所述开关布置于所述电路。
19.根据权利要求15至18中的至少一项所述的方法,其特征在于,在所述矢量网络分析仪的端口与各自开关电连接时,所述开关断开所述待测电子器件和所述电路之间的电连接,并在所述待测电子器件和所述矢量网络分析仪的各自端口之间建立电连接。
20.根据权利要求15至19中的一项所述的方法,其特征在于,所述校准基板的和所述电路的具有相同电特性的所述开关还具有相同的机械特性。
21.根据权利要求15至16中的至少一项所述的方法,其特征在于,所述校准基板的和所述电路的具有相同电特性的所述开关被以相同的方式构造而成。
22.根据权利要求15至21中的至少一项所述的方法,其特征在于,使用电子微型开关作为所述开关。
23.根据权利要求15至22中的至少一项所述的方法,其特征在于,以电学、机械或光学方法进行在第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
24.根据权利要求15至23中的至少一项所述的方法,其特征在于,通过施加预定电压而进行在所述第二电触点连接到所述矢量网络分析仪的测量端口或者从所述矢量网络分析仪的测量端口断开时的电连接切换。
全文摘要
本发明涉及一种具有至少一个校准标样(12、14、16;102、104、108)的校准基板(100),校准标样包括至少两个电接点,每个电接点均用于矢量网络分析仪(40)的一个测量端口(38、42)。根据本发明,至少一个校准标样(12、14、16;102、104、108)的至少一个电接点是由开关(20、22、24)形成,其中开关(20、22、24)包括第一电触点(30),其电连接到校准标样(12、14、16;102、104、108)的电接点;第二电触点(32),其设计为用于电连接到矢量网络分析仪(40)的测量端口(38、42);和第三电触点(34),其中开关(20、22、24)设计成使得使得在第一电触点(30)和第三电触点(34)之间建立电接触或者在第一电触点(30)和第二电触点(32)之间建立电接触。
文档编号G01R35/00GK102187243SQ200980141121
公开日2011年9月14日 申请日期2009年9月29日 优先权日2008年10月15日
发明者T·赛尔德, B·戈克 申请人:罗森伯格高频技术有限及两合公司

  • 专利名称:旋转式计量装置和系统的制作方法技术领域:本发明涉及计量装置和系统,且尤其是涉及旋转式计量装置。 背景技术:以前就已经提出提供计量装置操作以便精确地分配测得的液体量。提出了计量装置的若干不同设计。US 20080237257公开一种
  • 专利名称:光学检测仪的固定装置的制作方法技术领域:本实用新型涉及一种光学检测仪的固定装置。背景技术:锡焊的最终工序是进行检查,由于锡焊焊点存在缺陷,所以在生产完成后需要对焊点进行检查,焊接的检查大致有两种一是焊前检查,即检查母材表面、焊料、
  • 专利名称:汽轮机凝汽器检漏工具的制作方法技术领域:本实用新型涉及一种汽轮机凝汽器检漏工具,具体涉及一种汽轮机凝汽器管板上换热孔胀焊后的检漏工具。背景技术:汽轮机凝汽器管板上安装有一万余个换热管,换热管与管板靠胀焊连接,胀焊后需要对每个换热管
  • 专利名称:围岩松弛深度测试方法技术领域:本发明涉及一种围岩松弛深度测试方法,主要适用于各种地下工程中,评估围岩 破裂损伤程度及确定相关支护措施。背景技术:地下洞室开挖后的围岩松弛深度测试成果对于理解和认识地下洞室开挖后应力 调整程度、范围、
  • 专利名称:基于小波包分析和Hopfield网络的模拟电路故障诊断方法技术领域:本发明涉及模拟电路故障诊断方法,具体涉及一种基于小波包分析和Hopfield网络的模拟电路故障诊断方法。背景技术:在系统与外界之间的信号输入输出中,模拟电路起着关
  • 专利名称:一种水基焊缝渗漏检查液的制作方法技术领域:本发明涉及一种焊缝渗漏检查液的替代产品,具体地是一种水基焊缝渗漏检查液,适用于箱体部件在装焊完工后、热处理前对焊缝的渗漏检查,目的是对该类部件存在的穿透性焊缝缺陷进行定性判定。背景技术:
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12