山东科威数控机床有限公司铣床官方网站今天是:2025-06-28切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

无线传感器装置的制作方法

时间:2025-06-28    作者: 管理员

专利名称:无线传感器装置的制作方法
技术领域
本发明涉及一种利用无线电波来检测对象物的运动或者到对象物的距离的无线 传感器装置。
背景技术
有一种运动传感器(motion sensor)或者距离检测传感器(以下简称“传感器装 置”),将振荡电路输出的高频信号提供给天线而发射无线电波,接收来自对象物的反射 波而将其转换成电接收信号,分析接收信号来检测出对象物的运动或者到对象物的距离 (例如,参照专利文献1)。上述传感器利用了当电波遇到物体时反射波的频率相对于发 射电波的频率稍微偏离的原理(多普勒效应),因此,能够根据该偏离(多普勒频移)的 大小测量物体的运动或者速度。而且,电波在大气中以光速传播,因此能够根据反射波 的延迟量(相位变化)测量到对象物的距离。图6为多普勒雷达的原理图(其中一例)。从RF发生器1输出由规定频率的连 续波构成的发送信号,对发送接收天线2提供发送信号而发射无线电波。利用发送接收 天线2接收对象物反射的反射波。对混频器(mixer) 3输入发送信号的一部分和接收信号 并进行混合。此时,当对象物在移动时,根据多普勒现象,接收信号的频率相对于发送 信号的频率发生偏移(shift)。混频器3将发送信号的频率和接收信号的频率之差作为中频 (IF)来检测。S卩,只要对象物在动,反射波的频率就发生变化,因此混频器3输出与多 普勒频移相对应的IF信号,而只要对象物处在停止状态,反射波的频率就不发生变化, 所以混频器3只输出DC信号。将混频器3的输出信号通过LPF4,抽取IF信号、DC信 号,通过在信号处理电路5进行分析,能够判断对象物的运动的有无。而且,在使用脉 冲多普勒雷达、数字调制多普勒雷达的情况下,根据发射出发送信号的发送时刻和接收 到反射波的接收时刻,测量在与对象物之间往返的无线电波的延迟时间,能够根据该延 迟时间检测出到对象物的距离。专利文献1 (日本)特开平11-182109号公报但是,上述无线传感器装置主要以在近距离(例如,不足几十米)的对象物作为 测量对象,设想的是使用分配到其他无线通信系统的频带的一部分。目前,作为以比较 狭窄的服务区域为对象的无线通信系统,存在无线LAN、WiMAX等。因此,希望开发出不对频带部分共有或者邻近的其他无线通信系统造成干扰, 而且不受其他无线通信系统干扰的无线传感器装置。

发明内容
本发明是鉴于上述问题而提出的,其目的在于提供一种能够使对其他无线通信 系统造成的干扰和由其他无线通信系统引起的干扰都降低的无线传感器装置。本发明的无线传感器装置的特征在于,具备发送信号生成机构,生成高频发送信号,该高频发送信号进行了频率扩散,以使得发送频率按规定周期连续地增加和减少;发送天线,发射上述发送信号生成机构所生成的高频发送信号;接收天线,接收来自对象物的反射波,输出进行了频率扩散的高频接收信号, 该对象物接受到上述发送天线所发射的高频发送信号;混频电路,输入到上述发送天线的上述高频发送信号的一部分作为第1频率扩 散高频信号来输入,并且上述接收天线输出的上述高频接收信号作为第2频率扩散高频 信号来输入,在上述第1频率扩散高频信号和上述第2频率扩散高频信号的频率一致时, 作为相位检波器来动作,输出DC差频信号;以及DC成分抽取电路,从上述混频电路的输出信号中抽取上述DC差频信号。根据上述结构,通过发送天线发射以发送频率按规定周期连续地增加及减少的 方式进行了频率扩散的高频发送信号,而且,通过接收天线接收对象物的反射波,向混 频电路输入作为高频发送信号的第1频率扩散高频信号和作为高频接收信号的第2频率 扩散高频信号。通过DC成分抽取电路,抽取当第1频率扩散高频信号和第2频率扩散 高频信号的频率一致时,作为相位检波器来动作的混频电路所输出的DC差频信号。这 样,只要在高频发送信号和高频接收信号相互交叉的点上,对高频发送信号和高频接收 信号的混合成分进行检波,就能够检测到包含与往返于无线传感器装置和对象物之间的 信号的往返延迟(往返距离)有关的信息的剩余相位,只要对象物有位置变化,则剩余相 位也发生变化,所以能够从检测到的剩余相位检测出对象物的运动。而且,以频率按规 定周期连续地增加和减少的方式进行了频率扩散的高频发送信号和高频接收信号可靠地 发送交叉,所以能够简单地检测出包含与信号的往返延迟(往返距离)有关的信息的剩余 相位。而且,将高频发送信号以发送频率按规定周期连续地增加和减少的方式进行了频 率扩散,所以对将高频发送信号的频带作为使用频带的原有通信系统带来的影响降低, 能够进行无线发送。而且,本发明的上述无线传感器装置的特征在于,根据上述DC成分抽取电路所 抽取的上述DC差频信号,检测到上述对象物的距离。DC成分抽取电路所抽取的上述DC差频信号所含有的剩余相位信息,包括与往 返于无线传感器装置和对象物之间的信号的往返延迟(往返距离)有关的信息,所以能够 从DC差频信号检测出到对象物的距离。而且,本发明的上述无线传感器装置的特征在于,根据上述DC成分抽取电路所 抽取的上述DC差频信号的变化,检测上述对象物的运动。DC成分抽取电路所抽取的上述DC差频信号所含有的剩余相位信息,包含与往 返于无线传感器装置和对象物之间的信号的往返延迟(往返距离)有关的信息,只要对象 物移动,则剩余相位就发生变化,所以只要DC差频信号发生变化就能够判断出对象物在动。而且,本发明的上述无线传感器装置的特征在于,在上述发送信号生成机构 中,上述高频发送信号的频率直线地增加和减少,从而反复发生三角波形状的变化。三角波的高频发送信号和相同三角波的高频接收信号,一定在相同频率上交 叉,所以只要将该2个信号作为第1以及第2频率扩散高频信号输入到混频电路,就能够 在高频发送信号和高频接收信号交叉的点上对高频发送信号和高频接收信号的混合成分
4进行检波,从而能够可靠地检测出剩余相位。而且,本发明的上述无线传感器装置的特征在于,在上述发送信号生成机构 中,上述高频发送信号的频率曲线状地反复增加和减少。即使是频率曲线性地增减的信号,也一定在相同频率处交叉,所以只要将该2 个信号作为第1以及第2频率扩散高频信号输入到混频电路,就能在高频发送信号和高频 接收信号交叉的点上对高频发送信号和高频接收信号的混合成分进行检波,从而能够可 靠地检测出剩余相位。在上述无线传感器装置中,上述发送信号生成机构具备频率扩散控制电路,生成电压控制信号,该电压控制信号的电压以与所需的高 频发送信号相同的周期来反复地进行增加和减少;以及振荡电路,施加有上述频率扩散控制电路输出的电压控制信号,并且振荡频率 根据该电压控制信号而变化。在上述无线传感器装置中,可以构成为,上述振荡电路具有可变电容元件,该 可变电容元件的电容根据施加电压而变化,通过变化之后的电容来决定振荡频率,并 且,在上述可变电容元件上施加上述电压控制信号来改变振荡频率。在上述无线传感器装置中,可以构成为,上述振荡电路作为振荡元件而具有晶 体管,对上述晶体管的基极施加上述电压控制信号而改变振荡频率。在上述无线传感器装置中,能够构成为,上述发送天线和上述接收天线共用一 个天线。在上述无线传感器装置中,上述高频发送信号的频率在2400MHz 2483.5MHz 范围内。发明效果根据本发明,对高频发送信号进行频率扩散,以使得发送频率以规定周期连续 地增加和减少,所以对以2.45GHz附近作为使用频带的原有通信系统带来的影响很少, 从而能够进行无线发送。根据本发明,能够提供一种当主要以位于近距离的对象物作为测量对象时,能 够使对其他无线通信系统造成的干扰和由其他无线通信系统引起的干扰都降低的无线传 感器装置。


图1为本发明的实施方式所涉及到的无线传感器装置的功能框图。图2为图1所示的无线传感器装置的电路结构图。图3 (a)为天线发射出的高频发送信号的频率波形图;图3(b)为接收到反射波的 天线所输出的高频接收信号的频率波形图。图4为示意地表示混频电路的输入输出的图。图5为重叠地表示在混频器中混合的高频发送信号和高频接收信号的频率波形 图。图6为多普勒雷达的原理图。符号说明
10发送信号生成机构
11频率控制电路
12RF振荡器
12a谐振电路部
12b振荡电路部
13缓冲放大器
14带通滤波器
15天线
16混频电路
17低通滤波器
18低频放大电路
19后级信号处理电路
20电源电路
具体实施例方式本实施方式所涉及到的无线传感器装置,从天线发射频率以三角波状变化而进 行了频率扩散的高频发送信号,利用天线接收对象物反射的反射波而输出进行了频率扩 散的高频接收信号,向混频器输入以三角波状进行了频率扩散的高频发送信号以及高 频接收信号之后予以混合,抽取在两个信号的频率一致时所输出的DC成分(DC差频 (beat))而进行到对象物的距离检测以及对象物的运动检测。下面,参照附图详细说明本实施方式。图1为本实施方式所涉及到的无线传感器装置的功能框图。本实施方式所涉及到的无线传感器装置具备发送信号生成机构10,该发送信号 生成机构10在以使用频带(例如,2.4GHz)为中心的频率范围内,以规定周期(例如, 2μ s)连续改变频率,生成频率扩散了的高频发送信号。发送信号生成机构10由频率控 制电路11以及RF振荡器12构成。频率控制电路11按照高频发送信号的频率变化而生 成以三角波状反复进行电压变化的控制电压信号。RF振荡器12通过频率控制电路11所 提供的控制电压信号来控制振荡频率,并将频率以三角波状变化而被频率扩散的高频发 送信号作为振荡信号来输出。缓冲放大器13、带通滤波器14串联连接在RF振荡器12 的输出端子上。缓冲放大器13将RF振荡器12输出的高频发送信号放大到能够发射的程 度。带通滤波器14将RF振荡器12输出的高频发送信号的频率变化范围(以三角波状 变化的范围)设定为通带。发送接收天线15将从发送侧输入的发送信号作为无线电波向 大气发射。带通滤波器14的输出端子连接于天线15的供电部。带通滤波器14可以通 过定向耦合器与天线15的供电部连接,也可以直接连接。天线15发射频率以三角波形 状变化的高频发送信号。作为天线15,可以采用将高频发送信号的发射方向朝向任意方 向(对象物存在的检测区域)的定向天线,也可以根据规格(用途、精度)采用不定向天 线。此外,在本实施方式中,利用天线15使发送天线和接收天线共用,但是分别设置发 送天线和接收天线也可以。在本实施方式所涉及到的无线传感器装置中,作为接收侧的结构要素而具备混频电路16。在混频电路16中,从发送侧输入作为第1输入信号的、频率以三角波形状 变化的高频发送信号,从成为接收侧的天线15输入作为第2输入信号的、频率以三角波 形状变化的高频接收信号。混频电路16混合第1输入信号和第2输入信号,输出变频后 的信号,但是,在第1输入信号和第2输入信号的频率一致时,起到相位检波器的作用。 即,当第1输入信号和第2输入信号的频率一致时,输出与第1输入信号和第2输入信号 的相位差相对应的DC差频(DC信号)。低通滤波器(LPF) 17被连接在混频电路16的输出级上。通过对低通滤波器17 设定通带特性以使得可提取低频成分(例如,IOOHz以下),使低通滤波器17起到DC抽 取电路的作用。在第1输入信号和第2输入信号的频率不一致的期间,混频电路16进行 变频而输出各种频率(高频以及中频)的信号,但是这些信号被低通滤波器17抑制。并 且,当第1输入信号和第2输入信号的频率一致时,低通滤波器17抽取从混频电路16输 出的DC差频。在低通滤波器17的输出级上连接有低频放大电路18。低频放大电路18将低通 滤波器17抽取的DC差频放大到能够由后级电路处理的程度。后级信号处理电路19由 CPU、存储器以及CPU所执行的程序等构成,具备通过分析从混频电路16输出的低频成 分(包括DC成分)而检测对象物M的运动和到对象物M的距离的功能。另外,电源电路20对发送侧和接收侧的、需要电力的结构要素(11、12、13、 18、19)提供电源。图2为表示上述无线传感器装置的电路结构例的图。而且,图2所示的电路结 构是为了实现上述各结构要素的一例,本发明并不限于图2所示的电路结构。频率控制电路11由能够生成任意波形的函数发生器构成。本实施方式中,通过 函数发生器生成振幅周期性地反复增减的电压信号。在下面的说明中生成反复三角波的 电压信号。RF振荡器12具有谐振电路部12a和振荡电路部12b,该谐振电路部12a将频率 控制电路11生成的三角波电压信号作为控制电压信号来施加,该振荡电路部12b以该谐 振电路部12a生成的谐振频率来进行振荡。谐振电路部12a构成LC并联谐振电路,该LC并联谐振电路具有作为可变电容 元件的变容二极管21以及电感器22,在变容二极管21的阴极上施加三角波控制电压信 号。在谐振电路部12a中,谐振频率随着变容二极管21的电容变化而以三角波状变化。振荡电路部12b具备作为振荡元件的晶体管23、作为分压器的电容器24和25、 发射极偏压电阻26以及基极偏压用分压电阻27和28,晶体管23的发射极在分压电容器 24、25的中间连接点耦合,晶体管23的集电极与基极间通过谐振电路部12a的电感器22 以及电容器29而耦合。电源电路20提供的驱动电源Vcc施加到晶体管23的集电极上, 而且,被分压电容器24、25分压而施加到晶体管23的基极上。发射极偏压电阻26经由 高频阻塞电感器30而接地。在具有上述结构的RF振荡器12中,通过谐振电路部12a的谐振频率来决定晶体 管23的振荡频率,所以当谐振电路部12a的谐振频率以描绘三角波的方式进行变化,则 振荡频率也以描绘三角波的方式变化。从晶体管23的发射极抽取作为高频发送信号的、 振荡电路部12b所发生的振荡信号。
另外,图2所示的RF振荡器12通过具备可变电容元件21的谐振电路部12a来 控制振荡电路部12b的振荡频率,但是,也可以不设置谐振电路部12a而直接将三角波形 状的控制电压信号施加到晶体管23的基极上。晶体管23的PN接合部的电容根据被施加 在基极上的控制电压信号而变化,振荡频率随着控制电压信号的电压变化而变化。缓冲放大器13作为高频放大元件而具备晶体管40。晶体管40的基极经由电容 器41与振荡电路部12b的晶体管23的发射极连接。在晶体管40中,集电极偏压被施加 为电源电压Vcc,基极偏压被施加为由分压电阻42、43分压的电压。晶体管40的发射 极经由发射极偏压电阻44以及电感器45而直流接地,并经由电容器46而高频接地。从 晶体管40的集电极抽取振荡频率以描绘三角波的方式变化的高频发送信号。组合由电感器51、电容器52和53构成的π型低通滤波器以及由串联连接在电 感器51上的电容器54、电感器55和56构成的π型高通滤波器来构成带通滤波器14。 将带通滤波器14的通带设定为包含作为高频发送信号的振荡频率的可变范围(三角波的 高度)。混频电路16采用无源混频器,该无源混频器利用肖特基二极管(Schottky Diode)等无源元件所具有的非线性特性而进行变频。例如,可以采用双平衡混频器 (Double-balancedMixer)。但是,本发明并不限于双平衡混频器,只要当第1输入信号和 第2输入信号的频率一致时,起到能够对第1输入信号和第2输入信号的合成信号的相位 进行检波的相位检波器的作用,则双平衡混频器以外,或者即使是平衡混频器、单端混 频器也可以适用。低通滤波器17具有电感器61,一端连接于混频电路16的输出端子;电容器 62,连接在该电感器61的另一端和地之间;以及电感器63,与电容器62并联连接。将 频率特性设定为,适合于抽取当混频电路16作为相位检波器而动作时(被混合的高频发 送信号和高频接收信号的频率一致)所输出的DC差频。低频放大电路18是通过2个运算放大器71、72的多级连接而构成的。电容器 73、75以及反馈电阻74、76连接在各运算放大器71、72的输出端子和反相输入端子之 间。运算放大器71、72的反相输入端子和非反相输入端子的电位差实质上成为零(所谓 的虚短路)。运算放大器71、72将被施加到输入端子上的输入信号(DC差频)进行低频 放大之后向输出端子输出。下面,对具有上述结构的本实施方式的动作进行说明。从频率控制电路11对RF振荡器12的谐振电路部12a施加三角波的控制电压信 号。谐振电路部12a的变容二极管21的电容相应于三角波的控制电压信号而以三角波状 变化。由12a和12b构成的振荡电路部所生成的RF谐振频率被调制为三角波,生成三角 波FM调制RF信号。如上所述地生成的三角波FM调制RF信号通过缓冲放大器13放 大,经过带通滤波器14之后作为高频发送信号从天线15发射。图3(a)为表示从天线15发射出的高频发送信号的频率变化的图。在该图中纵 轴表示频率,横轴表示时间。高频发送信号的频率在规定周期tn(2 μ s)下,以形成三角 波的方式反复进行直线增加和减少。从天线15发射这种频率进行三角波变化的高频发送信号。当在离天线15只相隔规定距离的地方存在对象物M时,天线15接收该对象物M所反射的反射波。天线15接收的反射波,虽然存在信号传播所带来的时间延迟和振幅 的衰减,但是基本上以与高频发送信号相同的周期进行三角波状的频率变化。图3(b)为表示接收到反射波的天线15所输出的高频接收信号的频率变化的图。 使时间轴(横轴)与图3(a)所示的高频发送信号对准。由于信号传播所带来的时间延 迟,高频接收信号与高频发送信号相比,只偏离时间Ta的相位。例如,如果从天线15 到对象物M的距离为lm,则往返的时间延迟Ta约为6.67ns。如果对象物M处在停止状 态,就不会发生多普勒现象引起的频移,因此时间延迟(Ta)是固定的。另一方面,当对 象物M在移动(运动)时,会发生多普勒现象引起的频移以及距离变化,所以时间延迟 (Ta)也引起变化。后级信号处理电路19根据通过作为混频电路16的输出的DC差频而 测量到的时间延迟(Ta)的变化,判断对象物M的运动的有无,具体内容将后述。天线15发射的高频发送信号的一部分被输入到混频电路16,而且,该高频发送 信号的反射波即高频接收信号也被输入到混频电路16。于是,将产生上述相位差的高频 发送信号作为第1输入信号、将高频接收信号作为第2输入信号,输入到混频电路16。 图4示意地表示将在混频电路16中混合第1输入信号和第2输入信号所得到的混频输出 信号Vo输入到低通滤波器17而只抽取DC成分(低频信号)Vol的情况。但是,如果高频发送信号的频率为2.45GHz、对象物M的移动速度为30m/h左 右,那么,根据多普勒效应,高频接收信号所受到的频移将成为一百几十Hz左右。这 样,与高频发送信号的频率相比,因多普勒效应引起的频移属于极小的变化,所以,在 现有方法中就需要对发送信号频率以极高的精度来生成固定值的振荡频率。即,因为在 混频器中混合高频发送信号和已频移的高频接收信号之后检测频率之差,所以,要求合 成几GHz频带的信号后检测一百几十Hz左右的频率差的精度。在本实施方式中,如图3(a)所示地,采用了频率以三角波状反复增减的高频发 送信号,所以如图3(b)所示地,作为高频发送信号反射波的高频接收信号也与高频发送 信号同样地形成频率以三角波状反复增减的信号波形。图5重叠地表示在混频电路16中被混合的高频发送信号和高频接收信号。如该 图所示,因为高频发送信号和高频接收信号为三角波(频率),所以,当高频接收信号因 延迟(距离)而沿时间轴方向发生偏移时,就肯定在每一个周期中存在高频发送信号和高 频接收信号发生交叉的点P。本发明的发明人着眼于下述情况只要在三角波(频率)的高频发送信号和高频 接收信号发生交叉的点P,对高频发送信号和高频接收信号的混合成分进行检波,就能够 检测出相同频率的高频发送信号和高频接收信号的延迟相位差,即剩余相位。即,只要 对相同频率的第1输入信号和第2输入信号进行信号合成,则该信号合成输出就成为与第 1输入信号和第2输入信号的相位差相对应的信号波形。因此,在第1输入信号和第2输 入信号的信号合成输出上包含两输入信号的相位差信息。剩余相位包含与往返于天线15和对象物M之间的信号的往返迟延(往返距离) 有关的信息。若对象物M有位置变化,则剩余相位也发生变化,所以,相位检波器输出 (作为相位检波器而动作的混频电路16的DC差频)将引起变动。如果采用频率反复直线性地增加和减少的三角波或者频率反复曲线性地增加和 减少的频率波形,就能够简单地交叉高频发送信号和高频接收信号,从而能够简单而且可靠地检测出高频发送信号和高频接收信号成为相同频率的点。而且,当2个输入信号 为相同频率时,由肖特基二极管(SchottkyDiode)等非线性无源元件构成的混频器将作为 相位检波器来进行动作,所以,只要将混频电路16的输出信号向低通滤波器17输入,就 能够利用低通滤波器17抽取当混频电路16作为相位检波器而进行动作时所输出的DC差 频。低通滤波器17的截止频率能够设定成例如100Hz。低通滤波器17抽取当混频电路16作为相位检波器而进行动作时所输出的DC差 频,并在利用低频放大电路18实施低频放大之后向后级处理电路19输入。在后级处理电路19中,对象物M的位置变化和相位检波器(混频电路16)的输 出水平(level)联动地变化,所以,只要相位检波器输出水平发生变化,就能够判断出对 象物M已移动。而且,因为剩余相位为距离的一次函数,所以在后级处理电路19中,也可以通 过相位改变的线性检测来进行位置改变的线性检测。而且,当距离每变化λ/2时,位相 就变化360度,所以,按每λ/2由输出电压发生一个脉冲,从而能够进行脉冲计数而以 λ/2的精度测量移动距离。另外,如图5所示,高频发送信号和高频接收信号,在频率一致的点P之外发生 差频Fa。只要去除双方的三角波顶点(上侧以及下侧)之间的时间区域,差频Fa就成为 固定值,该差频Fa是因信号延迟而发生的。S卩,能够事先准备好差频Fa和距离之间的 距离对应表。如果设定差频Fa例如为200kHz,则在低通滤波器17被截止。因此,对应于差 频Fa而从混频电路16输出的差频信号,在利用绕过低通滤波器17的路径进行抽取之后 向后级处理电路19输入。在后级处理电路19中,根据差频信号确定差频,能够根据确 定出的差频和距离对应表来进行距离检测。本发明并不限于上述实施方式,在不超出本发明的要点的情况下能够采取各种 各样的变形实施。本发明可以适用于物体的运动检测及距离检测所使用的无线传感器装置。
10
权利要求
1.一种无线传感器装置,其特征在于,具备发送信号生成机构,生成高频发送信号,该高频发送信号进行了频率扩散,以使得 发送频率按规定周期连续地增加和减少;发送天线,发射上述发送信号生成机构所生成的高频发送信号; 接收天线,接收来自对象物的反射波,输出进行了频率扩散的高频接收信号,该对 象物接受到上述发送天线所发射的高频发送信号;混频电路,输入到上述发送天线的上述高频发送信号的一部分作为第1频率扩散高 频信号来输入,并且从上述接收天线输出的上述高频接收信号作为第2频率扩散高频信 号来输入,在上述第1频率扩散高频信号和上述第2频率扩散高频信号的频率一致时,该 混频电路作为相位检波器来动作,输出DC差频信号;以及DC成分抽取电路,从上述混频电路的输出信号中抽取上述DC差频信号。
2.根据权利要求1所述的无线传感器装置,其特征在于,根据上述DC成分抽取电路所抽取的上述DC差频信号,检测到上述对象物的距离。
3.根据权利要求1或2所述的无线传感器装置,其特征在于,根据上述DC成分抽取电路所抽取的上述DC差频信号的变化,检测上述对象物的运动。
4.根据权利要求1至3中任意一项所述的无线传感器装置,其特征在于,上述发送信号生成机构的上述高频发送信号的频率直线地增加和减少,从而反复进 行三角波形状的变化。
5.根据权利要求1至3中任意一项所述的无线传感器装置,其特征在于, 上述发送信号生成机构的上述高频发送信号的频率反复进行曲线状地增加和减少。
6.根据权利要求1至5中任意一项所述的无线传感器装置,其特征在于, 上述发送信号生成机构具备频率扩散控制电路,生成电压控制信号,该电压控制信号的电压以与所需的高频发 送信号相同的周期来反复地进行增加和减少;以及振荡电路,施加有从上述频率扩散控制电路输出的电压控制信号,并且振荡频率根 据该电压控制信号而变化。
7.根据权利要求6所述的无线传感器装置,其特征在于,上述振荡电路具有可变电容元件,该可变电容元件的电容根据施加电压而变化,通 过变化后的电容来决定振荡频率,并且,在上述可变电容元件上施加上述电压控制信号 来改变振荡频率。
8.根据权利要求6所述的无线传感器装置,其特征在于,上述振荡电路作为振荡元件而具有晶体管,对上述晶体管的基极施加上述电压控制 信号来改变振荡频率。
9.根据权利要求1至8中任意一项所述的无线传感器装置,其特征在于, 上述发送天线和上述接收天线共用一个天线。
10.根据权利要求1至9中任意一项所述的无线传感器装置,其特征在于, 上述高频发送信号的频率在2400MHz 2483.5MHz之内。
全文摘要
本发明提供一种当主要以位于近距离的对象物作为测量对象时,能够使对其他无线通信系统造成的干扰和由其他无线通信系统引起的干扰降低的无线传感器装置。该无线传感器装置,以发送频率按规定周期连续地增加和减少的方式来生成进行了频率扩散的高频发送信号,并从天线(15)发射,而且,从天线(15)输出接收对象物的反射波而进行了频率扩散的高频接收信号。对混频电路(16)输入高频发送信号和与该高频发送信号相对应的高频接收信号,在双方的频率一致时混频电路(16)作为相位检波器来动作而输出DC差频信号,所以,利用低通滤波器(17)抽出该DC差频信号,根据DC差频信号的变化检测对象物(M)的运动。
文档编号G01S13/08GK102012507SQ20101027612
公开日2011年4月13日 申请日期2010年9月7日 优先权日2009年9月7日
发明者窦元珠 申请人:阿尔卑斯电气株式会社

  • 专利名称:一种手机自由落体情况下抓拍跌落面的装置的制作方法技术领域:本实用新型涉及手机跌落测试领域,尤其涉及一种手机自由落体情况下抓拍手机跌落面的装置。背景技术:随着个人移动通讯迅猛发展,用户对于手机质量的要求越来越高,从而要求手机测试方法
  • 专利名称:基于固支梁和直接式功率传感器的在线式微波频率检测器及其检测方法技术领域:本发明属于微电子机械系统MEMS技术领域,为一种基于固支梁和直接式功率传感器的在线式微波频率检测器及其检测方法。背景技术:在无线通信应用中,频率是表征微波信号
  • 专利名称:一种用于浅层csamt方法的感应式磁传感器的发明的制作方法技术领域:本发明为探测深度为0 IOOm之间的可控源大地电磁测深(CSAMT)仪器的核心 部件,主要解决目前浅层CSAMT方法的磁场传感器体积庞大,适应性差、稳定性差等问题
  • 专利名称:连铸圆坯圆度的在线检测系统、方法和图像采集装置的制作方法技术领域:本发明涉及钢水连铸领域,尤其涉及一种连铸圆坯圆度的在线检测系统和在线检 测方法以及用于在线采集连铸圆坯端面图像的图像采集装置。背景技术:目前,钢厂对钢坯端面圆度的测
  • 专利名称:太阳电池输出特性评价装置及太阳电池输出特性评价方法技术领域:本发明涉及具备向太阳电池输出特性测定用的电子负载装置供给的正偏压电源 的太阳电池输出特性评价装置及太阳电池输出特性评价方法。背景技术:近年来,太阳电池实现大型化大容量化,
  • 专利名称:一种多功能信号调理器的制作方法技术领域:本实用新型属于自动化测量技术,涉及对信号调理器的改进。 背景技术:目前用于自动化测量与控制领域的信号调理器,往往是针对单一种类的传感器,仅能给特定的传感器提供电源;信号调理器中的 信号调理电
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12