专利名称:X射线透射检查装置及x射线透射检查方法
技术领域:
本发明涉及可检测出试料中的由特定元素构成的异物的χ射线透射检查装置及X 射线透射检查方法。
背景技术:
近年来,作为汽车、混合动力汽车(hybrid car)或电动汽车等的电池,采用能量密 度高于镍氢类电池的锂离子二次电池。该锂离子二次电池是非水电解质二次电池的一种, 是电解质中的锂离子负责导电,且在电池内不含金属锂的二次电池,已在笔记本型个人计 算机或便携电话机中广为采用。该锂离子二次电池具有优异的电池特性,但在制造工序中电极上混入Fe (铁)等 的异物时会对使发热性或寿命等的电池特性劣化等的可靠性产生影响,因此至今不能为车 载用途而进行搭载。例如,锂离子二次电池的电极(正极)如图4的(a)所示,通常在厚度 20 μ m的Al膜1的两面形成100 μ m左右的Co酸锂膜或Mn酸锂膜2而构成,但如图4的 (b)所示,有时其中会混入Fe (铁)或SUS (不锈钢)的异物X,当该异物X为数十ym以上 时,会发生短路,可能会引起电池的烧毁或性能降低。因此,对锂离子二次电池要求在制造 时通过检查迅速检测出混入了异物X的电池,预先除去。一般,作为检测试料中的异物等的方法,众所周知利用透射X射线像的方法。利用 该方法,以往提出了通过透射X射线像来检测有无异物混入到用作锂离子二次电池的负极 的碳类材料等的碳质材料的异物检测方法(参照专利文献1)。专利文献1 日本特开2004-239776号公报(权利要求)在上述传统技术中存在以下的课题。S卩,传统的异物检测方法只是通过透射X射线像的强度来检测有无异物,因此存 在这样的问题如果异物的原子序数有较大的差异,虽然得到明确的对比度,但是原子序数 较近时对比度较弱,难以分辨。例如,在成为测定试料的电极(正极板)中作为构成元素之 一包含的Co (原子序数27)和构成成为检测对象的异物的元素的Fe (原子序数26),会成为 相同的对比度。因此,在传统的异物检测方法中,无法分辨是如图4的(a)所示,例如在测 定试料S的电极(正极板)的透射X射线像T中,由于局部的构成材料较厚的部分2a而产 生的对比度,还是如图4的(b)所示,由于异物X而产生的对比度,存在成为过检测或误检 测的问题。
发明内容
本发明鉴于上述的问题构思而成,其目的在于提供只将异物引起的对比度明确分 辨而能够防止过检测及误检测的χ射线透射检查装置及χ射线透射检查方法。本发明为了解决上述课题采用以下的构成。即,本发明的X射线透射检查装置及 X射线透射检查方法中,其特征在于将其能量低于测定试料所包含的一个元素的X射线吸 收边且高于成为检测对象的元素(以下,称为“检测元素”)的X射线吸收边的特性X射线,对所述测定试料进行照射,接受所述特性X射线透射所述测定试料时的透射X射线,由X射 线检测器检测出其强度,从表示该检测到的所述透射X射线的强度分布的透射像进行运算 而得到对比度像。此外,对测定试料照射的特性X射线,使用用于从该特性X射线中除去κ β射线的 滤波器,该滤波器由具有在特性X射线的K α射线和Κβ射线之间的能量的X射线吸收边 的元素形成。这些X射线透射检查装置及X射线透射检查方法中,单色化为其能量低于测定试 料所包含的一个元素的X射线吸收边且高于检测元素的X射线吸收边的特性X射线后对试 料进行照射而得到透射像,因此能够得到关于特定元素的明确的对比度像。即,通过利用上 述元素的X射线吸收边的高能量的单色X射线而不是利用白色X射线等的混合各种能量的 X射线,即使有原子序数较近的其它元素也能得到测定对象的元素的明确的对比度像。再者,在测定试料与X射线管形灯泡之间配置由具有在所述特性X射线的Ka射 线与Κβ射线之间的能量的X射线吸收边的元素形成的滤波器,因此能够由滤波器截断来 自X射线管形灯泡的特性X射线中的Κβ射线。因而,可以只抽取所希望的特性X射线对 试料进行照射,所以测定对象的元素的对比度显得更加鲜明。此外,本发明的X射线透射检查装置,其特征在于测定试料包含钴酸锂,所述X射 线管形灯泡为Ni靶管形灯泡,所述检测元素为Fe,所述滤波器为Co箔。S卩,在本发明的X射线透射检查装置中,测定试料的典型的含有物质为钴酸锂,在 该测定试料中,检测主要包含Fe的异物时,作为其能量低于钴酸锂的一个构成元素即Co的 X射线吸收边(7.709keV)且高于检测元素即Fe的X射线吸收边(7. 11 IkeV)的特性X射 线,使用Ni靶管形灯泡产生的Ni的特性X射线(7. 477keV)。从而,能够使用低价的X射线 管形灯泡以明确的对比度像检测出Fe。此外,该X射线透射检查装置能够使用Co(X射线吸收边=7. 709keV)箔的滤波器 只抽取Ni-K α特性X射线(7.477keV)而对测定试料进行照射。此外,本发明的X射线透射检查装置,其特征在于测定试料包含锰酸锂,所述X射 线管形灯泡为Fe靶管形灯泡,所述检测元素为Cr,所述滤波器为Mn箔。即,本发明的X射线透射检查装置中,测定试料的典型的含有物质为锰酸锂,在该 测定试料中,检测主要包含Cr的异物时,作为其能量低于锰酸锂的一个构成元素即Mn的X 射线吸收边(6. 540keV)且高于检测元素即Cr的X射线吸收边(5. 989keV)的特性X射线, 使用Fe靶管形灯泡产生的Fe的特性X射线(6. 403keV)。从而,能够使用低价的X射线管 形灯泡以明确的对比度像检测出Cr。此外,该X射线透射检查装置能够使用Mn (X射线吸收边=6. 540keV)箔的滤波器 只抽取Fe-K α特性X射线(6. 403keV)而对测定试料进行照射。(发明效果)依据本发明,得到以下的效果。 即,依据本发明的X射线透射检查装置及X射线透射检查方法,对试料照射其能量 低于测定试料所包含的一个元素的X射线吸收边且高于检测元素的X射线吸收边的特性X 射线,从取得的透射像得到对比度像,因此能够得到明确的关于作为检测对象的特定元素 的对比度像。再者,在试料与X射线管形灯泡之间,配置由具有在该X射线管形灯泡产生的特性X射线的Ka射线与Κβ射线之间的能量的X射线吸收边的元素形成的滤波器,因此 可以只抽取所希望的特性X射线(Κα射线)进行照射,即使存在原子序数较近的元素的情 况下也能取得更加鲜明的成为测定对象的检测元素的对比度。因而,如果使用该X射线透射检查装置及X射线透射检查方法,就能高精度且迅速 地进行例如锂离子二次电池等的特定元素的异物检测。
图1是表示本发明的X射线透射检查装置及X射线透射检查方法的一个实施方式 的概略整体结构图。图2是表示本发明的实施方式中X射线的能量与X射线的透射率的关系的图。图3的(a)是表示本发明的实施方式的X射线透射时包含局部厚度不同的部分的 情况下的X射线的透射像的说明图。(b)是表示本发明的实施方式的X射线透射时表面层 包含异物的情况下的X射线的透射像的说明图。图4的(a)是表示以往的X射线透射时包含局部厚度不同的部分的情况下的X射 线的透射像的说明图。(b)是表示以往的X射线透射时表面层包含异物的情况下的X射线 的透射像的说明图。
具体实施例方式以下,参照图1至图3,就本发明的X射线透射检查装置及X射线透射检查方法的 一个实施方式进行说明。本实施方式的X射线透射检查装置,如图1所示,具备X射线管形灯泡11,对测定 试料S照射其能量低于测定试料S所包含的一个元素的X射线吸收边且高于检测元素的X 射线吸收边的X射线;X射线检测器13,接受X射线透射测定试料S后的透射X射线并检测 其强度;以及显示部18,显示表示检测到的透射X射线的强度分布的透射像。此外,该X射线透射检查装置具备承载测定试料S而可以沿水平方向移动的试料 载物台即带式传送机16,和与上述各结构连接而分别进行控制的控制部17。再者,在X射线透射检查装置中,在测定试料S与X射线管形灯泡11之间,配置由 具有在来自该X射线管形灯泡的特性X射线的Kd射线与Κβ射线之间的能量的X射线吸 收边的元素形成的滤波器Fl。上述测定试料S为例如使用于锂离子二次电池的电极等,上述检测元素为例如作 为异物担心会混入到电极的Fe或SUS中的Cr。设检测元素为Fe时,上述X射线管形灯泡11采用具有Ni靶的Ni管形灯泡。从 上述Ni管形灯泡的X射线管形灯泡11射出Ni-K α特性X射线(7. 477keV)作为其能量高 于例如Fe的K吸收边(7. IllkeV)的X射线。此外,这时滤波器Fl采用Co箔。此外,设检测元素为Cr时,上述X射线管形灯泡11采用具有Fe靶的Fe管形灯泡。从上述Fe管形灯泡的X射线管形灯泡11射出Fe-K α特性X射线(6. 403keV)作 为其能量高于例如Cr的K吸收边(5. 988keV)的X射线。此外,这时滤波器Fl采用Mn箔。
此外,作为例子在以下的表1中示出在检测元素为Fe或Cr的情况下,作为X射线 可以采用的特性X射线的能量和作为滤波器Fl可以采用的元素的X射线吸收边的能量。表 1 这些X射线管形灯泡,通过施加在灯丝(阳极)与靶(阴极)之间的电压使从管 形灯泡内的灯丝(阳极)发生的热电子加速,与靶碰撞,将由此发生的X射线作为1次X射 线从铍箔等的窗射出。上述X射线检测器13是分别与对应的X射线管形灯泡11对置地配置于带式传送 机16下方的X射线线传感器。作为该X射线线传感器,采用通过荧光板来将X射线转换为 荧光并由排成一列的受光元件来转换为电流信号的闪烁器(scintillator)方式或将多个 半导体检测元件排成一列的半导体方式等。此外这些X射线传感器除了可以是排成一列的 线传感器以外,也可为受光元件排成二维的X射线区域传感器。上述控制部17是由CPU等构成的计算机。此外,运算部15是基于经由控制部17输入的来自X射线检测器13的信号进行图 像处理而作成透射像,再使该图像显示于显示部18的运算处理电路等。此外,也可以在上 述控制部17内设置运算部15的处理电路而将两者一体化。此外,显示部18可根据来自控 制部17的控制而显示各种信息。接着,参照图1至图3,就使用本实施方式的X射线透射检查装置的X射线透射检 查方法进行说明。在该X射线透射检查方法中,例如,设测定试料S为钴酸锂电极、在该钴 酸锂电极中包含的异物X为铁且检测元素为Fe,X射线管形灯泡11采用Ni管形灯泡。首先,通过带式传送机16,使测定试料S移动至与X射线管形灯泡11对置的位置。然后,从Ni管形灯泡的X射线管形灯泡11射出Ni-K α特性X射线作为X射线, 对测定试料S进行照射,同时利用X射线检测器13检测透射测定试料S后的透射X射线。这时,用带式传送机16来使测定试料S移动,从而扫描整体,根据透射X射线取得整体的强 度分布。这时,从Ni管形灯泡的X射线管形灯泡11射出的X射线(Ni-K α特性χ射线= 7. 477keV)是低于测定试料S即钴酸锂电池的构成元素之一 Co的X射线吸收边(7. 709keV) 且高于检测元素Fe的X射线吸收边(7. 112keV)的能量。因而,透射测定试料S的钴酸锂本 身,在作为异物X的铁中被吸收,从而得到较高的对比度像。而且,在对测定试料S进行照 射前,能量高于Co的X射线吸收边的特性X射线(Ni-K β特性X射线(8. 264keV)等)或 基本(background)的X射线被Co箔的滤波器Fl吸收而截断,只有大致Ni-K α特性X射 线(7.477keV)对测定试料S进行照射。在此,“测定试料所包含的一个元素”以按照本发明时使“对测定试料照射能量低 于测定试料所包含的一个元素的X射线吸收边且高于检测元素的X射线吸收边的X射线” 成立的方式选择为可成为测定试料的典型的元素。因而,在本实施例的情况下,由检测元素 和X射线的关系设钴酸锂电池的构成元素之一为Co。运算部15对这样得到的透射X射线的强度分布进行图像处理而作成透射像。此外,与没有异物的情况相比,对于钴酸锂电极的X射线透射率,例如混入了 20 μ m的Fe的异物的情况下,如图2所示,X射线透射率在能量相当于Fe的X射线吸收边 降低。此外,作为X射线的M-K α特性X射线具有与Fe的X射线吸收边的高能量相当的
能量°因此,如图3的(a)所示,在测定试料S的构成材料(在Al膜1的两面层叠钴酸 锂膜2的电极材料)有局部厚的部分2a的情况下,由Ni管形灯泡的X射线管形灯泡11产 生的透射像Tl中,与局部厚的部分Ia对应的部分中不会体现那么明确的对比度。此外,如 图3的(b)所示,在测定试料S中有Fe的异物X的情况下,由Ni管形灯泡的X射线管形灯 泡11产生的透射像Tl中,与异物X对应的部分显示明确的对比度。即,能量高于Fe的X 射线吸收边的Ni-K α特性X射线,由于X射线透射率相对Fe的异物X较低,所以透射异物 X的部分的量低于透射其它部分的量而成为暗部分,产生对比度。此外,以上例示了检测钴酸锂电极中的异物X的X射线透射检查方法,但是本发明 也可以同样地用在使用于锂离子二次电池的电极材料中使用于正极板的锰酸锂中的异物 的检查或使用于负极板的Al (铝)和C(石墨)的层叠材料中的异物的检查。关于针对这些材料的X射线透射率,在具有Fe的异物X的情况下X射线透射率在 Fe的X射线吸收边都降低。因此,在检测这些材料中的异物X时,也使用其能量低于构成该 材料的主要元素的X射线吸收边的能量且位于Fe的X射线吸收边的高能量的X射线(例 如,来自M管形灯泡的M-K α特性X射线),从而能够得到异物X的部分被强调的对比度 像。如此在本实施方式的X射线透射检查装置及X射线检查方法中,从对测定试料S 照射其能量低于测定试料中所包含的一个元素的X射线吸收边且高于检测元素的X射线吸 收边的X射线而取得的透射像Tl得到对比度像,因此能够得到关于特定的检测元素的明确 的对比度像。即,并不是白色X射线等的混合各种能量的X射线,而是对测定试料本身而言 是透射的,且在上述检测元素的X射线吸收边的高能量一侧具有X射线吸收边的特性X射 线,通过照射可令其透射X射线检测量上产生差异的特性X射线,即使存在原子序数接近的其它元素的情况下,也可以得到测定对象的元素的明确的对比度像。而且,在测定试料S与X射线管形灯泡11之间,配置由具有在来自该X射线管形 灯泡的特性X射线的Kd射线与Κβ射线之间的能量的X射线吸收边的元素形成的滤波器 F1,因此能够通过该滤波器Fl来截断不需要的放射线(从X射线管形灯泡11不仅射出特 性X射线,而且射出能量比它们高的特性X射线和基本的X射线)。因而,可以只抽取所希 望的特性X射线而对测定试料S进行照射,所以测定对象的元素的对比度更加鲜明。此外,在测定试料含有钴酸锂的情况下,设Fe为检测元素时,使用可以射出位于 Fe的X射线吸收边的高能量的Ni的特性X射线的Ni管形灯泡的X射线管形灯泡11,从而 能够由低价的X射线管形灯泡以明确的对比度像检测出Fe的异物X。此外,由于滤波器为Co箔,所以能够根据Co的X射线吸收边(7. 709keV)只抽取 Ni-Ka特性X射线(7.477keV)。即,通过Co的X射线吸收边(7. 709keV)截断Ni-Κβ特 性 X 射线(8. 264keV)。此外,在测定试料含有锰酸锂的情况下,设Cr为检测元素时,通过使用可以射出 位于Cr的X射线吸收边的高能量的Fe的特性X射线的Fe管形灯泡的X射线管形灯泡11, 能够由低价的X射线管形灯泡以明确的对比度像检测出包含Cr的SUS等的异物X。此外,当X射线管形灯泡11为Fe管形灯泡时,滤波器Fl为Mn箔,因此能够根据 Mn的X射线吸收边(6. 537keV)只抽取Fe-K α特性X射线(6. 403keV)。S卩,通过Mn的X 射线吸收边(6. 537keV)截断Fe-K β特性X射线(7. 057keV)。此外,本发明的技术范围并不局限于上述实施方式,在不超出本发明的宗旨的范 围内可做各种变更。(附图标记说明)11... X射线管形灯泡,13... X射线检测器,15...运算部,16...带式传送机, 17...控制部,18...显示部,Fl...滤波器,S...测定试料,Tl...透射像,X...检测对象 (异物)。
权利要求
一种X射线透射检查装置,其特征在于包括X射线管形灯泡,对测定试料照射其能量低于所述测定试料所包含的一个元素的X射线吸收边且高于检测元素的X射线吸收边的特性X射线;X射线检测器,接受所述特性X射线透射所述测定试料时的透射X射线并检测其强度;以及运算部,从表示检测到的所述透射X射线的强度分布的透射像得到对比度像。
2.如权利要求1所述的X射线透射检查装置,其中,在所述测定试料与所述X射线管形灯泡之间,还具备包含所述特性X射线的K α射线 与Κβ射线之间的能量的X射线吸收边的元素而成的滤波器。
3.如权利要求1所述的X射线透射检查装置,其中, 所述测定试料包含钴酸锂,所述X射线管形灯泡为Ni靶管形灯泡, 所述检测元素为Fe。
4.如权利要求2所述的X射线透射检查装置,其中, 所述测定试料包含钴酸锂,所述X射线管形灯泡为Ni靶管形灯泡, 所述检测元素为Fe, 所述滤波器为Co箔。
5.如权利要求1所述的X射线透射检查装置,其中, 所述测定试料包含锰酸锂,所述X射线管形灯泡为Fe靶管形灯泡, 所述检测元素为Cr。
6.如权利要求2所述的X射线透射检查装置,其中, 所述测定试料包含锰酸锂,所述X射线管形灯泡为Fe靶管形灯泡, 所述检测元素为Cr, 所述滤波器为Mn箔。
7.一种X射线透射检查方法,其特征在于包括特性X射线的照射步骤,对测定试料照射其能量低于所述测定试料所包含的一个元素 的X射线吸收边且高于检测元素的X射线吸收边的特性X射线;透射X射线检测步骤,接受所述X射线透射所述测定试料时的透射X射线并检测其强 度;以及运算步骤,得到作成表示检测到的所述透射X射线的强度分布的透射像而获得的对比度像。
8.如权利要求7所述的X射线透射检查方法,其中,所述特性X射线的照射步骤是在测定试料与所述X射线管形灯泡之间配置包含其能量 高于所述特性X射线的X射线吸收边的元素而成的滤波器,在通过滤波器后对所述测定试 料进行照射。
全文摘要
本发明涉及X射线透射检查装置及X射线透射检查方法,其中X射线透射检查装置包括X射线管形灯泡(11),对测定试料照射其能量低于测定试料所包含的一个元素的X射线吸收边且高于检测元素的X射线吸收边的特性X射线;X射线检测器(13),检测X射线透射试料时的透射X射线;以及运算部(15),从透射X射线的透射像得到对比度像。从而只将异物引起的对比度明确分辨而防止过检测及误检测。
文档编号G01N23/04GK101923061SQ201010208488
公开日2010年12月22日 申请日期2010年6月11日 优先权日2009年6月12日
发明者的场吉毅 申请人:精工电子纳米科技有限公司