一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
【专利摘要】本发明涉及一种半导体薄膜的制备方法,特指一种石墨烯修饰的多孔二氧化钛复合膜的制备方法,属于半导体【技术领域】。本发明采用聚苯乙烯微球为模板电沉积制得多孔二氧化钛薄膜,除去模板后通过洗涤、过滤、干燥、煅烧后得锐钛矿二氧化钛,再在薄膜上循环伏安沉积石墨烯即得到石墨烯修饰的多孔二氧化钛薄膜。该方法工艺简单,对人或环境无危害,价格低廉,易于控制,石墨烯层能覆盖在二氧化钛上,适合大规模工业化生产。
【专利说明】一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
【技术领域】
[0001]本发明涉及一种半导体薄膜的制备方法,特指一种制备石墨烯修饰多孔二氧化钛复合膜的方法,属于半导体【技术领域】。
【背景技术】
[0002]与其他碳材料相比,石墨烯具有良好的电学性能、机械强度和稳定性,是传输电子的优良材料,且石墨烯较大的比表面积也使其具有很强的吸附性能。单一的纳米材料已经无法满足人们对先进材料的需求,具有各种优良性能的纳米复合材料已受到人们的普遍关注。若将石墨烯复合到催化材料中,将得到多种性能显著提高的先进功能材料。相关研究表明,具有大的比表面积和高的导电能力的石墨烯不仅能有效降低二氧化钛的光生载流子的复合率,拓展其对光的吸收,还能有效提高二氧化钛对有机污染物分子的吸附能力。
[0003]石墨烯有多种制备方法,包括机械剥离,外延生长,化学还原和化学气相沉积,在这诸多方法中,尤以电化学还原最受关注。传统的电化学方法制备石墨烯通常分为两步:将氧化石墨溶液沉积到电极表面再进行还原。最新的研究发现采用循环伏安法可以一步实现氧化石墨烯在波碳电极上的还原和沉积。
[0004]纳米粒子具有小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应,常规半导体材料所没有的独特的光、电、磁、热以及光催化性能等,因而在纳米材料中不断得到发掘。纳米二氧化钛(Ti02)、氧化锌(ZnO)正是其中最具应用价值的材料之二,加之其化学性质稳定、来源广泛、成本低廉及无毒环保等特点,其应用研究涉及广泛。
[0005]纳米T12是一种宽禁带η型半导体材料,有独特的光电及光化学特性,由于尺寸小、比表面积大,表现出较高的化学活性和选择性,可作为活性物质用于多种催化反应中。由于其化学性质稳定、无毒、成本低等优点、非迁移性、荧光性、压电性、吸收和散射紫外线能力等特性,在光催化、太阳能电池、传感器、以及电子器件等领域具有广阔的应用前景。
[0006]与其他纳米晶体材料制备方法相比,电沉积法具备以下主要优点:(1)可在常温下进行;(2)可以获得晶粒尺寸在1-1OOnm的多种纳米晶体材料,并可以应用于批量生产;
(3)制得的纳米晶体材料密度高且孔隙率极低,结晶组织取决于电沉积参数,晶粒尺寸分布;(4)制备过程简单,可直接获得大批量纳米晶体材料;(5)电沉积法工艺灵活,膜层厚度易于控制,容易由实验室向工业生产转变;(6)有很好的经济性和较高的生产效率。采用本法制备石墨烯修饰的多孔二氧化钛薄膜,具有工艺简单、操作简便、对设备要求低、容易批量生产等优点。
【发明内容】
[0007]本发明以天然鳞片石墨制备氧化石墨并于磷酸盐缓冲液中超声分散得到氧化石墨烯、以硫酸氧钛为钛源,通过恒电势阴极电沉积法分别沉积并经相关后处理制得目标产物,原料易于得到,成本低廉,有利于工业化生产。
[0008]本发明的技术方案如下: 一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于采用电化学沉积法制备薄膜:
(1)根据无皂乳液聚合法合成聚苯乙烯(简写PS)微球,并以ITO导电玻璃为基底制备聚苯乙烯微球模板(参考文献:范荣玉,郑细鸣.无皂乳液聚合法制备单分散大粒径聚苯乙烯微球研究[J].广西轻工业,2007,2,34-36 ;淮路枫,杨明.无皂乳液聚合制备微米级单分散聚苯乙烯微球[J].武汉工业学院学报,2008,27 (4):30-32);
(2)首先配置先驱体溶液,电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液;然后进行电化学沉积,将硫酸氧钛溶液转入三电极体系沉积;
(3)将产物用去离子水冲洗、自然干燥,用甲苯冲洗以除去聚苯乙烯微球并煅烧,即制得二氧化钛薄膜;
(4)以天然鳞片石墨按照改进的Hummers方法制备氧化石墨,并于磷酸盐缓冲液中超声分散得到氧化石墨烯溶液;
(5)电化学沉积,将氧化石墨烯溶液转入新的三电极体系,采用循环伏安法室温下沉积石墨烯。
[0009](6)将得到的石墨烯修饰的多孔二氧化钛薄膜用去离子水冲洗、自然干燥、备用。
[0010]其中步骤(I)中制得的聚苯乙烯微球粒径为500nm,粒径分散度低。
[0011]其中步骤(2)中所述的硫酸氧钛浓度为0.015-0.025M ;所述的三电极体系中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,所述的沉积条件为室温下沉积,沉积时间15?30min,沉积电位-1.Γ-1.5V。
[0012]其中步骤(3)中所述的煅烧为400°C煅烧Ih。
[0013]其中步骤(4)中氧化石墨烯浓度为0.5mg mL'
[0014]其中步骤(5)中所述的新的三电极体系中将步骤(3)制得的二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极;所述的循环伏安法沉积石墨烯的循环电位范围-1.5?IV,速度50mv s_S循环圈数1(Γ30圈。
[0015]本发明的有益效果:
本工艺采用聚苯乙烯微球为模板,通过电沉积法制备纳米二氧化钛,除去模板后经煅烧过程得到的是锐钛矿二氧化钛多孔薄膜。后经电化学一步还原在多孔二氧化钛薄膜上沉积石墨烯。最终得到的多孔且修饰了具有优异导电性质的石墨烯的结构能够大大提高电极的电化学性质,如在双氧水等的检测试验中获得了优异的测试结果;且本工艺还具有易于控制,成本低,工艺简单的优点。
【专利附图】
【附图说明】
[0016]图1:㈧是实例I所得材料的SEM图,⑶是实例2所得材料的SEM图,(C)是实例3所得材料的SEM图,⑶是实例4所得材料的SEM图。
[0017]图2: (a )实施例1所得材料的XRD图,(b )实施例3所得材料的XRD图,(c )实施例4所得材料的XRD图。
【具体实施方式】
[0018]下面结合具体实施实例对本发明做进一步说明,但本发明的保护范围不限于此。
[0019]聚苯乙烯模板制备:
为除去苯乙烯中的阻聚剂,将苯乙烯依次用0.1 M NaOH溶液和二次去离子水洗涤四次。将15 mL洗涤好的苯乙烯单体与150 mL二次去离子水加入到250 mL的三颈烧瓶中,三颈烧瓶的颈口分别设有搅拌器、回流冷凝管和温度计,聚合反应前先通入高纯N2约10 min以除去瓶内与混合溶液中的空气,将引发剂过硫酸铵溶于10 mL 二次去离子水中,加热至70 °C后在20 min内滴加入到三颈烧瓶中,持续30 min搅拌使三颈烧瓶内充分均匀分散,反应在持续搅拌下进行冷凝回流6小时,反应温度控制在70±2 V,反应结束后,将制得的乳液使用双层快速滤纸进行抽滤以除去溶液中大颗粒聚合物,得到粒径均匀的PS微球乳液,静置备用。
[0020]在ITO玻璃片上组装单层PS微球模板之前,先将玻璃片分别用去离子水、乙醇、去离子水预处理。将准制备好的PS微球乳液滴在经过处理的水平横放的ITO玻璃片上,使其浸润,覆盖住指定区域,随后将该玻璃片垂直竖立使基片表面的微球乳液液体自然蒸发,从而得到单层PS微球模板。为增强PS微球与玻璃基片之间的结合力,将此模板在105 °〇条件下加热5 min。
[0021]实施例1:
1.配置先驱体溶液。电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.015M。
[0022]2.电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间15min,沉积电位-1.3V;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0023]3.电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数10圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥。其扫描电子显微镜图如图1中A图,XRD图见图2中a图。
[0024]实施例2:
1.配置先驱体溶液。电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.015M。
[0025]2.电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间15min,沉积电位-1.5V;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0026]3.电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数20圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥。其扫描电子显微镜图片如图1中B图。
[0027]实施例3:
1.配置先驱体溶液,电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.020M。
[0028]2.电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间15min,沉积电位-1.1V;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0029]3.电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数20圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥,其扫描电子显微镜图如图1中C图,XRD图见图2中b图。
[0030]实施例4:
1.配置先驱体溶液,电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.020M。
[0031]2.电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间20min,沉积电位-1.3V ;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0032]3.电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数30圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥,其扫描电子显微镜图如图1中D图,XRD图见图2中c图。
[0033]实施例5:
1、配置先驱体溶液,电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.025M。
[0034]2、电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间15min,沉积电位-1.3V;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0035]3、电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数30圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥。
[0036]实施例6:
1.配置先驱体溶液。电解液为水溶液体系,以硫酸氧钛(T1SO4)作为钛源配制电解液,硫酸氧钛溶液浓度0.025M。
[0037]2.电化学沉积,将先躯体溶液转入三电极体系,其中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,沉积时间30min,沉积电位-1.5V;沉积完毕将产物用去离子水反复冲洗、用甲苯冲洗除去模板、自然干燥、400°C煅烧lh,得多孔二氧化钛薄膜。
[0038]3.电化学沉积,将氧化石墨烯溶液转入三电极体系,其中以前面制得的多孔二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极,采用循环伏安法室温下沉积石墨烯,循环电位范围-1.5?IV,循环圈数30圈,速度50mv s—1 ;沉积完毕反复用去离子水冲洗、自然干燥。
【权利要求】
1.一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,采用电化学沉积法制备薄膜,按照以下步骤进行: (1)根据无皂乳液聚合法合成聚苯乙烯微球,并以ITO导电玻璃为基底制备聚苯乙烯微球模板; (2)首先配置先驱体溶液,电解液为水溶液体系,以硫酸氧钛作为钛源配制电解液;然后进行电化学沉积,将硫酸氧钛溶液转入三电极体系沉积; (3)将产物用去离子水冲洗、自然干燥,用甲苯冲洗以除去聚苯乙烯微球并煅烧,即制得二氧化钛薄膜; (4)以天然鳞片石墨按照改进的Hummers方法制备氧化石墨,并于磷酸盐缓冲液中超声分散得到氧化石墨烯溶液; (5)电化学沉积,将氧化石墨烯溶液转入新的三电极体系,采用循环伏安法室温下沉积石墨烯; (6)将得到的石墨烯修饰的多孔二氧化钛薄膜用去离子水冲洗、自然干燥、备用。
2.根据权利要求1所述的一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,步骤(I)中制得的聚苯乙烯微球粒径为500nm,粒径分散度低。
3.根据权利要求1所述的一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,步骤(2)中所述的硫酸氧钛浓度为0.015-0.025M ; 所述的三电极体系中以聚苯乙烯模板作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极; 所述的沉积条件为室温下沉积,沉积时间15?30min,沉积电位-1.1-1.5V.
4.根据权利要求1所述的一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,步骤(3)中所述的煅烧为400°C煅烧lh。
5.根据权利要求1所述的一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,步骤(4)中氧化石墨烯浓度为0.5mg mL'
6.根据权利要求1所述的一种石墨烯修饰的多孔二氧化钛薄膜的制备方法,其特征在于,步骤(5)中所述的新的三电极体系中将步骤(3)制得的二氧化钛薄膜作为工作电极,钼电极作为辅助电极,饱和甘汞电极作为参比电极; 所述的循环伏安法沉积石墨烯的循环电位范围-1.5?1¥,速度50!^ s'循环圈数.10?30圈。
【文档编号】G01N27/30GK104198560SQ201410411426
【公开日】2014年12月10日 申请日期:2014年8月20日 优先权日:2014年8月20日
【发明者】郝臣, 沈毓儒, 周瑞, 恽悦, 徐军浩, 周敏, 冯峰, 白毅, 王晓红 申请人:江苏大学