专利名称:非恒定功率条件下岩土热物性现场测试方法
技术领域:
本发明涉及一种工程现场测试方法,尤其涉及一种非恒定功率条件下岩土热物性现场测试 方法。
背景技术:
节能减排是保证社会和谐和经济可持续发展的一项重要措施,近年来,科技部、建设部 等都把利用浅层地能的地源热泵技术列入重点推广的建筑节能科技项目。在建筑供热空调中 采用地源热泵技术可以有效地提高一次能源利用率,减少温室效应气体C02和其它燃烧产生的
污染物的排放,是一种可持续发展的建筑节能新技术。
地下岩土热物性参数的测量值决定着地下换热器所需钻孔的数量及深度,从而直接影响 着地源热泵系统的初投资和运行情况。在施工现场进行岩土热物性的测试是目前世界上最有 效可行的方法。现场直接测量是在地源热泵工程现场钻孔并埋设地埋管,地上安装与地埋管 联通的测试装置构成闭合屈路,回路中充满水或者其它流体,循环流体被加热或冷却并在回
路中循环流动将热量或冷量释放给地下岩土,该现场测试工程按国内外规定大约要持续24-72 小时,而且整个测试过程中不能中^,且需加热或冷却功率较为恒定。但是在实际的工程施 工现场中,功率恒定条件很难得到满足例如发生电力供应中断、大功率工程设备的启停引 起工地当地电压的大幅度波动等,而制冷机组在现场向地下释放冷量更是难以保证功率恒定。 中国专利200610042581.0公开了 一种基于地源热泵的便携式岩土热物性测试仪及其方法 专利,但其也没有解决测试现场功率的不稳将会导致测试结果产生较大误差,而停电等将会 导致测试失败或测试周期大大延长等问题,这通常是设计和施工单位所不能容忍的,而且再 次测试也可能还会遇到新的电力供应等问题。
发明内容
本发明的目的就是针对目前岩土热物性测试过程中功率不稳,导致测试失败或测试周期 过长等问题,提供一种具有方法简单,操作方便,可有效克服电力供应中断和电压波动较大 造成的测试不准确等优点的非恒定功率条件下岩土热物性现场测试方法。
为实现上述目的,本发明采用如下技术方案
一种非恒定功率条件下岩土热物性现场测试方法,它的步骤为
1) 在需要测量地下岩土热物性参数的现场钻孔并埋设地埋管,地上安装与地埋管联通的 测试装置构成闭合回路;
2) 在回路中充满水或者其它流体,循环流体被加热或冷却并在回路中循环流动将热量或 冷量释放给地下岩土;
3) 现场测试时间通常持续24-72小时,选择适当的时间步长A"c将整个现场测试的时 间划分为n段,n〉0;
4) 当现场测试所施加的加热或冷却功率随时间进行发生变化时,将这种随时间进行变化 的热流用热流脉冲来进行表示;即一个作用时间在Ti<x<Ti+1之间的单个矩形脉冲可以理解为 两个阶跃热流叠加而得到的,以此推导出在对应的传热模型下管内循环流体在热流脉冲的影 响下的温度响应公式
<formula>formula see original document page 3</formula>(1)
当》。,洲=-》.^^当t〈0, g(i:)=0 ; 其中位(x)-f;必,为指数积分函数。
r产第i个时刻循环水平均温度,'c; r0=地下岩土初始温度,°c;
先=地下岩土导热系数,W/m-'C;
《,第i时刻的热脉冲,即第i个时刻的单位钻孔深度加热或释冷功率,W/m; "=钻孔半径,m;
J o=单位长度钻孔内热阻,°C,m/W; 产测试时间,S; r产第i个时刻的时间,S;
地下岩土热扩散率,m2/s; i-第i个时刻
5)在该数学模型的基础上,采用参数估计方法获得岩土热物性参数。 所述步骤3)中,时间划分时,先分析出现如电力供应中断和电压波动较大等功率不稳
定情况时加热或制冷功率随时间的变化规律,按时间划分成多个区间,每个区间的功率应较
为恒定,加热或制冷中断可视为功率为O。 所述现场测试时间通常持续24-72小时。
本发明将地埋管的传热过程看成受许多阶跃热流作用,进而将这些阶跃热流分解成多个 热脉冲的叠加,在此基础上利用线性叠加原理进行分析和建立数学模型。
本发明的有益效果是大大降低测试时对功率的稳定性要求,使得出现加热功率或制冷 功率不恒定情况时依然可进行地下岩土热物性参数的测量,从而大幅縮短测试时间和降低测 试成本。
图1现场测试流程图2用矩形热流脉冲近^l连续变化的热流; 图3两个阶跃热流叠加得到的矩形热流脉冲; 图4循环水平均温度测试结果与计算结果对比图。 其中,l.钻孔,2.地下埋管,3.测试仪器。
具体实施例方式
下面结合附图与实施例对本发明做进一步说明。 本发明的测试方法为
在现场直接测量是在需要测量地下岩土热物性参数的现场挖制钻孔1并埋设地埋管2, 地上安装与地埋下管2联通的测试仪器3构成闭合回路,回路中充满水或者其它流体,循环 流体被加热或冷却并在回路中循环流动将热量或冷量释放给地下岩土,如附图1。
现场测试时间大约持续24-72小时,选择适当的时间步长AT (时间步长即可固定,也可 变化),将整个现场测试的时间划分为n段(nM)),当现场测试所施加的加热或冷却功率随 时间进行发生变化(由于断电或者是电压不稳等因素),将这种随时间进行变化的热流用一系
列的热流脉冲来进行表示,如图2, 一个作用时间在Ti々^w之间的单个矩形脉冲可以理解为
两个阶跃热流叠加而得到的,如图3。以此推导出在对应的传热模型下管内循环流体在热流 脉冲的影响下的温度响应,如公式l。
<formula>formula see original document page 4</formula> (1)当"o,洲=—;
当t<o, gW=o 。
其中£/(x) = f*^,为指数积分函数。
r产第i个时刻循环水平均温度,'c; r0=地下岩土初始温度,°c;
Jt-地下岩土导热系数,W/nr°C;
《,-第i时刻的热脉冲,即第i个时刻的单位钻孔深度加热或释冷功率,W/m; ^-钻孔半径,m;
及0=单位长度钻孔内热阻,'C'm/W;
f测试时间,s;
r产第i个时刻的时间,s;
o=地下岩土热扩散率,m2/s;
i=第i个时刻。
5)在该数学模型的基础上,采用参数估计方法获得岩土热物性参数。
实施例
利用本发明方法对某工地地下岩土热物性参数进行了测试。本次测试地下埋管深度100 米,地质构成为l-3米为粘土, 3-100米为砂岩。测试开始后约24小时由于供电原因导致 测试仪加热中断约40分钟。后重启加热器,继续测试约4小时后,再次由于供电原因导致加 热中断约14小时。此后再次重启加热器,继续测试约6小时后,停止测试。测试结果为地下 岩土平均导热系数3.18W/m'C,平均容积比热2.59><106」/巾3'(:。图4是实际测量埋管循环水 平均温度随时间的变化与利用本发明中的数学模型根据测试结果计算得到的循环水平均温度 的对比。图4显示二者重合度较高,说明测试结果比较合理。另外根据手册"2003ASHRAE Handbook HVAC Applications",砂岩导热系数范围为2.1-3.5 W/m'C,容积比热为1.65-4.67 J/m3'C,利用本发明方法测得的结果亦在该范围之内,亦说明测试结果比较合理。
权利要求
1. 一种非恒定功率条件下岩土热物性现场测试方法,其特征是,它的步骤为1)在需要测量地下岩土热物性参数的现场钻孔并埋设地埋管,地上安装与地埋管联通的测试装置构成闭合回路;2)在回路中充满水或者其它流体,循环流体被加热或冷却并在回路中循环流动将热量或冷量释放给地下岩土;3)现场测试时间持续24-72小时,选择适当的时间步长△τ将整个现场测试的时间划分为n段,n>0;4)当现场测试所施加的加热或冷却功率随时间进行发生变化时,将这种随时间进行变化的热流用热流脉冲来进行表示;即一个作用时间在τi<τ<τi+1之间的单个矩形脉冲可以理解为两个阶跃热流叠加而得到的,以此推导出在对应的传热模型下管内循环流体在热流脉冲的影响下的温度响应公式当τ=0,q0=0;当τ≥0,当τ<0,g(τ)=0;其中为指数积分函数;Ti==第i个时刻循环水平均温度,℃;T0=地下岩土初始温度,℃;k=地下岩土导热系数,W/m·℃;qi=第i时刻的热脉冲,即第i个时刻的单位钻孔深度加热或释冷功率,W/m;rb=钻孔半径,m;R0=单位长度钻孔内热阻,℃·m/W;τ=测试时间,s;τi=第i个时刻的时间,s;a=地下岩土热扩散率,m2/s;i=第i个时刻;5)在该数学模型的基础上,采用参数估计方法获得岩土热物性参数。
2. 如权利要求1所述的非恒定功率条件下岩土热物性现场测试方法,其特征是,所述步 骤3)中,时间划分时,先分析出现如电力供应中断和电压波动较大等功率不稳定情况时加 热或制冷功率随时间的变化规律,按时间划分成多个区间,每个区间的功率应较为恒定,加 热或制冷中断可视为功率为0。
3. 如权利要求1所述的非恒定功率条件下岩土热物性现场测试方法,其特征是,将随时 间进行变化的热流用热流脉冲进行表示,而单个热流脉冲可认为有两个阶跃热流叠加而成。
全文摘要
本发明公开了一种非恒定功率条件下岩土热物性现场测试方法。它通过分析出现如电力供应中断和电压波动较大等功率不稳定情况时加热或制冷功率随时间的变化规律,按时间划分成多个区间,每个区间的功率应较为恒定(加热或制冷中断可视为功率为0),将地埋管的传热过程看成受许多阶跃热流作用,进而将这些阶跃热流分解成多个热脉冲的叠加,在此基础上利用线性叠加原理进行分析和建立数学模型,利用该数学模型并结合参数估计等方法可获得岩土热物性参数。
文档编号G01N25/00GK101430317SQ200810238160
公开日2009年5月13日 申请日期2008年12月9日 优先权日2008年12月9日
发明者于明志, 方肇洪, 赵啸琳, 魏建平 申请人:山东建筑大学