山东科威数控机床有限公司铣床官方网站今天是:2025-05-14切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

光纤微震感测系统的制作方法

时间:2025-05-14    作者: 管理员

专利名称:光纤微震感测系统的制作方法
技术领域
本发明总体上涉及微震感测领域,并且尤其涉及改善的光纤微震感测系统。
背景技术
地球的某些运动在本领域中可以被称为“微震”、“微震干扰”和/或“微震扰动”。例如,诸如由自然现象(例如,风力、海浪、地震等等)引起的地球颤动(例如,地壳板块运动)可以被认为是微震。此外,人为地球扰动(例如由水压致裂、蒸汽喷射、固碳等等引起的扰动)也可以被认为是微震。使用光纤感测系统来感测微震的技术是已知的。光纤感测系统被广泛用于感测干扰(例如,运动、加速度、声音等等)。这种光纤感测系统经常包括用于将干扰转换为光纤中的光的相变的变换器。用于感测微震的现有技术变换器具有多种缺陷。例如,某些光纤感测应用具有空间局限性,这限制了某些变换器设计的可应用性。此外,其中使用变换器(以及光纤感测系统的其它光学元件)的环境可能要求从许多传统变换器不能够获得或者不可用的灵敏度和控制。而且,许多光学变换器的操作受沿着不同运动轴的干扰负面影响。因此,期望提供改善的光纤变换器、光纤加速度计以及相关的光纤微震感测系统以解决这些和其它问题。

发明内容
根据本发明的示例性实施例,提供一种光纤微震感测系统。所述系统包括多个节点,所述节点中的每一个包括表面部分、地下部分以及在所述表面部分和所述地下部分之间延伸的光缆。所述表面部分包括(I)用于沿着所述光缆向所述地下部分发送光学信号的光源,以及(2)用于从所述地下部分接收沿着所述光缆传播的返回光学信号的光接收器。所述地下部分包括至少一个变换器,所述至少一个变换器中的每一个包括(I)被配置成紧固到感兴趣主体的固定部分,(2)相对于所述固定部分具有移动范围的可移动部分,(3)设置在所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块。所述光缆包括缠绕在所述至少一个变换器中的每一个的所述固定部分和所述可移动部分之间的一段光纤,所述一段光纤跨越所述弹簧。所述变换器可以被包括作为加速度计的一部分。所述变换器/加速度计可以包括关于彼此不互相排斥的各种附加特征。例如,所述质量块可以被配置成包围所述可移动部分(以及所述变换器的其它部分)。此外,所述质量块可以容纳所述加速度计的某些光学元件(例如,反射器、光纤耦合器等等)。此外,所述变换器的某些元件(例如,所述固定部分、所述可移动部分和所述弹簧)可以由整件材料形成。本发明的光纤微震感测系统的所述多个节点或者场节点可以是萨尼亚克干涉仪感测系统、迈克尔逊干涉仪感测系统和法布里珀罗干涉仪感测系统等等。应理解,本发明的前面的概括描述以及下面的详细描述二者都是示例性的,而不是限制性的。


通过结合附图阅读下面的详细描述能够最佳地理解本发明。应强调的是,根据惯例,附图中的各种特征未按照比例绘制。相反地,出于清晰目的,任意放大或者缩小各种特征的尺度。附图中包括下面的图图I是根据本发明示例性实施例的光纤加速度计的方框示意图;图2A-2H是根据本发明各种示例性实施例的变换器的横截面方框图;图2I-2J是根据本发明示例性实施例的变换器的俯视和仰视透视图;图3A是根据本发明示例性实施例的线性化萨尼亚克干涉仪的方框图;图3B-3C是根据本发明各示例性实施例的迈克尔逊干涉仪的方框图;图4A是根据本发明示例性实施例的多个多路复用萨尼亚克干涉仪的方框图;图4B是根据本发明示例性实施例的多个多路复用法布里珀罗干涉仪的方框图;图5是根据本发明示例性实施例的变换器的分解图;图6A-6B是图5的变换器的铰接体的俯视和透视图;图6C说明了图6A-6B的铰接体的示例性安装;图7A是根据本发明示例性实施例的变换器的局部方框图;图7B-7C是图7A的变换器的阻尼模式的方框图;并且图8是根据本发明示例性实施例的光纤微震感测系统的方框图。
具体实施例方式根据本发明的各种示例性实施例,提供光纤微震感测系统。例如,所述感测系统可以包括用于感测地球体积内的地下扰动的光纤传感器(也被称为光纤加速度计或者光纤干涉仪)的阵列。例如,所述阵列可以是光纤传感器的三维阵列。所述传感器的每一个包括一个或者多个光纤变换器(例如,可以使用三个变换器用于沿三个方向感测干扰)。所述传感器可以被设置成在多个维度上并且在多个深度上感测地下扰动/干扰,用于在所述体积中映射所述扰动。所述感测系统可以根据期望连续操作(或者可以在给定时刻、或者以预定时间间隔等等操作。)以连续生成数据,所述数据能够被处理用于生成在时间上识别所述扰动的源的子表面地图。图8示出了在地下体积816中包括用于感测扰动的多个场节点的示例性光纤微震感测系统。例如,第一场节点(在图8的左侧上由虚线包围围绕)包括地下部分802a、表面部分804a以及在地下部分802a和表面部分804a之间延伸的光缆806a。第二场节点包括地下部分802b、表面部分804b以及光缆806b ;并且第三场节点包括地下部分802c、表面部分804c以及光缆806c。如由包括地下部分802η、表面部分804η和光缆806η的第η场节点所表明的,在光纤微震感测系统中可以包括任意数量的附加场节点。
地下部分802a、802b、802c、802n的每一个包括至少一个光纤变换器。所述至少一个光纤变换器可以例如是这里描述的变换器中的任意一个。例如,所述至少一个变换器可以包括(I)配置成紧固到感兴趣主体的固定部分,(2)相对于所述固顶部分具有移动范围的可移动部分,(3)位于所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块。所述地下部分的这些和其它元件(例如,下面将要描述的光纤干涉仪的光学元件)可以被容纳在地下包围(例如,能够用作所述变换器的固定部分被紧固到其上的感兴趣主体的地下容器)内。本领域的普通技术人员将意识到,单个地下部分可以包括位于多个地下深度处的一个或者多个变换器(例如,其中所述一个或者多个变换器能够在每一深度处被容纳在地下包围内)。此外,在每一个感测位置处(例如,在给定深度处的地下包围内)存在被设置成在不同方向上感测干扰的多个变换器。例如,在给定感测位置处,一个变换器可以被配置成感测沿着X轴的干扰,另一个变换器可以被配置成感测沿着I轴的干扰,并且再一个变换器可以被配置成感测沿着垂直z轴的干扰,其中X轴、y轴和z值指代空间中的一组三个正交方向。表面部分804a、804b、804c、804n中的每一个包括(I)用于沿着光缆806a、806b、806c,806η向相应的地下部分发送光学信号的光源,以及(2)用于从所述相应的地下部分接收沿着所述光纤传播的返回光学信号的光接收器。即,表面部分804a、804b、804c、804n中的每一个包括光学/电子元件以通过使用光源经由各自光缆806a、806b、806c、806n提供光学照明而在各地下部分中询问下面的传感器;并且使用光接收器(并且如果期望,相位解调器)询问返回光学信号。当然,表面部分804a、804b、804c、804n中的每一个可以包括诸如附加光学元件、电子设备、数据存储、数据处理仪器(例如,用于经过过滤、毁灭等等对所接收的数据进行操作的处理器)、功率生成和存储仪器、通信仪器(例如,一个或者多个有线和/或无线通信收发器)等等的附加元件。在特定示例中,每个表面部分804a、804b、804c、804n可以包括用于生成用于在场节点内使用的功率的太阳能电池,以及用于提供用于在场节点内使用的备用或者不间断功率的电池或者其它功率存储元件(其中可以使用太阳能电池生成的功率和充电电路对这种电池进行充电)。光缆806a、806b、806c、806n中的每一条在其各自的地下部分和表面部分之间延伸。每条光缆806a、806b、806c、806n可以包括单个有源光纤,或者多个光纤。本领域的普通技术人员将意识到,在其中在给定感测位置处设置多个变换器的实施例中(例如,在给定深度处、在给定地下感测容器中等等),单个光纤可以用于感测每一个变换器处的干扰。此外,在其中给定场节点包括在多个深度处的感测位置的实施例中(其中每个感测位置可以包括多个变换器),单个光纤可以用于在每一个深度处感测干扰(并且在每一个深度处在全部变换器内)。当然,单独的光纤可以用于在每一个感测位置处或者在单个感测位置处的每一个变换器内进行感测。图8所示的光纤微震感测系统还包括远程节点812。远程节点812 (例如,通过有线连接810、通过无线通信收发器814、808a、808b、808c、808n等等)从每一个场节点接收数据,并且将所接收的数据转换为微震图像数据(例如,地下体积的映射)。即,远程节点812包含数据存储器(例如,数字数据存储器),并且可以包含用于使用感测的地震行为映射地下体积的数据处理仪器(例如,地下体积的三维映射)。可选地,与远程节点(和/或场节点)进行通信的附加节点(例如,另一远程节点、中间节点等等)可以用于执行地下体积的映射。远程节点本身可以包括在一个或者多个深度处沿着一个或者多个光缆的一个或者多个变换器(即,远程节点可以用作场节点中的之一,同时具有远程节点的功能)。图8示出了地下部分比地平面低一深度“d”。当然,深度“d”可以广泛变化,特别是在其中每一个场节点包括在多个深度处的感测位置的应用中。深度“d”的示例性范围可以是大于大致100英尺的深度,并且深度“d”的另一示例性范围在100到1000英尺之间。图8还示出了相邻场节点之间的间隔“SP”。间隔“SP”的示例性范围在20-100英尺之间。当然,尽管图8示出了以线性布置而设置的多个场节点,但是应该清楚的是,所述节点可以在各种不同的方向上延伸(例如,在与图8所示的场节点的线垂直的方向上)。在特定示例中,场节点可以被设置为网格配置(例如,场节点的行和列)。本发明的光纤微震感测系统利用用于感测感兴趣主体的物理干扰(例如,运动、加速度、扰动等等)的变换器(以及使用这种变换器的加速度计、干涉仪、传感器)。本领域的普通技术人员将意识到,光纤加速度计(有时被称为光纤传感器或者光纤干涉仪)是用于使用光纤技术测量感兴趣主体的物理运动的系统的元件。加速度计包括将感兴趣主体的
物理干扰转换为施加到变换器的一段光纤的应变变化的变换器。参考图1,光纤加速度计10包括光源20 (例如,LED、SLED、激光器等等)、传感器30 (例如,干涉仪)、光接收器60 (例如,以光电探测器为例的光学检测器)、用于从光源20向传感器30发送光的光纤40、以及用于从传感器30向接收器60返回光的光纤50。传感器30包括将机械或者物理运动(例如,加速度)转换为光纤中的应变(例如,纵向应变)变化的变换器。传感器30还包括用于将应变变化转换为经过光纤40、50的光的相位变化的其它光学元件。图2A-2H示出了可以被包括在图I的传感器30中的各种变换器。图2A示出了包括通过弹簧230分离的固定部分/卷筒(mandrel) 205和可移动部分/卷筒210的变换器200。光纤150 (被示出为位于卷筒205、210之间的虚线框)被缠绕在紧固卷筒200和可移动卷筒210周围,其中弹簧230向光纤150施加偏置张力(例如,光纤150的缠绕长度的示例张力大致在O. 1-4. O牛顿之间)。光纤150可以根据期望使用粘合剂(未示出)(例如,环氧树脂、丙烯酸粘合剂等等)在缠绕部分的端部处被紧固到卷筒205、210。质量块220被紧固到可移动卷筒210 (例如,使用诸如螺丝的紧固件、使用刚性粘合剂等等)。可选地,质量块220和可移动卷筒210可以由整件材料形成。卷筒205、210 (和质量块220)的示例材料是金属(例如,铝、不锈钢、铜等等)和塑料(例如,聚碳酸酯)。铰接体240a、240b (被设置在紧固卷筒205和质量块220之间)将可移动卷筒210 (以及质量块220)的移动范围限制到基本上沿着标注为轴“Y”的轴的方向,其中轴“Y”是基本上与包络质量块220的内壁部分220w平行的单个线性自由度(并且基本上与连接卷筒205和210的假想线平行)。在图2A的横截面图中示出的示例性铰接体240a、240b是在功能上与下面参考图5描述的铰接体210η类似的圆形铰接体。紧固卷筒205被刚性附接到感兴趣主体202、或者可以通过基板或者其它结构(未示出)被刚性附接到感兴趣主体202。在感兴趣主体202经历空间中的加速度(或者其它物理干扰)时,结果是紧固卷筒205和可移动卷筒210/质量块220之间的相对运动。该相对运动改变光纤150内的纵向应变。如上所述,光纤150中的该纵向应变的变化被转换为在光经过光纤150时光的相位变化。在图2Α所示的变换器200中(并且在如图2Β-2Ε以及图2G-2H示出的各种其它示例性变换器中),质量块220将紧固卷筒205、弹簧230和/或缠绕的一段光纤150中的至少一个包围在可移动部分210的移动范围内的至少一个位置内(或者每一个位置内)。即,质量块220基本上为圆柱形,其中圆柱形形状的内壁220w围绕(B卩,包围)紧固卷筒205、弹簧230和/或缠绕的一段光纤150的至少一个。通过利用质量块220包围这种元件,提供了各种优点。例如,由于质量块220的包围形状,每体积变换器提供的质量块相对高。此夕卜,包围形状有助于控制质量块220的重心。而且,质量块220的包围形状降低了对离轴激励的灵敏度。除非以其它方式表明,上面关于图2A描述的特征和细节可应用于在图2B-2H中示出的示例性实施例。图2B示出了包括紧固卷筒205a、可移动卷筒210a和分离卷筒205a、2IOa的弹簧230a的变换器200a。光纤150a缠绕在紧固卷筒205a和可移动卷筒210a周围。质量块220a被紧固到可移动卷筒210a,或者可选地,质量块220a和可移动卷筒210a可以由整件材料形成。紧固卷筒205a被刚性附接到感兴趣主体202a、或者可以通过基板等等被刚性附接到感兴趣主体202a。在感兴趣主体202a经历空间中的加速度(或者另一物理干扰)时,
结果是紧固卷筒205a和可移动卷筒210a/质量块220a之间的相对运动。该相对运动改变了光纤150a内的纵向应变,其中光纤150a中的这种纵向应变被转换为在光经过光纤150a时光的相位的变化。图2B与图2A的区别主要在于某些元件的形状;然而,所述元件的功能基本上相同。图2C与图2B基本上类似,除了所示出的元件具有以“b”代替“a”结束的附图标记。图2C与图2B之间的主要区别在于在图2C中弹簧230b是与上面参考图2A描述的铰接体240a、240b类似也能够提供铰接体功能以及偏置弹簧功能的弯曲的片金属弹簧(与图2B所示的线圈压缩方式弹簧相反)。当然,可以想到其它类型的弹簧部件。本领域的普通技术人员将意识到,所述质量块不需要是如图2A-2C所示的圆柱形包围质量块,即,可以想到其它形状。图2D-2E与图2B基本上类似,除了所示出的元件具有以“c”/ “d”代替“a”结束的附图标记;然而,所述包围质量块220c和220d的形状在图2D-2E中变化。在图2D中,包围质量块220c具有双锥形形状(与图2B中的圆柱形状相反)。在图2E中,包围质量块220d具有球形形状。与质量块220(上面结合图2A描述)相同,根据需要,质量块220c/220d在变换器的可移动部分的移动范围内(或者在移动范围内的至少一个位置处)包围变换器的其它部分。包围质量块的其它示例性形状包括锥形形状、菱形形状等等。本领域的普通技术人员将意识到,图2A-2H中示出的每一个变换器可以被包括在光学干涉仪(也被称为“传感器”)中。这种光学干涉仪包括执行包括通过变换器中的光纤的光的相位变化为光学强度变化的转换。根据本发明的某些示例性实施例,这些光学元件中的某些可以被设置在被紧固到可移动卷筒(或者与其集成)的质量块内。图2F与图2B基本上相似,除了所示出的元件具有以“e”代替“a”结束的附图标记,并且质量块220e与质量块220a相比具有不同的形状(以及附加的功能)。质量块220e在变换器的端部处(并且在某些实施例中在加速度计的端部处)在可移动卷筒210e上方延伸。质量块220e限定被配置成容纳所述加速度计的至少一个光学元件的体积。可以被容纳在质量块220e内的示例性光学元件包括光纤耦合器、反射器、光学源(例如,光源)、光接收器/检测器、光学消偏器、光缆延迟线圈以及相位调制器。在给定应用中根据需要,这些元件的任何部分和/或附加元件可以被容纳在质量块220e内。当然,图2F中示出的质量块220e的形状在本质上是示例性的-可以想到其它形状。此外,尽管质量块220e没有被示出为如上所述的“包围”质量块,但是本申请期望组合容纳光学元件并且包括上述的包围特征的质量块。图2G示出了其中紧固卷筒206f、弹簧230f以及可移动卷筒210f的每一个由单件材料制成的变换器200f。包围质量块220f可以被紧固到可移动卷筒210f,或者质量块220f可以与可移动卷筒210f被包括在单件材料中。与先前描述的实施例相同,紧固卷筒205f被刚性附接到感兴趣主体202f,或者可以经过基板等等被刚性附接到感兴趣主体202f。一段光纤150f被缠绕在紧固卷筒205f和可移动卷筒210f周围。否则,变换器200f的功能与上面关于图2A描述的功能基本上类似。图2H与图2B基本上类似,除了所示出的元件具有以“g”代替“a”结束的附图标记。图2H和图2B之间的主要区别在于在图2H中通过压缩波纹管元件230g提供弹簧功能。元件230g可以具有中空的圆形横截面,并且可以通过一个或者多个金属子元件限定、被设置成提供弹簧功能,但是也创建横向(和/或)扭转刚度,这对于本领域的普通技术人员来
说是已知的。图2I-2J是例如图2A-2H示出的变换器的俯视和仰视透视图,除了诸如包围质量块220的形状的明显区别。图2A-2H的每一个包括缠绕在紧固卷筒和可移动卷筒之间的一段光纤(例如,一段光纤150、150a、150b等等);然而,图2A-2H都没有示出进入(或者离开)变换器的光纤。即,在图2A-2H中,仅示出了缠绕在紧固卷筒和可移动卷筒之间的一部分光纤。图2I-2J示出了进入(和离开)变换器200η的光纤150η。变换器200η包括被紧固到包围质量块220η和可移动卷筒的顶板204a。顶板204η还被紧固到可移动卷筒(在图2I-2J中不可见)。变换器200η还包括安装板206η、底板208η (例如,保持环)以及圆形铰接体210η。底板208η用于将圆形铰接体2IOn紧固到质量块220η。安装板206η将圆形铰接体210η的内部区域紧固到紧固卷筒(在图2I-2J中不可见)。安装板206η也可以用于通过安装孔212η将变换器200η紧固到感兴趣主体(或者到插入结构)。下面将结合图5中提供的分解图来描述变换器200η的其它特征。如上所述,变换器可以被包括作为干涉仪的一部分,其中所述干涉仪将沿着变换器内的光纤150传播的光的光学相位的变化转换为离开所述干涉仪的光的光学强度的变化。根据本发明的变换器可以结合任意多个类型的传感器/干涉仪来利用,并且可以在任何多个变化的应用中使用。变换器的示例性传感器/应用包括光纤感测系统。示例性光纤感测系统包括萨尼亚克干涉仪感测系统、迈克尔逊干涉仪感测系统、法布里珀罗干涉仪感测系统、以及马赫曾德尔干涉仪感测系统。图3Α示出了包括单个传感器的线性化萨尼亚克感测系统,其中由于相对小的尺寸和低成本,这种萨尼亚克干涉仪可以是期望的。图3B-3C示出了迈克尔逊感测系统,每一个包括单个传感器。图4Α示出了包括多个传感器的多路复用萨尼亚克感测系统。图4Β示出了包括多个传感器的多路复用法布里珀罗感测系统。具体参考图3Α,光纤感测系统包括干涉仪300(即,作为线性化萨尼亚克干涉仪的传感器300)以及光源302和光接收器304。干涉仪300包括用于从光源302接收光学信号(例如,光)并且用于向光接收器304发送从干涉仪300出来的光学信号的光学耦合器310(例如,3X3光学耦合器)。光学耦合器310的第一输出引线310a被连接到延迟线圈320的输入引线320a。延迟线圈320的输出引线320b被连接到光学耦合器330 (例如,I X 2光纤I禹合器330)的第一输入引线330a。光学I禹合器310的第二输出引线310b被连接到消偏器340的输入引线340a。光学I禹合器310的第三输入引线未不出(由于其端部被打结和/或挤压以使得被反射回到光学耦合器310的光最小化)。消偏器340显著降低了偏振诱发的信号衰退,这允许对于全部光学部件和电缆光纤使用便宜的单模光纤而不是昂贵的偏振维持光纤。消偏器340可以是几种商业可获得的消偏器中的一种,例如以再循环耦合器(单级或者多级)或者利奥消偏器为例。消偏器340的输出引线340b被连接到光学率禹合器330的输入引线330b。光学I禹合器330的第一输出引线330c通过光纤150进入变换器200 (例如,其可以是在本申请内不出或者描述的变换器的任意一个)。光纤150在紧固卷筒和可移动卷筒(上面描述的)之间被包装(例如,期望的匝数),并且光纤150的远端端接于反射器350 (例如,宽带反射器350)。本领域的普通技术人员将意识到,感兴趣主体的物理干扰导致光纤150的长度的小变化。这些变化导致经过萨尼亚克干涉仪行进的光的相位的非交互变化,并且所述干涉仪通过允许在两个相对行进方向上行进的光之间的相干干涉、在光学耦合器330处重新组合而将所述光的相位变化转换为强度变化。光的这种强度变化被发送到光接收器304,其中这种强度变化通过连接到光接收器304的处理器306
被解释为感兴趣主体的运动/加速度/干扰。图3B-3C示出了迈克尔逊干涉仪光纤感测系统352、380。图3B中示出的系统352包括传感器352a处的内部调制,而图3B中示出的系统380包括外部调制(S卩,在传感器380a的外部)。具体参考图3B,光源354 (例如,激光器)向光学循环器356发送光学信号(例如,激光器光)。本领域的普通技术人员将意识到,光学循环器356允许光学信号仅从端口 I到达端口 2,并且从端口 2到达端口 3。从激光器354生成的光学信号从端口到达端口 2,并且从端口 2到达端口 3,并且在引线电缆358内沿着光纤长度360。在离开光学耦合器362 (例如1X2光学耦合器)时,光学信号在变换器200(例如,可以是在本申请内示出或者描述的任何变换器)和相位调制器376之间被分开。本领域的普通技术人员将意识到,相位调制器376可以包括基准线圈。被分开的光学信号经过变换器200内的光纤(包括缠绕的光纤长度150)并且经过相位调制器376且然后在反射器364、366处发生反射。反射器可以例如是法拉第旋转镜。所反射的光学信号在光学耦合器362处重新组合(相干地)并且在引线电缆358内沿着光纤360发送回到光学循环器356的端口 2。从端口 2,重新组合的信号进行到光学循环器356的端口 3,并且然后到光接收器368 (例如,光电探测器或者其它光学检测器)。该重新组合的信号(具有可以被相关到感兴趣主体的干扰的光学强度的变化)在光接收器368处被转换到通过相位解调器370接收的电子空穴对。相位解调器与处理器372进行通信以用于确定与感兴趣主体的物理干扰相关的期望信息。本领域的普通技术人员将意识到,相位解调器370可以生成沿着线374到相位调制器376的相位调制驱动信号(例如,载流子电压驱动信号)。即,用于控制相位调制器376的功率沿着线374(例如,铜绞线374)承载。图3C示出了向外部相位调制器384发送光学信号的光源382 (例如,激光器)。离开相位调制器的光学信号进入光学循环器386的端口 I并且经过端口 2离开。从端口 2,光学信号进入传感器380a的光学耦合器388,其中该光学信号被分开。即,该光学信号在变换器200(例如,可以是在本申请内示出或者描述的任意变换器)和基准线圈378之间被分开。所分开的光学信号经过变换器200内的光纤(包括缠绕的光纤长度150)并且经过基准线圈378,然后光学信号在反射器390、398处发生反射。反射器390、398可以例如是法拉第旋转镜。所反射的光学信号在光学耦合器388处相干地重新组合并且沿着光纤光缆发送回到光学循环器386的端口 2。从端口 2,重新组合的信号进行到光学循环器386的端口3,并且然后到光接收器396 (例如,光电探测器或者其它光学检测器)。该重新组合的信号(具有能够被相关到感兴趣主体的干扰的光学强度的变化)在光接收器396处被转换为通过相位解调器392接收的电子空穴对。相位解调器与处理器394进行通信以用于确定与感兴趣主体的干扰相关的期望信息。本领域的普通技术人员将意识到,相位解调器可以生成沿着线392a(例如,铜绞线)到相位调制器384的相位调制驱动信号(例如,载流子电压驱动信号)。如上所述,图3A-3C的示例性光纤感测系统的每一个包括单个传感器。当然,经常期望具有例如用于感测大面积内(和/或沿着相对长的长度)的干扰的多个传感器的光纤感测系统。例如,如上面关于图8所述,可以期望给定的场节点具有在多个深度处设置的变换器(或者一组变换器)。图4A-4B示出了包括多个传感器的光纤感测系统。具体参考图4A,多个线性化萨尼亚克干涉仪(例如,来自图3A的干涉仪300)包括在光纤感测系统400中。系统400包括光源20以及光接收器60。通过光学循环器404,光源20在每个干涉仪300的上游处利用光学耦合器402 (例如,I X 2分接头耦合器402)生成脉冲模式的光学信号,以允许时分复用操作,其中在不同时间在光接收器60处接收来自每一个干涉仪300的返回脉冲。即,分接头耦合器402用于在几个干涉仪/传感器之间将光学信号(例如,光源强度)分开。以脉冲形式发送光学信号,并且来自每一个干涉仪300的返回信号在不同时间返回到光接收器60,但是以其各自的位置顺序。返回信号包括与通过每一个干涉仪300测量的干扰成比例的强度信息,其中通过处理器406处理所述信息。图4B示出了包括用于生成光学信号的TDM(时分复用)询问器410的光纤感测系统408。在该不例性配置中,在每个变换器200的每一侧上设置FBG(即,光纤布拉格光栅)。每一个变换器及其周围的FBG可以被认为是干涉仪414a、414b等等。FBG 412a.412b.412c等等中的每一个用作局部反射器。询问器410 (典型地包括光源、相位调制器、光脉冲器、光接收器和相位解调器)初始化通过每一个FBG 412a、412b、412c等等局部反射的光学信号脉冲。在每一个FBG 412a、412b、412c等等构成的多个对处反射的光相干地组合。所组合的信号以时间顺序到达,使得TDM询问器410 (结合处理器416)能够确定由每一个变换器200处的干扰引起的光强度变化。图5是变换器200η (先前结合图2I-2J描述的)的分解图。图5示出了在邻近顶板204η的相同点处进入(和离开)变换器200η的光纤150η。顶板204η被紧固到包围质量块220η。光纤150η被缠绕在可移动卷筒210η和紧固卷筒205η之间。顶板204η被紧固到可移动卷筒210η,因此,包围质量块220η也经过顶板204η被紧固到可移动卷筒210η。偏置弹簧230η被设置在紧固卷筒205η和可移动卷筒210η之间。底板208η将圆形铰接体210η紧固到质量块220η。安装板206η将圆形铰接体210η的内部区域紧固到紧固卷筒205η。如上所述,安装板206η也可以用于将变换器200η紧固到感兴趣主体(或者到插入结构,未示出)。圆形铰接体210η限制被附接到其内径(在图5中,紧固卷筒205η被配置为附接到铰接体210η的内径)和其外径(在图5中,质量块220η被配置为附接到铰接体210η的外径)之间的对象的移动。更具体而言,圆形铰接体210η基本上将质量块220η (被紧固到圆形铰接体210η)和紧固卷筒205η之间的相对运动限制为基本线性运动。这种线性运动可以沿着上面参考图2Α-2Η描述的“Y”轴。图6Α-6Β示出了圆形铰接体210η的内径210nl和外径210η2。图6C示出了被紧固到结构#1的内径210nl,以及被紧固到结构#2的外径210η2。在根据本发明的某些变换器中,可以期望提供诸如弹性阻尼、流体阻尼等等的“阻尼”。即,经常期望通过吸收热形式的能量来降低变换器谐振峰值的质量因数。阻尼也被用于增加变换器在其谐振频率之下的灵敏度。图7Α示出了变换器200m(大部分与关于图2B中的变换器200a类似,除了使用附图标记字母“m”代替附图标记字母“a” )。变换器200m的区别在于包括弹性剪切阻尼元件224和弹性压缩阻尼元件226。如图7A所示,阻尼元件224被设置在紧固卷筒205m和质量块220m之间。此外,阻尼元件226被设置在质量块220m和感兴趣主体202m之间。图7B概念性示出了质量块220m和紧固卷筒205m之间的剪切阻
尼,而图7C概念性示出了质量块220m和感兴趣主体202m之间的压缩阻尼。这种阻尼技术可以被应用于在本申请中说明和描述的变换器。尽管主要相对于光纤微震感测系统描述了本发明,但是本发明并不局限于此。本发明的变换器、加速度计和光纤感测系统的其它示例性应用包括垂直地震剖面(VSP)、机器震动监视、民用结构(例如,坝、桥梁、堤、建筑物等等)监视、隧道检测、外围/边缘安全、地震监视、钻孔泄露检测、路床腐蚀、钢轨底座腐蚀等等。尽管结合刚性附接到感兴趣主体(或者经过基板或者其它结构刚性附接到感兴趣主体)的紧固卷筒描述了本发明的各种示例性变换器,但是其并不局限于此。例如,除了这种刚性附接,固定部分可以被磁化(或者包括磁化部分)以使得该固定部分可以紧固到感兴趣主体,其中所述感兴趣主体包括铁质材料。尽管上面参考某些特定实施例进行了说明和描述,但是本发明无论如何不旨在被局限于所示出的细节。而是可以在权利要求的等同物的范围内并且在不偏离本发明的精神的情况下在细节上做出各种变型。
权利要求
1.一种光纤微震感测系统,包括 多个节点,每个所述节点包括表面部分、地下部分以及在所述表面部分和所述地下部分之间延伸的光缆, 所述表面部分包括(I)光源,用于沿着所述光缆向所述地下部分发送光学信号,以及(2)光接收器,用于从所述地下部分接收沿着所述光缆传播的返回光学信号, 所述地下部分包括至少一个变换器,所述至少一个变换器中的每一个包括(I)被配置成紧固到感兴趣主体的固定部分,(2)相对于所述固定部分具有移动范围的可移动部分,(3)位于所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块,所述质量块包围所述可移动部分,并且 所述光缆包括缠绕在所述至少一个变换器中的每一个的所述固定部分和所述可移动部分之间的一段光纤,所述一段光纤跨越所述弹簧。
2.如权利要求I所述的光纤微震感测系统,其中所述地下部分包括光学元件,所述光学元件用于分离由所述光源生成的所述光学信号并且用于将由所述光学元件接收的光学信 号相干地重新组合为所述返回光学信号。
3.如权利要求2所述的光纤微震感测系统,其中所述光学元件是光学耦合器。
4.如权利要求I所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是萨尼亚克干涉仪感测系统。
5.如权利要求I所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是迈克尔逊干涉仪感测系统。
6.如权利要求I所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是法布里珀罗干涉仪感测系统。
7.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤中的至少一个包围在位于所述可移动部分的所述移动范围内的至少一个位置内。
8.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分包围在位于所述可移动部分的所述移动范围内的至少一个位置内。
9.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述弹簧包围在位于所述可移动部分的所述移动范围内的至少一个位置内。
10.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述一段光纤包围在位于所述可移动部分的所述移动范围内的至少一个位置内。
11.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤中的每一个包围在位于所述可移动部分的所述移动范围内的至少一个位置内。
12.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤中的至少一个包围在所述可移动部分的整个移动范围内。
13.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分包围在所述可移动部分的整个移动范围内。
14.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述弹簧包围在所述可移动部分的整个移动范围内的至少一个位置内。
15.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述一段光纤包围在所述可移动部分的整个移动范围内的至少一个位置内。
16.如权利要求I所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤中的每一个包围在所述可移动部分的整个移动范围内。
17.如权利要求I所述的光纤微震感测系统,其中所述弹簧是用于向所述一段光纤提供张力的偏置弹簧。
18.如权利要求I所述的光纤微震感测系统,还包括连接在所述质量块和所述固定部分之间以将所述可移动部分的所述移动范围限制到单个线性自由度的铰接体。
19.如权利要求18所述的光纤微震感测系统,其中所述移动范围沿着基本上与所述质量块的内壁部分平行的轴延伸。
20.如权利要求I所述的光纤微震感测系统,其中所述质量块和所述可移动部分一体形成为单件材料。
21.如权利要求I所述的光纤微震感测系统,其中所述质量块和所述可移动部分是附接到一起的分开结构。
22.如权利要求I所述的光纤微震感测系统,其中所述质量块基本上为圆柱形。
23.如权利要求I所述的光纤微震感测系统,其中所述质量块基本上为球形。
24.如权利要求I所述的光纤微震感测系统,其中所述质量块基本上为圆锥形。
25.如权利要求I所述的光纤微震感测系统,其中所述质量块基本上为菱形。
26.如权利要求I所述的光纤微震感测系统,其中所述质量块基本上为双锥形。
27.如权利要求I所述的光纤微震感测系统,其中所述质量块容纳所述地下部分的至少一个光学元件。
28.如权利要求27所述的光纤微震感测系统,其中所述至少一个光学元件包括光纤耦合器、反射器、光学消偏器、光缆延迟线圈以及相位调制器中的至少一个。
29.如权利要求I所述的光纤微震感测系统,其中所述固定部分包括用于被紧固到所述感兴趣主体的磁化部分,所述感兴趣主体包括铁质材料。
30.如权利要求I所述的光纤微震感测系统,其中所述弹簧包括压缩波纹管元件。
31.如权利要求I所述的光纤微震感测系统,其中所述地下部分的所述至少一个变换器包括所述至少一个变换器中的三个。
32.如权利要求31所述的光纤微震感测系统,其中所述变换器中的所述三个中的每一个被配置成在彼此不同的方向上感测沿着其各自一段光纤的干扰。
33.如权利要求32所述的光纤微震感测系统,其中所述地下部分被设置在地平面以下的至少100英尺的深度处。
34.如权利要求I所述的光纤微震感测系统,还包括与所述多个节点中的每一个节点进行通信的远程节点,所述远程控制节点被配置成从所述多个节点中的每一个节点接收数据,所述数据与由所述至少一个变换器感测到的干扰相对应。
35.如权利要求34所述的光纤微震感测系统,其中所述远程节点将从所述多个节点接收的所述数据转换为微震图像数据。
36.如权利要求I所述的光纤微震感测系统,其中所述地下部分包括多个所述变换器,所述多个变换器包括位于多个地下深度中的每一个深度处的所述变换器中的至少一个。
37.一种光纤微震感测系统,包括 多个节点,所述节点中的每一个包括表面部分、地下部分以及在所述表面部分和所述地下部分之间延伸的光缆, 所述表面部分包括(I)光源,用于沿着所述光缆向所述地下部分发送光学信号,以及(2)光接收器,用于从所述地下部分接收沿着所述光缆传播的返回光学信号, 所述地下部分包括至少一个变换器,所述至少一个变换器中的每一个包括(I)被配置成紧固到感兴趣主体的固定部分,(2)相对于所述固定部分具有移动范围的可移动部分,(3)位于所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块, 所述固定部分、所述可移动部分以及所述弹簧由整件材料形成, 所述光缆包括缠绕在所述至少一个变换器中的每一个的所述固定部分和所述可移动部分之间的一段光纤,所述一段光纤跨越所述弹簧。
38.如权利要求37所述的光纤微震感测系统,其中所述地下部分包括光学元件,所述光学元件用于分离由所述光源生成的所述光学信号并且用于将由所述光学元件接收的光学信号相干地重新组合为所述返回光学信号。
39.如权利要求38所述的光纤微震感测系统,其中所述光学元件是光学耦合器。
40.如权利要求37所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是萨尼亚克干涉仪感测系统。
41.如权利要求37所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是迈克尔逊干涉仪感测系统。
42.如权利要求37所述的光纤微震感测系统,其中所述光纤微震感测系统的所述场节点中的每一个是法布里珀罗干涉仪感测系统。
43.如权利要求37所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤中的至少一个包围在所述可移动部分的所述移动范围内的至少一个位置内。
44.如权利要求37所述的光纤微震感测系统,其中所述弹簧是用于向所述一段光纤提供张力的偏置弹簧。
45.如权利要求37所述的光纤微震感测系统,还包括连接在所述质量块和所述固定部分之间以将所述可移动部分的所述移动范围限制到单个线性自由度的铰接体。
46.如权利要求45所述的光纤微震感测系统,其中所述移动范围沿着基本上与所述质量块的内壁部分平行的轴延伸。
47.如权利要求37所述的光纤微震感测系统,其中所述质量块和所述可移动部分一体形成为单件材料。
48.如权利要求37所述的光纤微震感测系统,其中所述质量块和所述可移动部分是附接到一起的分开结构。
49.如权利要求37所述的光纤微震感测系统,其中所述质量块容纳所述地下部分的至少一个光学元件。
50.如权利要求49所述的光纤微震感测系统,其中所述至少一个光学元件包括光纤耦合器、反射器、光学消偏器、光缆延迟线圈以及相位调制器中的至少一个。
51.如权利要求37所述的光纤微震感测系统,其中所述固定部分包括用于被紧固到所述感兴趣主体的磁化部分,所述感兴趣主体包括铁质材料。
52.如权利要求37所述的光纤微震感测系统,其中所述弹簧包括压缩波纹管元件。
53.如权利要求37所述的光纤微震感测系统,其中所述地下部分的所述至少一个变换器包括所述至少一个变换器中的三个。
54.如权利要求53所述的光纤微震感测系统,其中所述变换器中的所述三个的每一个被配置成在彼此不同的方向上感测沿着其各自一段光纤的干扰。
55.如权利要求37所述的光纤微震感测系统,其中所述地下部分被设置在地平面以下的至少100英尺的深度处。
56.如权利要求37所述的光纤微震感测系统,还包括与所述多个节点中的每一个节点进行通信的远程节点,所述远程节点被配置成从所述多个节点中的每一个节点接收数据,所述数据与由所述至少一个变换器感测的干扰相对应。
57.如权利要求56所述的光纤微震感测系统,其中所述远程节点将从所述多个节点接收的所述数据转换为微震图像数据。
58.如权利要求37所述的光纤微震感测系统,其中所述地下部分包括多个所述变换器,所述多个变换器包括位于多个地下深度的每一个深度处的所述变换器中的至少一个。
59.—种光纤微震感测系统,包括 多个节点,所述节点中的每一个包括表面部分、地下部分、在所述表面部分和所述地下部分之间延伸的光缆、以及位于所述地下部分内的所述光缆的端部处的反射器, 所述表面部分包括(I)光源,用于沿着所述光缆向所述地下部分发送光学信号,以及(2)光接收器,用于从所述地下部分接收沿着所述光缆传播的返回光学信号, 所述地下部分包括至少一个变换器,所述至少一个变换器中的每一个包括(I)被配置成紧固到感兴趣主体的固定部分,(2)相对于所述固定部分具有移动范围的可移动部分,(3)位于所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块, 所述地下部分还包括光学元件,所述光学元件用于分离由所述光源生成的所述光学信号并且用于将由所述光学元件接收的光学信号相干地重新组合为所述返回光学信号, 所述反射器和所述光学元件中的至少一个被容纳在所述变换器的所述质量块内,并且所述光缆包括缠绕在所述至少一个变换器中的每一个的所述固定部分和所述可移动部分之间的一段光纤,所述一段光纤跨越所述弹簧。
60.如权利要求59所述的光纤微震感测系统,其中所述光学元件是光学耦合器。
61.如权利要求59所述的光纤微震感测系统,其中所述光纤微震感测系统的所述多个节点中的每一个是萨尼亚克干涉仪感测系统。
62.如权利要求59所述的光纤微震感测系统,其中所述光纤微震感测系统的所述多个节点中的每一个是迈克尔逊干涉仪感测系统。
63.如权利要求59所述的光纤微震感测系统,其中所述光纤微震感测系统的所述多个节点中的每一个是法布里珀罗干涉仪感测系统。
64.如权利要求59所述的光纤微震感测系统,其中所述反射器是法拉第旋转镜。
65.如权利要求59所述的光纤微震感测系统,其中所述反射器和所述光学元件中的至少一个被容纳在位于所述变换器的端部处的所述质量块的一部分内。
66.如权利要求59所述的光纤微震感测系统,其中所述质量块容纳所述光纤微震感测系统的至少一个附加光学元件,所述至少一个附加光学元件包括光学消偏器、光缆延迟线圈以及相位调制器。
67.如权利要求59所述的光纤微震感测系统,其中与所述可移动部分咬合的所述质量块包围所述可移动部分。
68.如权利要求67所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤的所述部分中的至少一个包围在所述可移动部分的所述移动范围内的至少一个位置内。
69.如权利要求67所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤的所述部分中的每一个包围在所述可移动部分的所述移动范围内的至少一个位置内。
70.如权利要求67所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤的所述部分中的至少一个包围在所述可移动部分的整个移动范围内。
71.如权利要求67所述的光纤微震感测系统,其中所述质量块将所述固定部分、所述弹簧以及所述一段光纤的所述部分中的每一个包围在所述可移动部分的整个移动范围内。
72.如权利要求67所述的光纤微震感测系统,其中所述质量块基本上为圆柱形。
73.如权利要求67所述的光纤微震感测系统,其中所述质量块基本上为球形。
74.如权利要求67所述的光纤微震感测系统,其中所述质量块基本上为圆锥形。
75.如权利要求67所述的光纤微震感测系统,其中所述质量块基本上为菱形。
76.如权利要求67所述的光纤微震感测系统,其中所述质量块基本上为双锥形。
77.如权利要求59所述的光纤微震感测系统,其中所述弹簧是用于向所述一段光纤提供张力的偏置弹簧。
78.如权利要求59所述的光纤微震感测系统,所述变换器还包括连接在所述质量块和所述固定部分之间以将所述可移动部分的所述移动范围限制到单个线性自由度的铰接体。
79.如权利要求78所述的光纤微震感测系统,其中所述移动范围沿着基本上与所述质量块的内壁部分平行的轴延伸。
80.如权利要求59所述的光纤微震感测系统,其中所述质量块和所述可移动部分一体形成为单件材料。
81.如权利要求59所述的光纤微震感测系统,其中所述质量块和所述可移动部分是附接到一起的分开结构。
82.如权利要求59所述的光纤微震感测系统,其中所述固定部分包括用于被紧固到所述感兴趣主体的磁化部分,所述感兴趣主体包括铁质材料。
83.如权利要求59所述的光纤微震感测系统,其中所述弹簧包括压缩波纹管元件。
84.如权利要求59所述的光纤微震感测系统,其中所述地下部分的所述至少一个变换器包括所述至少一个变换器中的三个。
85.如权利要求84所述的光纤微震感测系统,其中所述变换器中的所述三个中的每一个被配置成在彼此不同的方向上感测沿着其各自一段光纤的干扰。
86.如权利要求59所述的光纤微震感测系统,其中所述地下部分被设置在地平面以下的至少100英尺的深度处。
87.如权利要求59所述的光纤微震感测系统,还包括与所述多个节点中的每一个节点进行通信的远程节点,所述远程节点被配置成从所述多个节点中的每一个节点接收数据,所述数据与由所述至少一个变换器感测的干扰相对应。
88.如权利要求87所述的光纤微震感测系统,其中所述远程节点将从所述多个节点接收的所述数据转换为微震图像数据。
89.如权利要求59所述的光纤微震感测系统,其中所述地下部分包括多个所述变换器,所述多个变换器包括位于多个地下深度中的每一个深度处的所述变换器中的至少一个。
全文摘要
提供一种光纤微震感测系统。所述系统包括多个节点,所述多个节点中的每一个包括表面部分、地下部分和在所述表面部分和所述地下部分之间延伸的光缆。所述表面部分包括(1)光源,用于沿着所述光缆向所述地下部分发送光学信号;以及(2)光接收器,用于从所述地下部分接收沿着所述光缆传播的返回光学信号。所述地下部分包括至少一个变换器,所述至少一个变换器中的每一个包括(1)被配置成紧固到感兴趣主体的固定部分,(2)相对于所述固定部分具有移动范围的可移动部分,(3)位于所述固定部分和所述可移动部分之间的弹簧,以及(4)与所述可移动部分咬合的质量块。所述光缆包括缠绕在所述至少一个变换器中的每一个的所述固定部分和所述可移动部分之间的一段光纤的长度,所述一段光纤跨越所述弹簧。在所述变换器的一个公开方面,所述质量块包围所述可移动部分。
文档编号G01V8/16GK102792185SQ201080047846
公开日2012年11月21日 申请日期2010年10月22日 优先权日2009年10月23日
发明者A·H·谢尔贝特钱, D·T·贝提松, E·L·戈德纳, G·R·贝克, J·K·安德森 申请人:美国地震系统有限公司

  • 专利名称:一种用于全自动化学发光分析仪的试剂样品系统的制作方法技术领域: 本发明涉及ー种全自动化学发光分析仪模块,更准确地说,是涉及ー种全自动化学发光分析仪的试剂样品系统。背景技术: 在全自动化学发光分析仪器中样品仓和试剂仓是必不可少的组成
  • 专利名称:巷道在线指向测距仪的制作方法技术领域:本实用新型涉及测距仪,尤其涉及巷道在线指向测距仪。 背景技术:在隧道工程或矿山巷道掘进过程中,掘进面的测量是跟踪工程进展量的重要工 作,但这一工作目前是通过人工使用测量设备进行完成的。在某些条
  • 专利名称:椭球反光镜反射照度测量装置的制作方法技术领域:本实用新型属反光镜照度測量装置领域,尤其涉及一种旋转对称椭球反光镜反射照度測量装置。背景技术:照度測量是对自然环境或光源对环境照明亮度的測量。旋转曲面反光镜对光线有汇聚作用,但准确地将
  • 专利名称:车载电气调试装置的制作方法技术领域:车载电气调试装置技术领域:本实用新型涉及一种车载电气调试装置,特别适用于电力安装、变电站(配电室)继电保护试验时使用。背景技术::目前使用的电气调试装置或者笨重,或者现场组合接线,每次到现场工作
  • 专利名称:用于测量在供电网中的电流的装置的制作方法技术领域:本发明涉及ー种用于测量在供电网中的电流的装置,具有测量电流互感器和具有设置在电路板上的信号处理器以及具有用于装配该装置的旋紧固定部。背景技术:为了在导体系统中进行电流测量已知测量电
  • 专利名称:电子温度补偿型浮子流量计的制作方法技术领域:本实用新型涉及一种浮子流量计,尤其是一种能够修正浮子流量计由于温度弓I起的数据误差、提高浮子流量计的测量精确度的电子温度补偿型浮子流量计。背景技术:浮子流量计,又称为恒压降可变面积式流量
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12