专利名称:光谱感测设备、系统及方法
技术领域:
本发明涉及ー种光谱感测设备、系统及方法,尤其涉及一种能感测多个待测部的光谱感测技木。
背景技术:
传统的发光二极管(Light Emitting Diode,简称LED)在制造及封装阶段中,需要经过多次的光谱及电气特性的检测,以确保所制造出的LED的品质良好,或作为产品品质分类的依据。若在制造过程中发现整个芯片上的LED晶粒的良率不高,则整个芯片必须被报废掉,或者进行其他筛选藉以找出堪用的颗粒,以免浪费其他成本在后续制造エ艺及后续封装上。若发现LED晶粒的光谱特性不佳,则此LED晶粒必须被剔除棹,或者以较低价格 出售。 图I显示传统的积分球的应用的状态。如图I所示,一积分球1110耦接至一光谱仪1100。因为LED晶粒的指向性很强,所以已知技术中,主要利用积分球1110搭配光谱仪1100来感测半导体芯片1130上的光源(LED晶粒)1120的光谱特性。利用激光激发或通电的方式使其中ー颗LED晶粒1120发光,所发出的光线进入积分球1110而被均匀化,最后输出至光谱仪1100。然而,这种配置一次仅能感测ー个LED晶粒的光谱特性。以四英寸的芯片来说,其上长出的LED晶粒的数目大约是8*103颗,实务上每颗的光谱特性的测试时间约为70毫秒(ms),所以一片四英寸芯片上全部LED晶粒的感测时间为70ms*8*103 = 560秒,亦即将近10分钟左右的时间。由于LED的需求越来越高,目前以四英寸芯片生产LED的主流制造エ艺已经渐感不敷使用,故以8英寸芯片来制造LED的技术正在世界各国加紧研发之中。目前估算,配合制造エ艺的进步,8英寸芯片上所成长的LED晶粒的数目将可达2*105颗,如同样以每颗花费70毫秒的光谱感测时间计算,一片8英寸芯片上全部的LED晶粒的感测时间约为70ms*2*105=14, 000秒,亦即将近四小时之久。由于LED晶粒从长晶、配上电极、切割、到封装等等的制造エ艺上的多个环节需要多次光谱感測。因此,传统的感测设备并不适合未来大量的LED晶粒的感测。
发明内容
本发明的实施例的ー个目的是提供ー种能有效缩短感测时间的光谱感测设备、系统及方法。本发明的实施例提供ー种光谱感测设备,包括N个收光模块、一固定元件以及N个光谱感测模块。N个收光模块用于分别接收ー待测群组的N个待测部所输出的光线,其中N为大于I的正整数。固定元件用于将此等收光模块固定住,并将此等收光模块之间的相对距离维持固定,使N个待测部分别落在N个收光模块的收光范围内。N个光谱感测模块分别耦接至N个收光模块,用于分别通过N个收光模块接收N个待测部所输出的光线,并将各待测部所输出的光线分离成多个光谱分量,以获得对应于此等光谱分量的一光谱信号。
在一实施例中,待测部为光源。在另ー实施例中,待测部为LED晶粒。本发明的实施例更提供ー种光谱感测系统,用于感测一待测群组的多个待测部。光谱感测系统包括一点亮装置、多个光谱感测模块、一固定装置以及ー个定位装置。点亮装置用于点亮此等待测部,以使此等待测部输出光线。多个光谱感测模块用于分别接收此等待测部所输出的光线,并将各待测部所输出的光线分离成多个光谱分量,以获得对应于此等光谱分量的一光谱信号。固定装置用于将此等光谱感测模块固定住,并将此等光谱感测模块之间的相对距离維持固定。定位装置耦接至固定装置或待测群组,用于定位此等光谱感测模块或待测群组,以使此等待测部分别落在此等光谱感测模块的收光范围内,使此等光谱感测模块能分别接收此等待测部所输出的光线。本发明的实施例又提供ー种光谱感测方法,包括定位多个收光模块与一待测群组的多个第一待测部的相对位置,以使此等第一待测部分别落在此等收光模块的收光范围内,其中此等收光模块之间的相对距离維持固定;点亮此等第一待测部,以输出光线;以及 多个光谱感测模块分别通过此等收光模块接收此等第一待测部输出的光线,以进行光谱感測。基于上述,可以有效缩短LED晶粒等众多光源的感测时间,对于产能的提升是一大助益。为让本发明的上述内容能更明显易懂,下文特举数较佳实施例,并配合所附附图,作详细说明如下。
图I显示传统的积分球的应用的状态。图2显示应用于本发明的实施例的光谱感测模块的立体分解图。图3显示依据本发明第一实施例的光谱感测设备的示意图。图4显示依据本发明第一实施例的光谱感测方法的流程图。图5A至图分别显不收光模块的四个例子。图6A至图6C显示本发明的第二实施例的光谱感测设备的三个例子的操作示意图。图7A显示依据本发明第三实施例的第一例子的光谱感测设备的示意图。图7B显示沿着图7A的线7B-7B的剖面图。图7C显示图7A的局部放大图。图7D显示依据本发明第三实施例的第二例子的光谱感测设备的示意图。图7E显示沿着图7D的线7E-7E的剖面图。图8A与图SB显示依据本发明第四实施例的光谱感测设备的局部结构的示意图。图8C显示依据本发明第四实施例的LED晶粒的俯视图。图9显示依据本发明第五实施例的光谱感测设备的示意图。图10显示依据本发明第七实施例的光谱感测系统的示意图。图11显示依据本发明第八实施例的光谱感测系统的示意图。附图标AC:收光椎
NL :法线
OS :光线p、P:节距SI :光谱信号Slll S114:步骤SC :光谱分量X、Y、Z:坐标轴1、101、200、201A、201B、301A、301B、401、501、601 :光谱感测设备10、10M2、10M3、10M4、110、210、310A、310B、410、510 :收光模块10F、410F、510F、610F :固定元件11 :套筒1100:光谱仪IlA :吸光材料12 :贯通孔1M:固定座13M2 :透镜13M3 :准直镜13M4 :余弦校正器2,2'、2a、2b、2c、102、300、1120 :光源/LED 晶粒/待测部20、420、520 :光传输媒介/光纤21、421、521 :收光ロ端22、422、522 :出光 ロ端23、414、514 :核心24、330、350、415、515 :包覆层25,416 :保护层26、426:收光ロ3、103、1130 :芯片/待测群组30 :光谱感测模块30F:固定装置31 :本体310 :抗反射层32:输入部320 :基板33 :绕射光栅34 :感测器340、370:电极35 :杂散光滤除结构36 :波导片360 :薄金属层
380 :主动层40 :驱动机构4A、4B:区段50 :探 针组51、52:探针517:间隔件55:点亮装置60 电源供应器610、1110:积分球701、801 :光谱感测系统770 :定位装置
具体实施例方式第一实施例图2显示应用于本发明的实施例的光谱感测模块的立体分解图。图3显示依据本发明第一实施例的光谱感测设备的示意图。如图2与图3所示,本发明的实施例的光谱感测设备I包括N个收光模块10、一固定元件10F、N个光传输媒介20、N个光谱感测模块30以及一点亮装置55。N个收光模块10毎次可用来各别接收ー个光源2所输出的光线OS,其中N为大于I的正整数,于本实施例之第一例子中,N等于8。此外,于本实施例中,多个光源2是以LED芯片3上的LED晶粒为例子作说明,其中LED芯片3被定义为待测群组,而LED晶粒2与2,被定义为待测部。于本实施例中,LED晶粒必须配合各个收光模块10而发光,也就是让收光模块10所要感测的LED晶粒发光即可;其他不是收光模块10所要感测的LED晶粒不需要发光。如此ー来可避免邻近的LED晶粒的发光所造成的干扰,影响感测結果。点亮LED晶粒的方式有很多种,可以利用与收光模块10成一体的探针来一次点亮很多个LED晶粒,也可以利用与收光模块10独立的探针来一次点亮很多个LED晶粒,也可以利用激光光激发LED晶粒发亮的方式来点亮多个LED晶粒。这些点亮光源的装置可以被称为是点亮装置55,点亮装置55的配置位置对应于光源2的配置位置,以下会有更详细的说明。于本实施例中,是采用与收光模块10独立的多个探针组为例子作说明,其中以各个探针组的至少两个探针来接触对应的LED晶粒的阴极及阳极,以为LED晶粒通电而使LED晶粒发光。因此,一次可以点亮很多个LED晶粒。単一探针组的探针的数量大于2,一次可以接触很多LED晶粒,以多个探针接触芯片的多个LED晶粒,并通过控制器(未绘示)控制探针通电与否来分批点亮对应的LED晶粒。因此,这些探针每移动定位一次,即可分批进行多个LED晶粒的感测程序。这样就不需要一直移动探针,对于感测速度也有提升的效果。探针组的实施型态于第四实施例中有更进ー步的说明。固定元件IOF用于将此等收光模块10固定住,并将此等收光模块10之间的相对距离维持固定,使N个LED晶粒2分别落在N个收光模块10的收光范围内。如此ー来,在固定元件IOF与LED芯片3被相对于彼此定位后,每个收光模块10都可以收到对应的LED晶粒所输出的光线。
N个光传输媒介20分别连接至N个收光模块10。各光传输媒介20可以是光纤或其他能传输光的媒介,于本实施例中是以光纤作为例子来说明。光传输媒介20具有两端,其中一端为耦接至收光模块10的收光ロ端21,另一端为耦接至光谱感测模块30的出光ロ端22。光传输媒介20具有可挠性,当收光模块10被移动时,光传输媒介20会被牵引移动,而光谱感测模块30并不会被移动。如此ー来,可以省下移动光谱感测模块30的能量及成本。另外,由于光传输媒介20具有可挠性,光谱感测模块30所排列成的图案可以是相同于收光模块10所排列成的图案,或不同于收光模块10所排列成的图案,端视空间配置及设计需求而决定,于此不作特别限定。在本实施例中,是以收光模块10及光谱感测模块30排列成相同的图案为例子作说明。N个光谱感测模块30分别通过N个光传输媒介20耦接至N个收光模块10,用于分别通过N个光传输媒介20及N个收光模块10接收N个光源2所输出的光线OS。然后,光谱感测模块30对光线作解析的程序,各别将光源2所输出的光线OS依波长大小分离成多个光谱分量SC,以获得对应于此等光谱分量SC的一光谱信号SI。各光源2所输出的光线OS在分别被转换为光谱信号SI之后,就可以被传输至电脑或独立的分析系统(未显示)中,使分析系统根据光谱信号SI进行光源特性的检测判断,以让分析系统决定是否剔除光源2、确认其品质等级、或做出其他決定。微芯片式微型光谱仪或其他各式传统光谱仪都可被使用来当作光谱感测模块30。在本实施例中,是以微芯片式微型光谱仪为例子作说明。请再參照图2,各光谱感测模块30包括一本体31、ー输入部32、ー绕射光栅33以及一感测器34。输入部32配置于本体31中,并耦接至光传输媒介20的出光ロ端22(參见图3)及收光模块10,以接收ー待测部所输出的光线OS。绕射光栅33配置于本体31中,用于将上述光源所输出的光线OS分离成此等光谱分量SC。感测器34配置于本体31中,用于感测此等光谱分量SC以获得光谱信号SI。此外,各光谱感测模块30更包括ー锯齿状的杂散光滤除结构35及上、下波导片36。杂散光滤除结构35用于滤除杂散光,避免杂散光到达绕射光栅33及感测器34。波导片36用于避免光损失,让光线能在两波导片36之间反射行迸。于本实施例中,绕射光栅33的绕射结构是由半导体材料通过半导体刻蚀制造エ艺所形成。但其仅是ー种选择实施例。于其他实施例中,绕射光栅33的绕射结构可以通过离子反应刻蚀、激光加工、离子束加工、电子束加工、X光刻蚀、射出成型、压印或电铸制造エ艺而形成。如图3所示,光谱感测设备I更包括ー驱动机构40。驱动机构40稱接固定元件IOF与此等收光模块10,可用于移动此等收光模块10,使光谱感测设备I能分批感测LED芯片3上的多个待测部(LED晶粒)2。于本实施例中,驱动机构40是以机器手臂当作例子来作说明,可进行步进式移动或连续性移动,但其仅是ー种选择实施例。驱动机构40驱动此等收光模块10移动的方向包括水平方向(X、Y方向)及铅直方向(Z方向)。水平方向的移动可使收光模块10分次对准不同群组的N个LED晶粒2。铅直方向的移动可调整收光模块10与LED晶粒2的距离,以容许单ー LED晶粒2所输出的光线能在单ー收光模块10中传输,避免其他光源的光线在单ー收光模块10中传输。于其他实施例中,驱动机构40也可以耦接至LED芯片3,用于驱动LED芯片3移动,以取代驱动固定元件IOF移动的方式,同样能达成使LED芯片3与收光模块10相对移动的效果。因此,在第一实施的第一例子中,此光谱感测设备I可以通过多次移动与多次量测,来感测M个LED晶粒2,M为大于或等于N的正整数。N个收光模块10排列成ー图形,本实施例以直线图形为例进行说明,但其仅是ー种选择实施例。芯片3包括N个第一 LED晶粒2与N个第二 LED晶粒2',N个第一 LED晶粒2与N个第二 LED晶粒2'分别排列成与上述相同的图形。驱动机构40驱动此等收光模块10移动使N个收光模块10的收光范围分别对位于N个第ー LED晶粒2,以进行一第一光谱感测而获得第一光谱信号。然后,驱动机构40驱动此等收光模块10移动使N个收光模块10的收光范围分别对位于N个第二LED晶粒2,,以进行一第二光谱感测而获得第二光谱信号。在感测过程中,驱动机构40沿着Z轴移动收光模块10到达一定的高度,然后沿着XY平面移动收光模块10以与LED晶粒2对准,接着可以进行感测程序。假设相邻两个待测LED晶粒(2、2’)的中心点彼此间的距离(节距)为P、相邻两个收光模块10间的中心点间的距离(节距)为P。相邻两个收光模块10的节距P可以等于L*p,其中L为大于或等于I的正整数。于本实施例中L等于2,所以P = 2p。在一个区段4A中,驱动机构40于N个光谱感测模块30完成一次的感测以后会驱动N个收光模块10移动的距离等于此等LED晶粒2与2'的节距p。在收光模块10被驱动(L-I)次而完成L次感测后,驱动机构40继续驱动收光模块10跳至另一区段4B进行感測。这样设计的好处在于收光模块10的节距可以不必过于微小化,但仍能以阶段性的方式来感测具有微小节距的LED晶粒2。图4显示依据本发明第一实施例的光谱感测方法的流程图。如图4所示,本实施例的光谱感测方法包括以下步骤Slll至S114。于步骤S111,定位多个收光模块10与一待测群组3的多个第一待测部2的相对位置,以使此等第一待测部2分别落在此等收光模块10的收光范围内。于步骤SI 12,点亮此等第一待测部2,以输出光线。接着,于步骤S113,多个光谱感测模块30分别通过此等收光模块10接收此等第一待测部2输出的光线,以进行光谱感測。在上述的步骤Slll至S113的第一次光谱感测程序完成后,可于步骤S114,判断是否所有待测部已经被感测完毕。若是,则结束此方法。若否,则跳到步骤S111,对尚未检测的检测部执行步骤Slll至S113,直到所有的待测部已经被感测完毕为止。请注意,在其他实施例中,步骤S114也可以视情况作调整,例如也可依照一预定流程依序对不同群组的待测部进行检测。承上述,当还有待测部未被检测,可再回到步骤S111,移动此等收光模块10对位至未受检测的多个第二待测部2',以使此等第二待测部2'分别落在此等收光模块10的收光范围内。于步骤SI 12,点亮此等第二待测部2',以输出光线。于步骤SI 13,此等光谱感测模块30分别通过此等收光模块10接收此等第二待测部2'输出的光线,以进行光谱感測。因此,通过分批感测的方式,可以完成待测群组3的所有待测部的光谱感測。图5A至图分别显不收光模块的四个例子。如图5A所不,收光模块10包括一套筒11,套筒11的一端耦接至光传输媒介20的收光ロ端21,套筒11的另一端为自由端。套筒11具有一贯通孔12,其中LED晶粒2所输出的光线OS能经由贯通孔12进入收光模块10中。于第一例子中,光传输媒介20包括一光纤,光纤的核心(core) 23的直径大约是600微米,而LED晶粒2的直径大约是200微米。于图5A的第一例子中,围绕在核心23周边的是包覆层(cladding) 24,包覆层24的折射率小于核心23的折射率。保护层25包覆此包覆层24,用于提供保护的作用。另外,必要时可于套筒11的内壁涂布吸光材料11A,以避免附近其他LED晶粒2的光线或其他杂散光经由套筒11的内壁反射进入光传输媒介20之中。图5A的例子的优点在于所使用的材料精简,有助于降低成本。如图5B的第二例子所示,收光模块10M2类似于图5A的收光模块10,不同之处在于收光模块10M2更包括一透镜13M2。透镜13M2配置于套筒11的贯通孔12中,用于将LED晶粒2所输出的光线OS聚焦至光传输媒介20的收光ロ 26或收光ロ 26的中心附近。如此一来,可以进行较大角度的收光,以避免光损,或減少LED晶粒2的指向性对量测的影响。透镜13M2的型式及摆设位置并不特别受限于附图的内容。图5B的第二例子的优点在于使用透镜13M2来聚焦,有助于提高收光量,又可以利用透镜13M2来阻隔灰尘进入贯通孔12中。如图5C的第三例子所不,收光模块10M3类似于图5A的收光模块10,不同之处在 于收光模块10M3更包括固定于固定座13A中的一准直镜13M3,固定座13A安装于套筒11内。或者,于另一例子中,固定座13A可与套筒11 一体成型。如此,由LED晶粒2所输出的光线OS通过准直镜13M3以后,会变成实质上平行的光而进入到光纤的核心23中传输。于此例子中,贯通孔12的直径被设计成约等于核心23的直径。图5C的第三例子的优点在于使用准直镜13M3来产生平行光,有助于提高收光量,又可有效缩短收光模块10的长度。如图所不,第四例子的收光模块10M4类似于图5A的收光模块10,不同之处在于收光模块10M4更包括配置于套筒11的贯通孔12中的一余弦校正器(Cosinecorrector) 13M4。余弦校正器13M4是ー种具有朗伯(Lambertian)扩散特性的散光器(Diffuser),可改善收光模块10M4与LED晶粒2存在些微误差的问题。更具体地说,第四例子的收光模块10M4采用的是穿透式余弦校正器13M4,不管光源2是在图的左边位置还是右边位置,余弦校正器13M4有被光线OS打到的区域都会以朗伯光源的方式散射而进入到光传输媒介20之中。如此ー来,光传输媒介20所收到的光线的效果都是类似的,所以第四例子的收光模块10M4对于对位误差具有较大的容忍度,降低了对位所需付出的成本。特别是,将余弦校正器的尺寸加大,可以容忍更大的对位误差。值得注意的是,虽然上述的待测部是以本身可以发光的LED晶粒为例作说明,但其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求应用本发明的实施例来感测其他待测部。举例而言,于其他实施例中,待测部可以是本身无法发光的元件,但是可以反射或透射光线的元件,譬如是反射式、穿透式或半穿反液晶显示器的显示画素;也可以是排列整齐的样本,譬如血液样本、细胞样本、尿液样本,化学试剂样本、水质样本等,只要是以预设图案排列且经过点亮装置55点亮后能输出光线的元件都适用于本发明的实施例。需注意的是,针对不同应用,点亮装置55可依照其需求采用不同类型的点亮装置,例如也可采用具有特定波段的发光源。于此情况下,点亮装置55输出光束至分别落在N个收光模块10的收光范围内的此等待测部2,以使此等待测部2输出光谱感测模块30所需要感测的光线,譬如是反射光、穿透光或其他混合光。第二实施例在第一实施例中,用ー维的光谱感测设备来感测排列成ニ维图案的LED晶粒也是可行的,其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求而将收光模块排成ニ维图案,例如方 形或其他图形等,来感测排列成ニ维图案的LED晶粒。举例来说,图6A至图6C显示本发明的第二实施例的光谱感测设备的三个例子的操作示意图。如图6A所示,第二实施例的第一例子的光谱感测设备101亦可以用于感测排列成ニ维图案的半导体芯片103上的M*K个LED晶粒102,N*Q个收光模块110可以依序沿着X轴及Y轴移动,其中K与Q都是大于I的正整数。于本例子中,12个收光模块110排成ー个3*4的图案,每个收光模块110恰好可以对准ー个LED晶粒102,先通过收光模块110沿着X轴平移依次完成X轴方向上的LED晶粒102的感测之后,再于Y轴方向上平移到下一列的LED晶粒102,对下一列LED晶粒102进行感测,并重复如此沿着X轴及Y轴平移,即可以依序感测所有LED晶粒102的特性。这可以轻易由熟习本项技艺者轻易理解到,故于此省略其详细说明。但需特别说明者为图3的实施例中的一维光谱感测设备对于排列成ニ维图案的M*K个LED晶粒102的感测也同样适用,只要把上述N*Q个收光模块110「于Y轴方向上平移到下一列的LED晶粒102」的动作简单的视为图3的实施例里的N个收光模块10「跳至另一区段4B继续进行感测」的动作即可。第二实施例的光谱感测设备,通过多次移动与多次量测也可感测排列成ニ维图案的LED晶粒。其好处在于,依据待测群组的待测部的型态适应性地以ニ维图案配置光谱感测设备,可増加光谱感测设备的数目来缩短感测时间。ニ维图案的第二例子在设计选择上也可以如图6B所示,分别使用两组的光谱感测设备201A与201B的收光模块210A与210B从不同位置同时进行感测,图6B的实施例中每组光谱感测设备201A/201B各有4个收光模块210A/210B,其移动方向是ー样的,其移动的时序(timing)可以是同步也可以各组各自独立。这样设计的好处在于可以通过増加光谱感测设备的数目来缩短感测时间。值得注意的是,于其他例子中也可以使用三组或三组以上的光谱感测设备,以缩短感测时间。于图6C的第三例子中,分别使用两组光谱感测设备301A与301B的收光模块310A与310B从不同位置同时进行感测,收光模块310A与310B的移动方向是不同的,其移动的时序可以是同步也可以各组各自独立。这样设计的好处在于可以通过増加光谱感测设备的数目来缩短感测时间。值得注意的是,上述第一实施例的光谱感测方法同样适用于第二实施例。虽然于第二实施例中,收光模块的X与Y轴间距都是相同的,但是于其他实施例中,收光模块的X与Y轴间距也可以互为不同,收光模块的X轴间距也可不一定要维持固定,收光模块的Y轴间距也不一定要维持固定。第三实施例在第一实施例中,虽然使用的收光模块是与光纤接合的模块,但是其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求而利用光纤的末端来当作是收光模块来感测LED晶粒的光线。举例来说,图7A显示依据本发明第三实施例的第一例子的光谱感测设备的示意图。图7B显示沿着图7A的线7B-7B的剖面图。图7C显示图7A的局部放大图。关于收光模块的设计,经过精细的制作,也可以利用光纤的收光椎(acceptance cone)的特性将多条光纤的收光ロ端固定在一起,并直接以各光纤的收光ロ对准LED晶粒收光,而不需要额外的套筒透镜、或准直镜。如图7A至图7C所示,第三实施例的第一例子的光谱感测设备401类似于第一实施例,不同之处在于将所有光传输媒介420 (于本实施例包括光纤)的收光ロ端421固定在一起而形成多个收光模块410,并直接以各光纤420的收光ロ426对准LED晶粒2来收光。此光纤420具有一核心414、一个包围核心414的包覆层415及一个包围包覆层415的保护层416。为使光线能在核心414中传递,核心414的折射率须大于包覆层415的折射率,才能造成全反射。各光纤420的收光椎的角度譬如是24度。通过固定元件410F将所有光纤420的收光ロ端421固定在一起,使各收光ロ端421位于相对应的收光模块410中。固定元件410F的材质譬如是塑胶,可以采用射出成型的方式将光纤420 一次性地固定在一起,同时让收光模块的刚性提高,进而让机器手臂能精准地抓住收光模块来移动。第二实施例的第一例子的优点在于使用光纤来当作收光模块,相对第一实施例而言可以简化制造エ艺,降低成本。进ー步分析,于图7C中,中间的核心414对准ー LED晶粒2b。于此情况下,LED晶粒2b为待测部。位于收光椎AC里面的光源都会在核心414进行全反射最终输出到光谱感测模块30之中。位于收光椎AC外面的光源则会从核心414折射进入包覆层415,无法再回到核心414,因而无法从光纤的出光ロ端422输出。因此,只有ー个LED晶粒2b的光线会在核心414进行全反射,而相邻的LED晶粒2a及2c的光线并无法在核心414中进行全反射。如此ー来,依据光纤的收光椎的特性以及发光二极管的配置、配合调整收光模块410与LED晶粒的距离,即可进行感测工作。值得注意的是,从图7C的配置中可看出,收光模块410与LED晶粒的对位亦容许相当程度的误差范围,只要使收光椎AC的收光范围能涵盖LED晶粒2b但不涵盖相邻的LED晶粒2a及2c即可。于此例子中,因为相邻的LED晶粒2a及2c的光线不会干扰LED晶粒2b的光线,所以可以依据设计者需求采用一次点亮所有LED晶粒的点亮装置。在第三实施例的第一例子中,虽然使用的收光模块是具有保护层的光纤,但是其仅是ー种选择实施例。在其他例子中,本领域技术者可依其需求而利用不具有保护层的光纤来做为收光模块以感测LED晶粒的光线。举例来说,图7D显示依据本发明第三实施例的第二例子的光谱感测设备的示意图。图7E显示沿着图7D的线7E-7E的剖面图。如图7D与图7E所示,光谱感测设备501的光纤520包括核心514与包覆层515。光纤520的出光ロ端522连接至光谱感测模块30,收光模块510包括间隔件517与光纤520的收光ロ端521的ー个组合。间隔件517将所有光纤520的收光ロ端521固定在一起。因此,间隔件517属于除了光纤520以外的外加固定机构。第二例子的光纤520不同于第一例子的光纤420的是,光纤520仅具有核心514及包覆层515,但没有保护层,而光纤420有保护层416。因此,图7D的光纤520看起来比图7A的光纤420来得细。最后,在间隔件517的外部加上一个固定元件510F,用于将此等收光模块固定住。固定元件510F的材质为金属,可以让收光模块的刚性更为提高,进而让机器手臂能更精准地抓住收光模块来移动,达成本发明的实施例的功效。依据第三实施例的两个例子,可以得知不论光纤是如何被固定,只要足以将各光纤的收光ロ端固定以使收光ロ对准LED晶粒进行收光即可。此时,各光纤的收光ロ端即形成与图5A至图的收光模块具有相同作用的收光模块。第四实施例在第一至第三实施例中,收光模块虽以具有单纯收光功能为例进行说明,其中光、源的发光与否可以通过另ー模块(未显示)来控制,但其仅是三种选择实施例。在其他实施例中,本领域技术者可依其需求加入其他功能。举例来说,可将点亮装置整合于光谱感测设备,图8A与图SB显示依据本发明第四实施例的光谱感测设备的局部结构的示意图。图8C显示依据本发明第四实施例的LED晶粒的俯视图。如图8A所示,第四实施例类似于第ー实施例的图5C的例子,不同之处在于光谱感测设备200的点亮装置55包括多个探针组50 (为清楚起见,仅绘制出ー个探针组50)及ー电源供应器60。探针组50必须能接触到光源,所以探针组50的配置位置必须对应于光源的配置位置,也就是此等探针组50之间的相对距离維持固定,以执行点亮程序。各探针组50包括两探针51与52。两探针51与52固定在收光模块10中,但其仅是ー种选择实施例,只要使探针51与52能供电给光源即可。探针51与52分别接触其中ー个光源(譬如是LED晶粒)300的阴极340与阳极370。电源供应器60通过分别接触此等光源的此等探针组50提供电源给光源300,以分别点亮光源300而使光源300输出光线。本实施例的好处在于在光源还没被制造完成或封装而无法拉出供电引线以前,仍可通过探针组50提供电源给光源300来达成发光感测的功能,使得本发明 的实施例的应用层面更广,且可通过调整电源供应器60的电压来进行各种电压状态下的光源的特性。如图SB所示,以发光二极管当作光源300的例子作说明。发光二极管300包括一抗反射层310、一基板320、一 N型包覆层330、一第一电极(阴极)340、一 P型包覆层350、一薄金属层360、一第二电极(阳极)370以及ー个设置于N型包覆层330与P型包覆层350之间的主动层380。当第一电极340与第二电极370分别被探针51与52接触及通电时,主动层380会发出光线。探针51与52具有弹性碰触电极的特性,以避免接触不良或损坏电扱。如图8C所示,本实施例的第一电极340及第ニ电极370分别被设计成具有两种不同的图案。探针52/51可以接触电极340/370的区域范围的容许误差大,可以降低制造公
差的影响。由于LED的多个晶粒是依据预设的图案而成长在芯片上,在切割过程之前,多个晶粒之间的距离可以精准地受到控制,所以可采用本发明实施例的技术来执行感测。但是在切割过程以后,LED晶粒会发生位移。若切割后的各LED晶粒的位置可以被控制得很好,当然也可采用本发明实施例的技术来执行感测。或者,切割后的各LED晶粒可以依据预设的图案被安置于一封装基板上,当然也可以将各LED晶粒的位置控制得很好,同样也可采用本发明实施例的技术来执行感测。第五实施例在第一实施例中,收光模块虽以套筒式的收光模块为例进行说明,但其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求使用积分球来当作收光模块。举例来说,图9显示依据本发明第五实施例的光谱感测设备的示意图。如图9所示,本实施例的光谱感测设备601的收光模块包括多个积分球610及一固定元件610F。固定元件610F将此等积分球610固定住,并将此等积分球610之间的相对距离維持固定。于本实施例中,是将驱动机构40耦接至芯片3,用于移动芯片3进行定位及分批感测使用,这种驱动方式亦同样适用于其他实施例。单ー积分球610同时罩住芯片3上的其中多个光源2,用于使收光模块的收光范围一次能涵盖多个光源2。被积分球610罩住的光源2的数目取决于积分球的尺寸与光源2的大小及间距,于此不作特别限制。举例来说,在8英寸芯片上可以使用多个一英寸的积分球,将积分球610利用光纤20耦接至光谱感测模块30,仍然可以达成类似于第一实施例的效果。值得注意的是,被积分球610罩住的多个光源2的其中一个可以被点亮,而其他不被点亮。由于积分球610与芯片3的相对移动及定位较为耗时,点亮光源的程序所需时间较短,所以可以移动一次芯片3,分批点亮被积分球610罩住的不同的光源2,来节省更多的感测时间。第六实施例在第四实施例中,点亮装置虽以探针为例进行说明,但其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求采用其他点亮装置。举例来说,第六实施例使用的点亮装置包括ー种激光点亮装置,用于输出激光光束至分别落在此等收光模块的收光范围内的此等LED晶粒,通过光激发的方式使此等LED晶粒输出光线。即便激光光被收进光谱感测装置,通过光谱分析也可轻易地区分激光光与LED晶粒所输出的光线,所以激光光井不会影响LED晶粒的光谱感測。第七实施例在第一实施例中,光谱感测模块虽然以通过光纤及收光模块来执行感测程序为例进行说明,但其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求进行改变。举例来说,图10显示依据本发明第七实施例的光谱感测系统的示意图。如图10所示,光谱感测系统701包括ー个定位装置770、一点亮装置55、多个光谱感测模块30及一固定装置30F。固定装置30F用于将此等光谱感测模块30固定住,并将此等光谱感测模块30之间的相对距离維持固定。耦接至芯片3的定位装置770譬如是六轴定位装置,可以沿着六个轴移动及定位芯片3。六个轴的移动是通过沿着三个轴的平移及绕着三个轴的转动而达成。值得注意的是,于其他实施例中亦可使用三轴、四轴、五轴定位装置。点亮装置55用于点亮芯片3上的光源2。光谱感测模块30的功效如前所述。因此,定位装置770沿着多个轴移动及定位芯片3,以使此等光源2分别落在此等光谱感测模块30的收光范围内,使此等光谱感测模块30分别接收此等光源2所输出的光线。本实施例的优势在于可以省略光纤及收光模块的使用,減少感测成本。第八实施例
在第七实施例中,定位装置虽然以通过移动及定位芯片为例进行说明,但其仅是ー种选择实施例。在其他实施例中,本领域技术者可依其需求进行改变。举例来说,图11显示依据本发明第八实施例的光谱感测系统的示意图。如图11所示,本实施例的光谱感测系统801包括一点亮装置55、多个光谱感测模块30、ー个定位装置770及固定装置30F。点亮装置55用于点亮芯片3上的多个光源2。光谱感测模块30的功效如前所述。耦接至固定装置30F的定位装置770用于沿着多个轴移动及定位此等光谱感测模块30,以使此等光源2分别落在此等光谱感测模块30的收光范围内,使此等光谱感测模块30能分别接收此等光源2所输出的光线。本实施例的优势在于可以省略光纤及收光模块的使用,減少感测成本,更能減少移动芯片所造成的损害。通过本发明的实施例的光谱感测设备、系统及方法,可以有效缩短LED晶粒等众多光源的感测时间,对于产能的提升是一大助益。以上述8英寸芯片的感测而言,若N等于8,则所需的感测时间为14000/8 = 1750秒,整体时间缩短成1/8。本发明的实施例采取较大角度收光的方式,甚至利用透镜、准直镜及余弦修正器来将光线收集到光纤,可以缩短感测时间,并达到良好的感测效果。此外,利用探针组来对光源通电而使光源发光,可以让本发明的实施例的光谱感测设备的应用层面更广。在较佳实施例的详细说明中所提出的具体实施例仅用于方便说明本发明的技术 内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及以下申请专利范围的情况,所做的种种变化实施,皆属于本发明的范围。
权利要求
1.ー种光谱感测设备,其特征在于,所述的光谱感测设备包括 N个收光模块,用于分别接收ー待测群组的N个待测部所输出的光线,其中N为大于I的正整数; 一固定元件,用于将所述的多个收光模块固定住,并将所述的多个收光模块之间的相对距离維持固定,使所述N个待测部分别落在所述N个收光模块的收光范围内;以及 N个光谱感测模块,分别耦接至所述N个收光模块,用于分别通过所述N个收光模块接收所述N个待测部所输出的光线,并将各所述待测部所输出的光线分离成多个光谱分量,以获得对应于所述的多个光谱分量的一光谱信号。
2.如权利要求I项所述的光谱感测设备,其特征在于,所述的光谱感测设备更包括 N个光传输媒介,分别将所述N个收光模块耦接至所述N个收光模块。
3.如权利要求2所述的光谱感测设备,其特征在于,各所述收光模块包括 ー套筒,耦接至所述光传输媒介,并具有一贯通孔,其中所述待测部所输出的光线能经由所述贯通孔进入所述收光模块中。
4.如权利要求3所述的光谱感测设备,其特征在干,各所述收光模块更包括装设于所述贯通孔中的ー聚焦透镜、一准直镜或ー余弦校正器。
5.如权利要求2所述的光谱感测设备,其特征在于,各所述光传输媒介包括一光纤,各所述光纤的一收光ロ端位于相对应的各所述收光模块中,所述固定元件将所述的多个光纤的所述的多个收光ロ端固定在一起。
6.如权利要求I所述的光谱感测设备,其特征在于,所述的光谱感测设备更包括 ー驱动机构,耦接至所述固定元件或所述待测群组,用于驱动所述的多个收光模块或所述待测群组移动。
7.如权利要求6所述的光谱感测设备,其特征在于,所述N个收光模块排列成ー图形,所述待测群组包括N个第一待测部与N个第二待测部,所述N个第一待测部与所述N个第ニ待测部分别排列成所述图形;所述驱动机构驱动所述的多个收光模块或所述待测群组移动使所述N个收光模块的收光范围分别对位于所述N个第一待测部,以进行一第一光谱感测;所述驱动机构驱动所述的多个收光模块或所述待测群组移动使所述N个收光模块的收光范围分别对位于所述N个第二待测部,以进行一第二光谱感測。
8.如权利要求I所述的光谱感测设备,其特征在于,各所述光谱感测模块包括 一本体; ー输入部,配置于所述本体中,并耦接至所述收光模块,以接收所述待测部所输出的光线; ー绕射光栅,配置于所述本体中,用于将所述待测部所输出的光线分离成所述的多个光谱分量;以及 ー感测器,配置于所述本体中,用于感测所述的多个光谱分量以获得所述光谱信号。
9.如权利要求I所述的光谱感测设备,其特征在于,所述的光谱感测设备更包括 N个探针组,用于分别接触所述N个待测部,其中所述N个探针组之间的相对距离維持固定 '及 一电源供应器,耦接至所述N个探针组,用于通过所述N个探针组分别提供电源给所述N个待测部,以分别点亮所述N个待测部。
10.如权利要求I所述的光谱感测设备,其特征在于,所述的光谱感测设备更包括 一点亮装置,用于输出光束至分别落在所述N个收光模块的收光范围内的所述的多个待测部,以使所述的多个待测部输出光线。
11.如权利要求I所述的光谱感测设备,其特征在于,所述收光模块包括ー积分球,用于使所述收光模块的收光范围一次能涵盖所述待测群组的多个待测部。
12.ー种光谱感测系统,用于感测一待测群组的多个待测部,其特征在干,所述光谱感测系统包括 一点亮装置,用于点亮所述的多个待测部,以使所述的多个待测部输出光线; 多个光谱感测模块,用于分别接收所述的多个待测部所输出的光线,并将各所述待测部所输出的光线分离成多个光谱分量,以获得对应于所述的多个光谱分量的一光谱信号; 一固定装置,用于将所述的多个光谱感测模块固定住,并将所述的多个光谱感测模块之间的相对距离維持固定;以及 一定位装置,耦接至所述固定装置或所述待测群组,用于定位所述的多个光谱感测模块或所述待测群组,以使所述的多个待测部分别落在所述的多个光谱感测模块的收光范围内,使所述的多个光谱感测模块能分别接收所述的多个待测部所输出的光线。
13.—种光谱感测方法,其特征在于,所述的光谱感测方法包括 定位多个收光模块与一待测群组的多个第一待测部的相对位置,以使所述的多个第一待测部分别落在所述的多个收光模块的收光范围内,其中所述的多个收光模块之间的相对距离维持固定; 点亮所述的多个第一待测部,以输出光线;以及 多个光谱感测模块分别通过所述的多个收光模块接收所述的多个第一待测部输出的光线,以进行光谱感測。
14.如权利要求13所述的光谱感测方法,其特征在于,所述的光谱感测方法更包括 定位所述的多个收光模块与所述待测群组的多个第二待测部的相对位置,以使所述的多个第二待测部分别落在所述的多个收光模块的收光范围内,其中所述的多个第二待测部不同于所述的多个第一待测部; 点亮所述的多个第二待测部,以输出光线;以及 所述的多个光谱感测模块分别通过所述的多个收光模块接收所述的多个第二待测部输出的光线,以进行光谱感測。
全文摘要
一种光谱感测设备、系统及方法。光谱感测设备包括N个收光模块、一固定元件及N个光谱感测模块。N个收光模块用于接收一待测群组的N个待测部所输出的光线,其中N为大于1的正整数。固定元件用于将此等收光模块固定住,并将此等收光模块之间的相对距离维持固定,使N个待测部分别落在N个收光模块的收光范围内。N个光谱感测模块分别耦接至N个收光模块,用于分别通过N个收光模块接收并N个待测部所输出的光线,并将各待测部所输出的光线分离成多个光谱分量,以获得对应于此等光谱分量的一光谱信号。本发明可以有效缩短LED晶粒等众多光源的感测时间,对于产能的提升是一大助益。
文档编号G01J3/28GK102645276SQ20121003390
公开日2012年8月22日 申请日期2012年2月15日 优先权日2011年2月16日
发明者康启原, 柯正浩 申请人:台湾超微光学股份有限公司