山东科威数控机床有限公司铣床官方网站今天是:2025-06-09切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

自动运输工具装载系统及其方法

时间:2025-06-09    作者: 管理员

专利名称:自动运输工具装载系统及其方法
技术领域
本发明一般涉及物料搬运车辆,尤其涉及这样一种自动导引车辆,即使运输工具 (transport)底板相对装载仓(loading bay)或在运输工具底板和装载仓底板之间延伸的 对接坡道(dock ramp)的底板垂直偏移或成一角度,该自动导引车辆也能够自动装载和卸 载运输工具,包括以最小干扰装载和卸载与运输工具尾部接近的负载。
背景技术
自动导引车辆(automatic guided vehicle, AGV)的使用遍及物料搬运行业用于 运输负载。术语AGV—般用来指具有任意种多个可用自动导引系统的耐用性车辆设计。自 动导引小车(automatic guided cart,AGC)是一般用来指用于类似的设计但是应用复杂程 度较低的较低耐用性车辆的术语。本发明从头到尾(包括权利要求书),术语AGV指的是 AGV与AGC两者并包括这两者,以及自动导引的任意其它车辆。当前轻型AGV设计通常包括座身(frame),座身具有位于其四个角处的旋转脚轮 (swivel castor)。其它特征可能包括驱动轮组件以及用于在方向上控制小车的定向脚轮 (rigid castor)。在当前的一个设计中,将两个定向脚轮固定到座身,并且两个定向脚轮近 似位于小车座身每一侧的多个旋转脚轮之间的中间。两对旋转脚轮轴和定向脚轮轴一般彼 此平行。一般通过从小车座身装以铰链以及装载弹簧的板(Plate)将可驾驶驱动单元附在 小车座身上,以保证可驾驶驱动轮与支撑表面保持足够的牵引力。在另一实施例中,固定驱 动轮推动AGV,可驾驶脚轮指引AGV的移动。重型AGV设计通常包括重型座身以及至少三 个轮子,其中至少一个轮子为驱动轮,且至少一个轮子为由导引系统指引的舵轮(steering wheel)。这些AGV设计中的多个AGV设计与现存用于在制造或分配环境中移动负载的车辆 类似,但是前者为自动导引的。AGV包括控制其移动的导引系统。现在使用的已知导引系统包括有线导引、激光导 弓丨、磁带导引、里程计(odometry)导引、惯性导引以及光学导引,并且每种导引均具有自身 相关的优点和缺点。例如,惯性导引容易受到循迹误差的影响,其中AGV所测量的行驶距离 和方向与实际行驶距离和方向不同。尽管可将循迹误差最小化,但是经过长途行驶距离循 迹误差会更加严重,并且系统必须调节这些误差(例如通过利用沿指定路径的航点参考标 记(磁性涂料、射频识别(RFID)标签等)。激光导引系统使用由AGV感知并用来控制其行驶的特殊标记。这种系统容易受到 标记的障碍物的影响,最明显地,这种系统在行驶的任何环境下均需要存在标记。如果修正了 AGV的路径,则必须实体移动标记。进一步地,具有这种导引系统的AGV仅可在具有这些 特殊标记的区域中行驶,在本发明的上下文中这些特殊标记需要使所装载或卸载的任意运 输工具包括标记。与自动装载和卸载运输工具相关的一个难点在于运输工具相关于装载对接处的 可变位置。运输工具通常是被手动安置;例如在卡车的情况下由司机安置。这种人工安置 导致运输工具的位置具有不可知的变量。由于司机在装载对接处安置运输工具如拖车,他 或她可能不能很好地使拖车与对接门正对。这将使得拖车相对对接门成一倾斜角。由于这 个角是未知的并且可在对接处的每个位置变化,从而AGV不能有效地导引并传递拖车中的 负载,除非调节了倾斜或AGV具有检测并补偿这一拖车倾斜的能力。本领域已经通过使用 防滑板来关联对接处安置运输工具而解决了这一问题,然而这是一种成本高且效率低的工 序(process)。拖车还可能被安置为偏离相对于对接门的最佳位置。在通过AGV装载较宽 负载的过程中,小到一英寸的偏离在装载工序中也可能会产生问题。运输工具一般被安置在用于装载的装载仓门外部的运输装载区域内。运输工具安 置过程中以及运输工具与装载对接处之间的多种变量可能导致AGV装载运输工具的困难 (尤其是在运输工具端部)。与自动装载和卸载运输工具相关的困难在于AGV必须能够克 服运输工具与对接处之间的高度差。不同种类的运输工具以及不同类型的相同运输工具的 在高度上均会发生变化。进一步地,特定运输工具的高度不是固定的;由于随着运输工具被 装载,悬架将被压缩,导致运输工具高度的变化。为了允许耐用性操作,AGV必须能够操作 变化的运输工具高度以及从而操作在运输工具与对接处之间的变化的高度差。高度的变化 可能导致负载接触运输工具的顶棚或运输工具入口或开口(threshold)处的顶棚边缘。负 载与运输工具之间的任意接触将导致装载运输工具的问题。本领域通过使用液压或其它类 型的起重机(jack)稳定并拉平运输工具而解决了这一问题;然而,这是另一种成本高且效 率低的工序。运输工具的位置变化可能妨碍了运输工具的自动装载,并且几乎可以肯定会降低 其效率。例如,最有效的装载工序将多个负载安置为尽可能的彼此接近,并且运输工具期望 位置处的任意变化将会使得增加负载的分离。还可能产生其它问题,这将导致AGV的实际位置和导引系统所确定的期望位置之 间的区别。这种问题的一个起因是AGV在其上行驶的滑性表面包括装载仓平面、对接坡道 和运输工具底板。由于许多运输工具为普通的半卡车拖车,它们可能用于拖拉能够流出或 泄漏滑性物质的各种产品。运输工具还暴露在多种其它环境条件下,包括在运输工具平面 上凝结的湿气以及在某些情况下在运输工具平面上形成霜或冰层。可在各种设施处使用运 输工具,在某些情况下装载设备可将滑性物质如油、液压油以及其它液体泄漏到运输工具 平面上。由于AGV装载并卸载各种运输工具,从而这些物质可通过AGV轮传递到对接坡道 和装载仓底板。由于运输工具的底板和对接坡道可一般与水平面偏移某个角度,从而容易 使得AGV的轮打滑,无论其是否由水、冰、油或其它物质所引起的。任意轮打滑均可能导致 AGV的实际位置从AGV所确定的期望位置变化。如所期望的,期望位置与实际位置之间的任何差别均可能导致安置负载中的错 误、AGV或负载与运输工具的壁不期望的接触、或将来的导引错误。已经开发了某些系统保 证负载或AGV不接触运输工具的侧壁。一个这种解决方案已持续测量AGV从壁开始的距离并持续进行调节以使AGV保持在各壁之间居中。这一系统的一个问题在于其可能减缓运输 工具的装载和卸载,这是由于AGV必须持续测量并调节任意变化。对接坡道可补偿运输工具底板与装载仓底板的高度之间的任意变化。这两者之间 的转换可能需要对接处与运输工具之间具有陡的上坡或下坡,这可能导致导引困难以及拖 车尾部装载困难。例如,使用激光导引系统的AGV由于其上坡或下坡移动而可能会失去目 标,这是由于激光将对准目标上方或下方的事实。上述运输工具和运输装载区域设施的拖 车尾部装载的困难在于如果AGV不是相对运输工具底板具有相同角度(例如AGV的大部 分处在对接坡道或装载设施底板上),则AGV可能难以将其负载降到运输工具底板然后从 集装架袋(pallet pocket)去除其叉状件(fork)。尤其是,如果运输工具底板不垂直并成 角度的对准装载设施或对接坡道,则可能难以从集装架上的袋子去除叉状件,这是由于叉 状件的端部与顶部和底部之一接合并且距离AGV最近的叉状件的部分与顶部和底部的另 一个接合。因此,当AGV试图在抛落最后一个装载物之后退出运输工具时,最后一个装载物 可能会被与AGV—起拉回。由于将更多的装载物放入到运输工具中,从而悬架被压缩。由 于悬架压缩,从而拖车高度降低,而增加了运输工具平面与AGV的支撑表面之间的角度。对 接坡道典型地由铁制成并可为滑性的,导致导引系统的错误。

发明内容
根据上述内容,存在对显著地、有效率并准确地使用导引系统来自动装载并卸载 运输工具的AGV设计的需求。尤其是,本发明涉及这样一种AGV设计,该设计能够装载并卸 载可能不位于期望位置的运输工具并补偿或调节AGV的期望位置与实际位置之间的任意 变化而不需要持续更新,当将负载放置到运输工具或从运输工具取回负载时持续更新可能 会使AGV的移动变慢。基于本说明书和附图,对本领域普通技术人员而言显而易见地,为了符合这些和 其它需求,本发明涉及一种由AGV装载和卸载运输工具的方法和系统。首先将AGV与负载 接合。接着由第一导引系统将具有接合的负载的AGV导引到已知位置。在此位置,AGV确 定运输工具的位置接着进行将负载放置到运输工具上。接着AGV进入下一期望位置。在本发明的另一实施例中,首先将AGV与负载接合。接着由第一导引系统将具有 接合的负载的AGV导引到已知位置。在此位置,AGV确定运输工具上的适当装载位置,将其 自身调节为将具有负载的AGV导引到该位置,并堆积负载。接着调节后的导引系统用于导 引AGV回到近似上文描述的已知位置,其中接着将初始未调节的导引系统恢复对AGV的行 驶的控制。在本发明的另一实施例中,AGV扫描运输工具的位置以确定运输工具底板是否相 对于装载仓或对接坡道的底板垂直偏移或运输工具底板是否相对于装载仓或对接坡道的 底板成一角度。当最后一个AGV将最后一个负载,或者最后几个负载的一个放置在门内时, AGV将其叉状件调节为相对于AGV成一角度以补偿任意角度或垂直偏移,从而AGV的叉状件 顺利地进入或离开集装架袋而并未改变放置的负载的位置。因此,系统积极地测量运输工 具的位置并补偿放在运输工具门内的最后一对负载上的AGV的叉状件的位置。在另一实施例中,AGV在运输工具内使用规律更新而不是持续更新,以检查AGV的 期望位置与AGV的实际位置相匹配。尤其是,如果需要,激光传感器或其它传感器可以以规律间隔扫描运输工具内部并更新运输工具内的AGV的位置。规律更新使需要确定位置的工 序时间最短,且仍保证了 AGV上的导引系统准确地确定运输工具内的AGV的位置。
在如下详细描述、权利要求和附图中,本发明的更大的范围和可应用性将变得明 显。然而,应当了解,由于本发明精神和范围内的各种变化和变型将对本领域普通技术人员 而言是明显的,从而当示出本发明的优选实施例时,将仅通过说明给出详细描述和特定实 例。


从下文给出的详细描述、所附权利要求以及附图中,将更完整地理解本发明,所述附图中
图1为根据本发明的AGV的俯视图2为根据本发明的AGV的侧视图3为根据本发明的AGV的主视图4a-图如为根据本发明的装载的运输工具的俯视图5为装载工序的示例性流程图6为替代AGV的俯视图7为替代AGV的侧视图8为运输工具相对于AGV系统和装载区域的俯视图9为携带负载的示例性AGV的视图10为装载区域的视图,其包括在被装载的装载仓内的运输工具;以及
图11为示出运输工具的局部剖视图,运输工具的底板低于装载区域的底板。
具体实施例方式参见附图,示出并描述根据本发明的自动导引车辆10。要知道,根据本发明的自动 装载和卸载运输工具的应用可用于超出图示的AGV的各种应用。例如,本发明可使用多种 配置的自动导引车辆,以及其它物料搬运车辆。AGV 10包括转向和驱动机构,其用于驱使AGV 10和使AGV 10转向。在附图中示 出,转向和驱动机构包括驱动轮12和可转向轮14,其中驱动轮12和可转向轮14与导引系 统耦合并用于驱使AGV 10和使AGV 10转向。由于驱使AGV 10从而导引系统转动可转向 轮14,因此使AGV 10转向。此外,驱动轮12优选为串联连线的双驱动轮以生成电位差。也 可使用不同推进系统,例如用旋转脚轮或通过使用驱动轮的主/从马达控制器进行差动或 “装甲车”转向。导引系统可为任意数量的已知导引系统的一个。在一优选实施例中,使用了两个 导引系统,在下文中将进行完整描述。初级导引系统为惯性导引系统。优选系统使用编程的 行驶路径。可转向轮14的位置是已知的并能够进行操纵。优选但不一定是通过滚轮(track wheel)来测量AGV 10行驶的距离和方向。在每个驱动轮上具有编码器且具有转向编码器 的系统可用于与滚轮连接或从滚轮分离,以跟踪AGV 10行驶的距离和方向。当AGV 10行 驶时,可转向轮14在特定距离转动到特定位置。以此方式,AGV 10可用于通过仅指定可转 向轮14的位置和在该位置时行驶的距离,来行驶经过几乎所有表面。仅通过图示给出详细描述,并且将不同类型的导引系统(例如激光导引系统)用作初级导引系统落在了本发明 的精神和范围内。AGV 10还包括装载捕捉机构,例如夹子;或优选用于接合装载物60的图示的双叉 状件(fork pair) 16。如本领域所公知的,装载物60优选包括集装架(pallet) 72,其具有 用于与双叉状件16接合的叉状件袋或集装架袋74。如本领域所公知的,双叉状件16通常 包括水平段62、垂直段70以及在其间形成过渡部分的段68。水平段62通常包括当AGV 10 举起集装架72时与集装架72接合的较低表面64、较高表面63。水平段62还包括叉状件 端66。双叉状件16的垂直段64耦合到升降机构18或机柱(mast)。升降机构18允许装 载物升高或降低到各个高度,用于例如将装载物彼此堆叠。叉状件16通常安装到叉状件托 架(fork carriage) 17上。叉状件16耦合到叉状件托架17,其顺次耦合到升降机构18。在 优选实施例中,AGV 10还包括两部距离传感器,后置距离测量装置20以及前置距离测量装 置30。如下文中完整描述的,将两部距离测量装置操作为耦合到转向和驱动机构,用于导引 AGVlO。上述装载捕捉机构能够通过侧移机构22来水平移动接合的负载。如图3所示,升 降机构18可装备有两个双叉状件16。双叉状件16的每一个安装到分离的叉状件托架17, 每个叉状件托架17安装到升降机构18。升降机构18可根据需要一起提升叉状件托架17 以垂直地放置双叉状件16和/或负载。叉状件托架17还安装在垂直滑面15上,其可装备 有液压缸以在除了由升降机构18提供的任意举起能力之外还容许每个双叉状件16具有高 达六英寸的独立举起能力。此独立举起容许AGV行驶并将其双叉状件16定位到一对相邻 负载。仅提高一个双叉状件16六英寸容许AGV从一对相邻负载获取单个负载。同样的操 作连同侧移机构22容许AGV并排或以单个装箱储藏架(bin storage rack)来放置两个负 载。为了提供侧移能力,每个叉状件托架17装备了具有链驱动的液压马达M。链25将叉 状件托架17拉到期望位置。在优选实施例中,将托架滑轨沈设计为容许叉状件托架17行 驶经过中心,从而AGV能够在AGV的中心位置抛落负载。为此,一个双叉状件16移动到一 侧并不挡住道路,从而允许另一个双叉状件16放置在AGV的中心处。侧移机构22协同升降机构18和AGV 10的前向和后向行驶,当负载接合到AGV 10 的负载捕捉机构时允许负载在整个三维上进行调节。在图1示出的优选实施例中,双叉状 件16的每一个能够水平地单独移动,即沿箭头31的方向。此外,侧移机构22的每一个包 括用于追踪双叉状件16的移动的编码器23。这些编码器23优选能够追踪双叉状件16的 位置和该位置在水平方向上的变化率。这些编码器23与AGV 10的导引系统进行通信并用 于适当地放置双叉状件16。结合装载运输工具50的描述,在下文中更完整地描述双叉状件 16的水平移动。上述AGV 10设计为用于自动装载和卸载运输工具50。将关联工厂的装载对接位 置处的卡车拖车来描述这些工序,但是可对任意类似的运输工具50 (例如平板拖车或轨道 车)描述类似工序。自动装载运输工具:为了装载运输工具50,AGV 10必须首先接合负载。在优选实施例中,如上文所述, 通过使用与负载的叉状件袋(经常与集装架集成的)匹配的AGV 10的双叉状件16并通过 使用将负载从底板升空的升降机构18,来完成本优选实施例。将双叉状件16与叉状件袋匹配是困难的操作,并需要精确性。优选地,将负载放置在具有相对高的精确度的已知位置 处。AGV 10的导引系统接着可编程为与已知位置处的负载相互作用,从而双叉状件16和 叉状件袋彼此适当地匹配。如果将负载放置在具有精确度的已知位置是困难的或不切实际 的,则AGV 10可以调节为容许负载定位的较宽范围。例如,可将光学传感器放置在双叉状 件16的端部上或双叉状件16的端部附近并可将光学传感器用于检测负载的叉状件袋。当 AGV 10接近负载位置时,可将这些光学传感器开启以寻找叉状件袋。基于所检测到的叉状 件袋的位置,AGV 10将修改其行驶路径或优选可通过侧移机构22调节双叉状件16,从而叉 状件16和叉状件袋相互作用。当其允许更多的机械操作时,需要的附加元件使其成为更昂 贵和更不值得的配置。一旦装载了 AGV 10,则AGV 10将驶到工厂的装载对接区域。运输工具50 (在这 种情况下为卡车拖车)将位于与装载对接处相邻的位置。在某些情况下,装载坡道用于促 进AGV 10从对接处向运输工具50行驶。装载坡道设计为缓解AGV 10在两个不同表面之 间的变换。由于这一变换可能是略微不规律的,则滚轮(如果使用了的话)可能需要举起 并呈现无法使用以避免滚轮损坏。AGV 10将使用其初级导引系统以将负载运输到装载对接处并接近运输工具50。 在优选实施例中,AGV 10将使用其初级导引系统以移动到运输工具50的孔(opening)52 的开口。此时,AGV 10的次级导引系统将被使能并用于将AGV 10导引到期望的装载位 置。在优选实施例中,次级导引系统包括两组上述距离测量装置20和30。当AGVlO向前 行驶时后置距离测量装置20进行操作,当AGVlO向后行驶时前置距离测量装置30进行操 作。优选距离测量装置为模拟声波传感器,然而也可使用激光型、具有移动光束式(moving beam-type)的激光扫描仪或光学/视觉系统来代替。将操作每组距离测量装置从而AGV 10将寻找运输工具50的中部。通过使用传感器来完成该操作,从而将从一个传感器到运 输工具50的一侧M的距离减去从另一传感器到运输工具50另一侧的距离,以生成+/_误 差信号。可由AGV 10的转向机构使用此+/-误差信号以在适当方向上导引AGV 10从而使 +/_误差信号逼近0。以此方式,AGV 10将寻找运输工具50的中部,从而补偿运输工具50 的位置相对装载对接处的任何倾斜。如果所装载的每个运输工具50具有已知的宽度,则能 够在每一组中仅使用一个传感器。在本实施例中,应将与位于运输工具50中部的AGV 10 相关联的已知距离减去从该传感器的距离,以获得+/_误差信号,可由AGV 10的转向机构 使用+/_误差信号以在适当方向上导引AGV 10从而使+/-误差信号逼近0。在另一实施例 中,AGV 10并未追踪到运输工具50的中部,而是保持与运输工具50的一侧M的特定距离 来代替。由次级导引系统来将AGV 10导引到期望装载位置。优选地,期望装载位置是运输 工具50的最前空闲区间。在优选实施例中,AGV 10将在接近运输工具50的中部继续前进, 直到检测到运输工具50的末端56或预先装载到运输工具50上的负载为止。通过适当配 置的一个或多个压力传感器可完成这一检测。可将压力传感器放置到双叉状件16的末端 以检测与运输工具50的端壁56或其它负载的接触,或在优选实施例中,当负载自身接触端 壁56或其它负载时压力传感器可位于双叉状件16的另一端上以与负载相互作用。在优选 实施例中,当AGV 10接近期望装载位置时AGV 10放慢到较慢速度,并且AGV 10通过监测 AGV 10的马达的驱动电流来检测负载与运输工具50的末端56或其它负载的撞击。由于行驶的阻力增加(例如,当相对固定的物体接触AGV 10时),从而传递到AGV 10的电动马达 的电流也增加了。电流的增加可用作负载已达到其期望装载位置的指示。一旦AGV 10达到期望装载位置,则AGV 10堆积负载。在优选实施例中,其包括通 过升降机构18来将负载降到运输工具50上,然后将双叉状件16移至与叉状件袋不再接 合。堆积负载的步骤还可包括在堆积负载之前通过侧移机构22将双叉状件16 (具有接合的 负载)朝向运输工具50的一侧之外转移。在优选实施例中,负载包括两个单独的集装架, 每个集装架与图1所示的一个双叉状件16接合。在本实施例中,当AGV 10在AGV 10的行 驶方向上接近期望负载位置时,侧移机构22开始将双叉状件16和接合的单独集装架向运 输工具50的侧M之外移动并将它们彼此分离。编码器23在此侧移动期间追踪双叉状件 16的位置的变化。在优选实施例中,当编码器23检测双叉状件16的位置不再改变时,假定 负载与运输工具50的侧M接触,并且AGV继续在前向方向上行驶直到检测到运输工具50 的末端56或预先装载到运输工具50上的负载为止,如上文所述。此时,负载已经到达了期 望装载位置,并且负载放低到运输工具50的底座上。可做出对上述实施例的各种修改而不偏离要求权利的本发明的范围。例如,用本 发明的方法可使用仅具有一个双叉状件16的AGV 10。在本实施例中,可通过侧移机构22 移动双叉状件16,从而可将各负载放置在运输工具50的侧M处。以此方式,运输工具50 可每次装载一个负载。如果需要,AGV 10还可交替上方堆积了负载的运输工具50的侧M。 此外,本发明容许AGV 10以任意负载配置来装载运输工具50,例如将两个并列负载从运输 工具50的前端装载到末端(如图如所示的优选实施例),将两个并列负载和中部的一个负 载的交替行从前端装载到末端(图4b),或任意其它可能的布置。在不对称负载的情况下, 可将负载排列为使得某些负载相对于其它负载进行旋转,如图4c(其中60'表示的负载从 负载60的队列旋转90° )以及图4d(其中负载60以“针轮”(pin-wheel)布局进行排列) 所示。在图4a-图4d示出的布局中,示出了矩形负载;然而,本发明可使用任意形状的负 载。由于通过AGV 10堆积负载的位置的灵活性,可得到装载的运输工具50的最佳配 置。在普通布置中,装载运输工具50使得达到最小空余空间(即不具有负载),然而,对于 重的负载,以这种配置可能超过运输工具50的重量限制。在这种环境下,或在小于完全装 载的运输工具50的另一事件下,可将运输工具50中的负载的布局排列为使负载在运输工 具50中的移动最小。在每种情况下,本发明的AGV 10和方法可用于达到运输工具50期望 的装载。在堆积负载之后,接着次级导引系统将用于导引AGV 10回到首先使能次级导引 系统的几乎同一位置,该位置在优选实施例中为运输工具50的开口 52。一旦初级导引系统 位于此位置,则接着将初始导引系统用于在AGV 10的行驶中导引AGV 10;例如,拾起另一 负载。如果如在优选实施例中一样使用了滚轮,则降低滚轮以再次接触地面而由第一导引 系统(即惯性导引系统)所使用。在优选实施例中,当由次级导引系统导引AGV 10时初级导引系统将继续追踪AGV 10的动作。这种连续追踪容许由初级导引系统的导引更精确地恢复。自动卸载运输工具卸载运输工具50的工序与上述装载工序非常相似。主要区别在于卸载运输工具50的工序难以保证将要被拾起的负载处于运输工具50上的适当位置,因此必须将AGV 10 设计为补偿负载位置的这一变化和其它变化。优选方法包括将具有初级导引系统的AGV 10 导引到运输工具50附近的位置的步骤,该位置最优选在运输工具50的开口 52处。此时, 优选包括上述模拟声波传感器的次级导引系统将AGV 10导引为与负载匹配。如上文所述, 可通过在叉状件16之上或附近包括光学传感器而将AGV 10调节为容许负载放置的较宽范 围,该传感器可用于检测负载的叉状件袋。当AGV 10接近运输工具50上的负载位置时,可 开启这些光学传感器以寻找叉状件袋。基于所检测的叉状件袋的位置,AGV 10将调节其行 驶路径,或优选地可通过容许双叉状件16独立于AGV 10的移动的叉状件移动器(即上述 侧移机构22和垂直滑面1 来调节叉状件16,从而双叉状件16和叉状件袋相互作用。一 旦接合,则可由AGV 10的升降机构18来举起负载。接着次级导引系统将AGV 10导引返回 到其开始导引AGV 10的几乎同一位置,即运输工具50的开口 52。此时,接着将初级导引系 统用于在其行驶中导引AGV 10。在优选实施例中,当由次级导引系统导引AGV 10时初级导 引系统将继续追踪AGVlO的动作,从而初级导引系统的导引更精确地恢复。本发明的另一实施例容许在第一 AGV 10进入运输工具50之前通过确定运输行 驶路径而使用初级导引系统来在运输工具50内操纵(navigate)。在确定运输路径时,系 统必须确定运输工具50相对装载对接处的倾斜以及运输工具开口的中部与装载对接仓82 中部的任意横向偏移。在某些实施例中,系统还确定运输工具底板和顶部之一的位置和相 对角度。如上文所述,在优选实施例中,AGV使用惯性导引系统以将AGV 10导引到将要装 载的运输工具50的开口 52。运输工具50的开口 52接近运输工具50的门55。与之前描 述的方法不同,AGV 10不需要切换到第二导引系统,而是替代为,接近运输工具50的开口 52时,系统例如通过使用具有移动激光束或光学系统的传感器来确定AGV 10的运输行驶 路径,以例如通过确定运输工具50的侧壁的位置来扫描运输工具50。在某些实施例中,传 感器还可扫描运输工具顶部58和运输工具底板57至少之一。由于具有确定的运输行驶路 径,初级导引系统(例如惯性导引系统)可用于以与上述实例中所描述的方式非常类似的 方式来装载或卸载运输工具50。AGV 10可使用单个传感器100或多个传感器来从运输工具50外部生成运输工具 50内部的数据轮廓。在此替代实施例中,在AGV 10的主体进入由运输工具50形成的腔体 之前更优选在负载60进入运输工具50之前,生成运输工具50的数据轮廓,在该腔体中将 放置负载60。生成运输工具50的数据轮廓以识别从期望位置的偏离,例如运输工具50的 横向位移、倾斜,运输工具底板57的垂直位移和角度,容许在AGV 10进入运输工具50之前 将AGV 10容易地调整到放置运输工具50内负载60的最佳路径。尤其是,由于操作者误 差,运输工具50或尤其是负载60放置在其内的半拖车在回到装载区域80时典型为偏离最 佳位置并几乎不能准确地在横向偏移上对准或倾斜。装载区域或对接处80 (包括由装载仓 壁83所限定的仓口 8 宽于运输工具宽度以容许操作者误差。然而,这种容许的操作者误 差可能产生使用充分填充运输工具50宽度的负载60的系统中的AGV 10的问题,如图如 所示。运输工具50相对装载设施底板85的垂直位移还可能产生具有高负载的AGVlO的问 题。运输工具底板相对AGV支撑表面的垂直位移和角度还可能产生AGV放置负载接近运输 工具50的开口 52的问题。因此,AGV 10使用传感器100以在负载60进入运输工具之前生 成运输工具50的轮廓,从而即使如图8所示运输工具50从期望位置横向转移,也容许AGV10进入运输工具50而不接触靠着侧壁M的负载。如图8所示,如果操作者适当地排列运 输工具50,则运输工具50的纵轴51将沿预期的纵轴84排列。然而,在图8中,不仅运输工 具50从运输工具的口 52或开口处的期望的纵轴84横向布置,而且与期望的纵轴84倾斜 某一角度。如图9-图11所示,运输工具还可相对于装载设施底板85或对接坡道86垂直 或成一角度布置。AGV能够使用如美国专利公开第2006/0276958号名称为Inertial Navigational Guidance System For A Driverless Vehicle Utilizing Laser Obstacle Sensors"(用于无人驾驶车辆的使用激光障碍物传感器的惯性导航导引系统)中描述的传 感器100,来避免进入运输工具50时与运输工具50侧壁M的障碍接触,接着使用前述第二 导引系统通过对来自一对传感器的距离进行减法来生成/_误差信号以寻找运输工具50的 中部,从而通过去除多余传感器来简化AGV、降低生产成本,并减少负载时间,本发明使用传 感器100生成在单个步骤中对运输工具50的横向位移和运输工具50的倾斜或角度进行处 理的运输工具50的数据轮廓。单个步骤中的传感器100还可确定运输工具50的垂直位移 以及角度。本方法还消除了双传感器系统调节运输工具的倾斜所需要的连续计算和调节, 从而容许更快的操作AGV 10并减少了装载时间。运输工具50装载时间的任意减少均容许 系统中使用的AGV数量的减少,从而显著地降低系统的原始成本以及连续作业成本。在优选实施例中使用传感器100来产生初级导引系统的运输路径以接着打消对 第二导引系统的需求,但是在某些实例中将使用第二导引系统。在优选实施例中,AGV 10使 用同一导航系统来导航到位置A并沿运输路径导航。如上文所述,本导引系统可为包括激 光导引的任意公知系统,例如惯性系统、有线导引、视觉导引、磁带导引、激光目标导引或激 光导引。然而,如果使用有线导引系统、磁带导引或激光目标导引,则在运输工具中为了行 驶还可包括惯性导引系统、航位推算导引系统、视觉导引系统或激光导引系统。如上所述, 尤其在第0023-第0032段中,AGV 10将使用初级导引系统来如在获取负载60时所期 望的进行操作,接着将AGV导引到运输工具50外部的如图8中示出的位置A的点。位置A在运输工具50外部并根据负载60的大小、AGV 10的机动能力(如果传感 器100位于AGV上,则还根据传感器100的灵敏性)而与运输工具开口 52的距离可变。尤 其是,如果传感器100位于AGV 10上,则位置A可位于运输工具50外部的容许由传感器 100得出运输工具50的精确数据轮廓的任意距离或位置,以准确地确定侧壁M的位置从而 确定运输工具50是否与期望位置横向转移且横向转移了多远以及运输工具的倾斜或角度 (如图8所示)。从此数据轮廓中,可计算运输路径以使AGV沿着此运输路径。在某些实施 例中,两个或多个传感器用于保证运输工具具有精确和完整的轮廓。例如,一个传感器可位 于AGV上的较低点处(例如能够在升起的负载下操作),以及一个传感器可位于高点处(例 如能够在负载上方操作)。如果使用了多于一个传感器,从而这些传感器可位于AGV的每一 侧或任意其它期望的位置。注意到下述内容是很重要的通过确定最佳路径并把最佳路径放入运输工具并从 运输工具取出以用于装载和卸载运输工具,运输工具的数据轮廓容许AGV (在某些实施例 中为中央处理器)将运输工具50放入操作系统和AGV的操作路径或路线。系统还可将叉 状件16和负载60的移动与运输工具内或外的AGV的行驶相协同以防止与运输工具的开口 52附近的操作有任何干扰。当然,本领域普通技术人员将识别出操作员可将与运输工具对系统的可用性以及该运输工具的期望目的地有关的数据识别并提供给系统,从而AGV系统 知道何时以何种负载以及以多少负载来装载特定运输工具50。还应该识别即使指代运输 工具50从最佳定位的偏移时可使用术语“期望位置”或“理想位置”,AGV或操作AGV的系 统不必需包括与期望位置相关的数据。替代的是,传感器100生成运输工具的数据轮廓,接 着计算最优路径或运输路径并把最优路径或运输路径放入AGV跟随的系统直到运输工具 填充了系统或将运输工具从系统移除为止。因此,控制器或AGV可在装载仓的位置A处将 运输路径放入运输工具50并将运输路径从运输工具50取出,系统与每个装载门相关联将 位置A识别为从系统中使用操作系统行驶路径或路线切换至这些针对每个运输工具计算 的添加线段及添加行驶路径的最优点。AGV跟随从位置A到运输工具50的运输路径,并且 当负载堆积时,AGV行驶返回位置A并为了其下一目的地从使用在运输工具50内确定的数 据轮廓或路线切换到标准系统行驶路径或路线。位置A优选地在系统建立过程中被确定为在AGV 10操纵自身与进入运输工具的 最优路径对齐时也能容许最大尺寸的负载60保持在拖车开口 52外面的离运输工具入口 52 最近的点。如果传感器100位于AGV上,则将AGVlO放置为尽可能的接近运输工具50,典型 地容许AGV给出更佳的运输工具50数据轮廓。例如,如果负载具有约三英尺的深度,并且AGV 10需要用来适当地将自身与运输 工具50对齐的平均机动空间约为三英尺,则为了容许在负载60穿过口 52或运输工具50 的开口之前AGV具有足够的机动空间来将自身与期望行驶路径对齐且容许最优化传感器 的位置,运输工具50外部的期望停止位置将为自开口 52约六英尺或略大。如果传感器100 不位于AGV上,则其可优选地在开口的较远距离处放置位置A处以容许更大的机动空间,接 着由于AGV在负载60进入运输工具50之前具有调节其位置和行驶路径以匹配期望运输路 径的更宽松的时间从而降低了装载时间,该空间典型地容许更高速度。如果AGV 10在指引AGV的板载控制器或中央控制器中不具有相关于运输车50方 向的信息(适合于AGV 10所操作的整个系统内),或是所需的计算的运输路径,则AGV 10 将在拖车上生成图像、地图或其他数据轮廓,可从该拖车中确定运输工具50的方位。在确 定运输工具50的方位中重要的是,口 52 (尤其是口 52每侧上的侧壁54)从期望位置(典 型为装载仓的中心)的偏离有多大,或尤其是侧壁M的位置,从而进入的负载60不与侧壁 54接触,并且还通过侧壁M确定拖车的角或倾斜度。尽管不需要,当装载空的运输工具或 如果运输工具到达时就已经部分是满的时,根据到端壁(end wall)56运输工具中的任意集 装架或负载的距离,传感器100还可用于确定端壁56的位置。端壁56或任意存在的负载 的位置容许AGV 10或系统控制器来计算AGV 10到拖车内以放置第一个负载60必须行驶 多远。在优选实施例中,计算运输路径的长度容许AGV在降低负载之前在拖车内行驶的更 远,然后推进到最终位置。通过将运输工具中负载的推进距离最小化,AGV 10上的电池电 荷将在需要重新充电之前持续更长时间。然而,当放置负载60时如当AGV 10知道拖车大 约长度并行驶时,也可使用其它优选方法来确定AGV在拖车内必须行驶多远。在确定AGV 10在运输工具内的行驶路径时,AGV 10典型地收集运输工具的数据 轮廓接着分析侧壁讨以确定约沿着运输工具实际纵轴的行驶线。尤其是,AGV 10典型地 接近装载仓82至沿期望纵轴84的一位置。传感器100接着反映运输工具50以生成数据 轮廓来确定典型沿运输工具50的实际纵轴51的期望行驶路径。典型地,通过算术平均运输工具的侧壁M来生成到运输工具50的中央运输路径以计算本实际纵轴。当AGV 10位于位置A处时,如果传感器10位于AGV上,则AGV将停止并用传感器 100描绘运输工具50的轮廓或位于位置A前面的位置处。如果位置A充分地远离运输工具 开口 52,从而位置A为比需要机动的最小距离大的距离,在负载60进入运输工具50之前, AGV可能能够用传感器100描绘运输工具50的轮廓而不会停止。图8中的位置A仅指的是 感知运输工具的内部和/或切换到AGV 10跟随运输路径的最理想位置,在最理想位置处机 动进入跟随运输路径的正确位置,其中最理想位置包括进入运输工具50的入口而负载60 不接触侧壁M。因此,与当在导引系统之间发生切换时传感器20和30位于运输工具内部 的前述实施例相比较,本实施例中计算到运输工具的新路径且进行切换以使用该路径时, 传感器100完全位于运输工具外部。因此,如果传感器100在AGV上,则到位置A的第一个 AGV将获得运输工具50的数据轮廓。对于运输工具50接收的何种类型的负载60以及运输 工具50的长度与潜在宽度,AGV或中央控制器使用数据轮廓来计算到运输工具50的最优 路径(运输路径)以及负载60的最优定位。接着,AGV跟随从位置A到运输工具50的本 运输路径,沉积其负载60,接着跟随在运输工具50外部返回到位置A的运输路径。在位置 A处,其从运输路径切换到在系统中用于下一目的地的路线。传感器100优选为激光传感器或能够生成运输工具内部的图像(如感测运输工具 的口 52、侧壁M以及端壁56)的任意传感器。在某些实例中,尤其当高的负载被装载到运 输工具内时,传感器100还可提供与运输工具的顶棚(未示出)相关的信息,以保证AGV进 入运输工具时在负载60的顶部和运输工具的顶棚之间保持足够间隙。如图6和图7所示, 传感器集中在双叉状件16之间的AGV上。通过在负载60之间进行查看,本定位一般允许 测量侧壁M以及运输工具50的顶篷的高度。然而,根据各种操作需求,传感器100可位于 其它位置。例如,某些工厂具有大的物体,如工作台、家具或其它使用集装架的装置,这些物 体有正常物体的两倍大或更大。因此,如果集装架为双倍宽的集装架或如果侧壁M具有布 置在AGV的叉状件上的两倍长的集装架,为了容许传感器100查看顶篷,则AGV上的其它位 置可用于布置传感器100。在优选实施例中,将要抵达的第二个AGV已经被提供有与系统内的运输工具方位 相关的信息,或尤其是运输工具从位置A到运输工具内部且一旦堆积了负载再返回位置A 的运输路径的信息。由于AGV已经知道了跟随前一个AGV加入到系统的运输路径,在AGV 跟随的多条路径之间进行切换时,AGV可通过位置A进入到运输工具而并未停止或甚至未 感测运输工具50。为了使效率最大化,系统可在位置A之前切换到期望运输路径,以容许较 长机动时间(maneuvering time)以及典型地AGV可以机动的较高速度,这是由于其具有更 多时间和更长距离以使其路径匹配期望运输路径。例如,惯性导引系统用于将AGV带到位 置A,如图8所示。在到达位置A之前或在到达位置A时,中央控制器将期望运输路径提供 给AGV,该AGV接着继续使用惯性导引系统以将其自身对齐并接着跟随运输路径以进入运 输工具并将负载60放置在适当位置。AGV使用惯性导引系统以跟随返回到位置A的逆向路 径,在该位置A处其切换到新目的地的路径。当然,每个AGV可分别包括传感器100以及控制器,该控制器在第一次或每一次 AGV接近运输车时都单独创建数据剖像并计算放置负载60所需的运输路径(通常沿着运输 车50的实际纵向轴51)。以后每次AGV为了放置负载60而接近运输工具50,其可重新计算期望行驶路径或可使用预先确定的行驶路径。使至少开始的两个或三个AGV计算要跟随 的运输路径,从而容许将运输路径和数据轮廓平均以为了更准确的路线。然而,随着运输车 50被负载60填充,每次在AGV进入前进行重新分析可能会适得其反,因为传感器100 (在安 装于AGV上时)通常看到的侧壁较少并且由此有较大的可能于重新计算所需的运输路径时 在其中引入误差(由于数据剖像要测量的侧壁较少)。作为可选步骤,当传感器100扫描拖车50的内部时,传感器还可扫描装载仓区域 80内的固定物体,以校准其在系统内的位置。尤其是,在图8中,AGV 10可行驶到位置A, 并且当扫描运输工具50的内部时,基于装载对接壁83和装载对接仓82,确定其偏离了位置 A有1/2英寸。之后行驶到运输工具50内以放置负载的AGV将返回到位置A ;然而,当其返 回到位置A时,其将调整期望位置和实际位置之间的预先差值。因此,AGV 10容许简单的 校准其位置而没有额外的步骤或在系统内的其它点处进行校准。在之前的实施例中,一旦 确定新的运输路径沿运输工具50的纵轴51,则AGV使用其惯性导引系统以行驶到运输工具 50内并布置负载60。使用惯性导引系统来代替分离的或不同的导引系统,容许在生成AGV 过程中降低制造成本而并未失去任何优点。然而,本发明可使用多个其它导引系统例如航 位推算、激光导引、视觉导弓丨、磁带导引以及有线导引。在使用惯性导引系统的过程中,陀螺 仪适于水平面的移动而不适于垂直移动,因而在AGV进入拖车50时,运输车50任何相对于 装载月台的垂直错位都不会影响惯性导引系统。本领域普通技术人员将识别到在某些实 施例中,每个AGV生成运输工具自身的数据轮廓可为有益地,诸如消除任何校准问题或保 证较高的负载不会由于运输车伴随来自负载重量增加的沉降而接触运输车的顶部。在某些 实施例中,当期望在特定点处重新校准惯性导引系统时,期望生成运输工具的数据轮廓以 及装载区域80上的特定固定位置以提供AGV相对于系统的校准。本领域普通技术人员将识别到AGV —般带着位于车辆后部的叉状件和负载60向 前行驶。因此,在抵达图8中的位置A之前,AGV—般要转向机动,从而负载60或叉16面 对运输工具50。接着,如果需要,AGV感测运输工具以生成数据轮廓和运输路径并使负载先 进而驶入运输工具50内。在放置负载60时,AGV从运输工具驶回到位置A并在多个轮廓 或多个系统之间切换,以使该车辆在退出运输车继续拾取其下一件负载时大体上不会减速 或停止。当然,在某些实例中,传感器100可以位于车叉相对的侧边以给予传感器清楚的视 角去创建拖车的数据图像。在这个实施例中,位置A会位于自入口 52足够远的距离处,来 让AGV旋转180°,将其自身与运输路径对齐,并使负载在先而进入运输车50,而使负载60 不与侧壁M发生接触。由于AGV装载了车辆以最大化的放置负载,从而AGV —般在负载抵达其计算的路 径的尾部时放下负载并将负载沿运输工具的底板推动剩余距离。通过使用驱动轮上的电流 传感器,可以确定负载何时与之前的负载接触并将该负载放置为紧靠着运输工具上的之前 的负载。在上述实施例的变型中,本发明还可进行定期更新,如AGV在负载位置和位置A之 间行驶时以特定间隔更新。定期更新校正了任意车辆打滑的失误,从而使与进行位置的持 续更新相关的附加处理请求最小化并使在响应于持续的更新而持续校正AGV的路径过程 中装载运输工具的效率降低的最小化。可根据之前导引系统的类型和之前导引系统的准确 性来改变多次定期更新之间的间隔。典型将多次定期更新之间的间隔设置为特定时间、AGV参数(如时间和距离参数的组合)。最小化更新的次数防止不需要的工 艺,包括增加的和不必需的导引校正。各种增加的方向修正量(course correction)可降 低运输工具能够装载的速度和效率,这可能是由于其因为装载了运输工具50而降低了 AGV 的速度。尤其是,当AGV从运输工具外部的位置(例如从位置A)移动到期望负载位置(或 如果卸载运输工具时为卸载位置),通过增加一些位置校验并在该方法中更新,从而容许最 大效率。注意到如下内容是很重要的AGV持续使用之前的导引系统并且更新的内容更新 了此之前的导引系统。系统可优选不切换到与上述实施例之一相关的上述第二导引系统。 因此,此额外的方法步骤容许系统容易地校正由导引系统的限制或环境错误导致的导引错 误。由运输工具底板上的潮湿、冰、液体、油或其它物质引起的车辆打滑会发生多种导 引错误。由于各种AGV装载运输工具,从而随着时间的过去这些物质可转换成延伸到运输 工具或装置仓底板内的对接坡道。例如,运输工具一般用在具有其中载运了各种产品的多 种设施中,并且运输工具一般用于随着时间的过去而积累各种可能导致导引错误的滑性物 质。通过进行规律的而不持续的更新,系统校正任何潜在错误并最小化需要的处理电力,从 而最大化AGV装载运输工具的效率和速度。系统可使用任意传感器,例如上述距离测量传感器20或30,或更优选传感器100。 在AGV 10进入运输工具50时使用传感器100具有特定优势,由于已知传感器100的计划 行驶路径并可容易地将传感器数据与在位置A处至少通过第一个AGV封装或描绘运输工具 的内部轮廓所接收的数据进行比较。如果AGV 10包括惯性导引系统作为其初级导引系统,则传感器100将以规律间隔 (例如以每两个到三个车轮的旋转)来激活传感器100以描绘运输工具的内部接着将此数 据提供给控制器用于处理。可将传感器100在运输工具内配置成提供AGV 10的位置的三 维(或至少二维)轮廓。比较而言,传感器20和30之一在运输工具内提供一维轮廓。因 此,导引系统的一个重大优点是使得至少二维更新来错误校验AGV的位置。在传感器100 为初级导引系统(如激光雷达(Ladar)、光纤或激光导引系统)的传感器的实施例中,导引 系统可在多个更新之间进行航位推算。这样消除了 AGV上对昂贵惯性传感器的需求。在某些实施例中,系统可不包括AGV上的传感器100,但是取代在装载对接处附近 放置传感器(在装载对接处的这些传感器与AGV 10不相关且仍然能够充分地看到运输工 具50内)。例如,传感器100可位于面对运输工具50的每个装置仓外约六英尺的位置处,从 而一经打开装载仓门和到运输工具50的门,则传感器可能自动地描绘并生成包括运输工 具50底板相对期望位置的偏移量、倾斜以及角度的运输工具实际位置的数据轮廓。接着, 将本更新的数据轮廓提供给中央控制器,其中该中央控制器将为每个AGV提供运输路径或 行驶路线从而消除了如下步骤由至少第一个AGV生成运输工具位置的数据轮廓接着更新 中央控制器并确定AGV的行驶路径。因此,中央控制器可生成期望行驶路径并且AGV可使 用其惯性导引系统(该惯性导引系统使用标准的数据轮廓用于车辆行驶路径)行驶到位置 A,并且AGV于位置A将数据轮廓从期望行驶路径切换至实际行驶路径从而在到达位置A时 无需停止——或者在大部分情况下甚至无需减速——而继续进入运输车50。如果传感器位 于AGV车辆外部,则传感器可位于装载仓区域80内部或装载仓外部,例如位于每个拖车顶 部上方或位于每个拖车之间。为了向AGV提供更新的数据轮廓,通常仅需要确定运输工具50的倾斜以及横向偏移。由于在附图中将AGV图示为具有两组叉状件的车辆,从而其可将一对集装架携带 到运输工具中,在某些情况下可使用具有单组叉状件的车辆,并且为负载的并排放置而针 对每次不同地进入运输工具确定新的运输路径。本发明对于在集装架的每侧和运输工具侧壁之间具有最小间隙的非常宽的负载 是特别有益的,尤其是在双袋系统中。使用计算的运输路径,期望AGV 10能够进入在负载 与侧壁的每侧之间小于1/2英寸的运输工具并行驶到负载60的放置的期望位置而不会碰 到运输工具50的侧壁。上述系统还可用于自动卸载运输工具。卸载运输工具的工序实质上与上述装置运 输工具的工序类似。然而,在集装架完全装满到接近运输工具50的口的运输工具50中,AGV 可卸载此集装架而不会感测运输工具50以生成数据轮廓。一旦移除第一个集装架,或运输 工具50不包括满负载,则AGV可感测拖车的侧壁和位置以确定运输工具50的倾斜和横向 偏移量。随着负载60不断地从AGV移出,从而每个后来的AGV可生成拖车的数据轮廓以降 低由于运输车部分装载时传感器100初始所测量的运输车侧壁的有限数量而造成的数据 轮廓误差。随着从运输工具50移除每个集装架或负载60,从而侧壁M的更多部分对于传 感器是可见的以生成更准确的数据轮廓。一旦之前和之后的数据轮廓之间的误差在阈值水 平之下,则系统可确定运输工具的倾斜与偏移量以及每个之后的AGV的期望运输路径。一 旦由于集装架误放在拖车上从而集装架在拖车内,为了良好的调谐对准,则本领域公知的 任意类型的集装架袋感知系统均可用于对准叉状件以适配到集装架袋内。在传感器的位置 远离AGV (例如在装置区域80的顶篷悬挂)的实施例中,在卸载运输工具时,传感器100能 够看到负载60的顶部上方,以生成具有运输工具50内部最小误差的完整数据轮廓,从而即 使对满装载的运输工具也能精确地确定运输工具的倾斜与横向偏移。将传感器远离AGV车 辆放置用于卸载为更有效率的系统提供的运输工具,这是由于不是每个AGV都需要生成运 输工具50的数据轮廓。在传感器100不位于AGV上的实施例中,与每个AGV包括一个传感器的系统类似, 本系统还可定期更新以误差校验AGV相对于AGV期望位置(由导引系统所确定)的实际位 置。一般而言,如上所述的系统在AGV从位置A移动到期望的装载位置时以规律间隔重新 描绘了运输工具50的轮廓,但是使用了远离AGV的传感器。因此,与运输工具的初始轮廓 相比较,从传感器数据中能够确定AGV 10的实际位置。通过由系统提供与AGV的变化相关 的数据可校正位置的任意偏离。当传感器100位于AGV上时,优选将传感器放置在使得传感器能够看到负载60下 方或上方的位置。由于负载60的类型可在多种安装方式之间变化,优选将传感器放低到车 辆上,以看到负载60下方并感测运输工具50的内部。典型地,这种放置将离开地面至少约 四到六英寸,在双叉状件AGV上期望的优选位置约在AGV的中心(边到边)并离开地面约 7. 5英寸。当然,传感器可位于能接收运输工具50侧壁M的位置的可接受读数的任意地 方,优选包括侧壁的端壁,限定了运输工具50的口。由于具有放置在负载60的正常承载位 置下方的传感器100,当AGV车辆移动时AGV可生成拖车50的数据轮廓,从而可切换到由在 位置A处由传感器提供的新数据轮廓所决定的更新行驶路径而不会使AGV停止。如上所述,使用传感器100来确定运输工具底板57或运输工具顶棚的相关位置,容许运输工具的端部装载具有附加选择,例如使最后一对集装架或负载60从运输工具50 的开口 52向内。尽管用于装载和卸载运输工具50的上述方法对于所有类型的运输工具均 运行良好,有时在运输工具50端部附近装载和卸载负载60可能是困难的。尤其是,如图 11-图19所示,如果上面搁了 AGV 10的主体的支撑表面相对于上面将要放置或移除负载 60 (尤其是集装架72)的表面成一角度,由于从集装架72移除叉状件或将叉状件插入到集 装架72时AGV 10上的集装架叉状件16与集装架72相碰撞,从而可能产生困难。集装架 72包括插入有叉状件16以举起负载的集装架袋74。在将负载60带到期望位置之后,在放 置负载60之后将叉状件16从负载移除。当将负载60搁在一个表面(例如相对于上面搁 了 AGV 10的表面成一角度的运输工具底板57,例如图11-图19所示的装置仓底板85或 对接坡道86)上时,AGV在精确地放置负载接着在AGV从袋移除叉状件时保证负载保持在 放置的位置上是困难的;或者当卸载运输工具50时,将叉状件插入袋以取出负载60是困难 的。集装架袋60是窄的,从而即使在多个表面角之间略有不同,叉状件端66会与集装架袋 60的上表面或下表面之一接合,而距离转换部68最近的水平段62的部分与集装架袋72的 上表面或下表面的另一表面接合。从上述的描述和所示附图中,可以容易地理解这种接合 导致于操作期间在运输工具50的开口或端部52处可能出现问题。尤其是,运输工具中较 远的负载具有较少的问题,这是由于当AGV进入运输工具时,轮12和14变为位于运输工具 底板57上从而AGV支撑表面与负载支撑表面相同。因此,从描述中可以看出,当AGV尝试 将负载放置在运输工具底板57上并且AGV 10保持在相对于运输工具底板57可能成一角 度的对接坡道86或装载仓底板85上时,有一个或两个集装架朝向门55内或者开口 52可 能有问题。如上所述,当AGV抵达位置A时,传感器100可扫描运输工具以确定运输工具底板 57或运输工具顶棚58的至少之一。由于运输工具顶棚58和运输工具底板57 —般是平行 的,从而一般而言仅需要使AGV确定这两个面之一以确定运输工具底板57到装载仓底板85 的相对高度以及运输工具底板57与装载仓底板85的相对角度。此外,当传感器100扫描 运输工具50的位置时,能够确定运输工具50与装载仓口 82或对接壁83的相对位置。确 定运输工具50相对于对接壁83的位置以及运输工具底板57的装载仓底板85的相对角度 和高度差,容许AGV 10或系统控制器来确定延伸到运输工具50内的对接坡道86的相对角 度。如果需要,AGV能够进一步确定对接坡道86延伸到运输工具内多远。因此,为了将负 载60放置在运输工具50的端部附近,系统将跟随上述导引系统并确定运输工具底板57与 装载仓底板85的相对角度和相对垂直距离。如果需要,AGV还确定对接坡道86的相对位 置和角度。由于具有由AGV 10确定的运输工具50的这一相对位置,从而AGV 10能够进入具 有被举到期望高度的负载60的运输工具50,以保证AGV 10在相对于运输工具底板57成一 角度的支撑表面上处于一角度时,集装架不接触运输工具底板57或运输工具顶棚58。由 于具有处于期望位置的负载60,AGV 10能够使用倾斜机构40使升降机构18或叉状件托架 17之一倾斜。还可包括倾斜传感器(未示出),以确定升降机构18或叉状件托架17的相 对倾斜。图11-图19示出倾斜的升降机构18,然而,如本领域普通技术人员将认识到的, 当叉状件托架17倾斜时升降机构18能够保持固定。通过使升降机构18或叉状件托架17 倾斜,AGV 10能够补偿AGV的支撑表面的相关角度与集装架60的支撑表面之间的差。这种补偿容许AGV将负载安全地放置在运输工具底板57上接着用最小干扰移除叉状件16,从 而从集装架袋74移除叉状件16实质上免去了干扰,因此负载60没有从位置上产生实质移动。在放置运输工具50的负载60时,对于运输工具50外部的或部分在运输工具50 中的AGV 10的支撑表面与运输工具底板57的相对位置之间的极大的相对角度,在通过倾 斜结构40使升降机构18或叉状件托架17倾斜过程中可能需要多次调节。尤其是,例如对 于运输工具顶棚58具有极小间隙的高负载,协同沿运输工具的纵轴的AGV的移动可能需要 倾斜机构40的多次角度调节。例如,在AGV 10进入运输工具50时,可能需要倾斜机构40 来进行协同倾斜移动(尤其是协同AGV 10的前向移动)。因此,对于极小间隙的负载,集装 架72做出近似弓形的移动从而负载不与运输工具顶棚58或运输工具底板57接合。因此, 由于AGV 10向前延伸到运输工具中,从而倾斜机构40与负载60的角度增加,因此集装架 72的前部边缘不接触运输工具底板57。接着,集装架72放置在运输工具底板57上的期望 位置中。接着,在负载60的放置过程中将叉状件16放低,并且AGV将其路线方向反向到运 输工具50外部。由于在集装架袋74内具有极小间隙,从而在AGV从运输工具出去时一般 叉状件16也增加地倾斜,以保证叉状件16不与集装架袋74接合。一旦将叉状件16与集 装架袋74基本脱离,从而AGV能够继续返回到位置A,同时返回倾斜结构40,尤其是升降机 构18和叉状件托架17之一返回到其基本上垂直的位置。如上所述,AGV上的控制器或系统控制器能够测量AGV支撑表面与运输工具底板 57的相对角度,从而确定AGV进出运输工具50时负载60或叉状件16所需要的倾斜以及, 如果需要,叉状件16随着AGV的移动进行的协同移动。在AGV 10装载运输工具50的开口 52时,这样保证了顺利地且有效地发生运输工具50的端部装载开口最近的负载,并防止负 载放置的偏移或未对准。如图所示,上述系统还可反转以改进运输工具50的卸载。尤其 是,当AGV将其叉状件16延伸到运输工具50的开口 52或端部处的至少第一负载60上的 集装架袋74时,AGV能够使用确定的运输工具50的相对位置,以使用倾斜机构40对准叉状 件16,因此防止集装架袋74内的叉状件的干扰。在叉状件16进入集装架袋74时,AGV还 可协同这些叉状件16的移动,从而保证AGV向前移动时叉状件16不接触集装架72。期望 当传感器100测量在位置A处装载有负载的运输工具50时,传感器将需要测量运输工具顶 棚58,这是由于负载60可能与测量运输工具底板57相干扰。当然,在某些实施例中,可将 传感器放置在装载仓门外部或延伸到运输工具装载区域87上方的装载设施外部并确定运 输工具50的相对位置,从而消除各AGVlO扫描运输工具的需要。位于设施内而不位于AGV 10上的传感器100还可测量运输工具50底板或顶棚之一并将所测量的与AGV或系统控制 器通信。可使用这些外部扫描装置与中央处理器通信,这可确定运输工具相对于装载仓设 施的位置并更新具有必需信息的AGV,以适当地放置负载并装载和卸载距离开口 52最近的 负载。在某些实例中,运输工具不具有侧壁,而是当AGV将负载装载到运输工具上时为 平板。在这些情况下,AGV能够感测运输工具的板或底板与向地面的急剧下降之间的确定 边缘。因此,可能将AGV配置为扫描拖车侧壁的不存在。上述讨论公开并描述本发明的示例性实例。本领域普通技术人员将容易地从这些 讨论中和从附图和权利要求中识别可对本发明作各种变化、修改以及变异而不脱离如下文的权利要求所限定的本发明真正的精神和范围。
权利要求
1.一种由自动导引车辆(AGV)装载具有侧壁和开口的运输工具的方法,该方法包括 将负载与所述AGV接合;将具有导引系统的所述AGV导引到位置A,其中该位置A位于所述运输工具外部; 确定用于在所述运输工具上的期望装载位置处堆积所述负载的运输路径; 由所述导引系统将所述AGV沿确定的所述运输路径导引到所述期望装载位置; 当所述AGV沿确定的所述运输路径行驶时,确定所述AGV相对所述运输工具的位置;以及将所述负载堆积到所述运输工具上的所述期望装载位置处。
2.根据权利要求1所述的方法,其中确定用于在所述期望装载位置处堆积所述负载的 运输路径的步骤还包括用传感器描绘所述运输工具的内部的轮廓的步骤。
3.根据权利要求1所述的方法,其中确定所述AGV相对所述运输工具的位置的步骤包 括用传感器描绘所述运输工具的内部的轮廓的步骤。
4.根据权利要求3所述的方法,其中确定所述AGV相对所述运输工具的位置的步骤是 以规律间隔执行。
5.根据权利要求4所述的方法,其中不连续执行所述规律间隔。
6.根据权利要求4所述的方法,其中约以每秒三十次发生所述规律间隔。
7.根据权利要求3所述的方法,其中所述传感器位于所述AGV远处。
8.根据权利要求3所述的方法,其中所述传感器位于所述AGV上。
9.根据权利要求3所述的方法,其中沿确定的所述运输路径导引所述AGV的步骤还包 括如下步骤,当所述AGV沿确定的所述运输路径行驶时,使用在描绘所述运输工具的内部 的轮廓的步骤期间接收的数据,确定与确定的所述运输路径的任意偏差。
10.根据权利要求9所述的方法,还包括如下步骤,响应于确定与确定的所述运输路径 的任意偏差的步骤中确定偏差来校正所述AGV的所述行驶路径,以匹配确定的所述运输路 径。
11.根据权利要求1所述的方法,还包括当所述AGV被沿确定的所述运输路径导引时, 测量到所述运输工具的多个所述侧壁至少之一的距离的步骤。
12.根据权利要求1所述的方法,其中确定运输路径的步骤包括使用LADAR、激光、声波 或光学传感器之一来描绘所述运输工具的内部的轮廓的步骤。
13.根据权利要求1所述的方法,还包括当所述AGV被沿确定的所述运输路径导引时, 感测所述运输工具的底板的所述边缘的步骤。
14.根据权利要求13所述的方法,还包括当所述AGV在所述运输工具上时至少一次更 新所述运输工具的所述轮廓的步骤,但是更新次数不高于每秒35次。
15.一种由自动导引车辆(AGV)装载具有侧壁和开口的运输工具的方法,该方法包括 将负载与所述AGV接合;将具有初级导引系统的所述AGV导引到位于所述运输工具的所述开口外部的位置; 描绘至少所述运输工具的所述开口的轮廓;确定所述AGV从所述运输工具外部的所述位置穿过所述运输工具的开口的行驶路径; 将所述运输工具内的所述AGV导引到所述运输工具上的装载位置,并当将所述AGV导 弓I到所述运输工具内的所述装载位置时至少一次描绘所述运输工具内部的轮廓;以及将所述运输工具内的所述AGV从所述装载位置导引到所述运输工具的所述开口外部 的位置。
16.根据权利要求15所述的方法,其中确定行驶路径的步骤还包括在所述AGV经过所 述运输工具的所述开口之前描绘所述运输工具的内部的轮廓的步骤。
17.根据权利要求15所述的方法,其中在所述运输工具内导引所述AGV的步骤是由第 二导引系统执行。
18.根据权利要求15所述的方法,其中在所述运输工具内导引所述AGV的步骤是由所 述初级导引系统执行。
19.根据权利要求15所述的方法,其中在所述运输工具内导引所述AGV的步骤还包括 使用传感器来获取与至少一个侧壁的距离,同时使用所述传感器确定所述AGV的所述行驶 路径内的任意障碍物的步骤。
20.根据权利要求15所述的方法,其中将所述运输工具内的所述AGV导引到期望装载 位置的步骤包括校正与由所述运输工具的所述轮廓确定的所述期望运输路径的任意偏差 的步骤。
21.根据权利要求20所述的方法,其中在所述运输工具内导引所述AGV的步骤还包括 如下步骤,当所述初级导引系统期望所述AGV与确定的所述运输路径基本对准时,更新所 述运输工具内的所述轮廓。
22.根据权利要求15所述的方法,其中在运输工具中至少发生一次描绘所述运输工具 的轮廓的步骤,但是低于约每秒35次。
23.根据权利要求15所述的方法,还包括当所述AGV被沿确定的所述运输路径导引时 感测所述运输工具底板的所述边缘的步骤。
全文摘要
公开了一种用于自动装载和卸载运输工具的方法和系统。导引系统跟随行驶路径到运输工具附近的位置,接着传感器描绘运输工具的轮廓,从而确定了AGV的运输路径,以使AGV跟随运输路径进入运输工具放置负载,并一经放置负载就离开运输工具。
文档编号G01C22/00GK102077057SQ200980124822
公开日2011年5月25日 申请日期2009年4月28日 优先权日2008年4月28日
发明者杰拉尔德·爱德华·齐尔森, 韦恩·大卫·罗斯 申请人:杰维斯·B·韦布国际公司

  • 专利名称:Led日光灯光电参数测量系统的制作方法技术领域:本实用新型涉及一种光电参数测量系统,尤其是涉及一种LED日光灯光电参数测量系统。背景技术:LED日光灯即半导体照明灯,以发光二极管作为光源,因其是一种固态冷光源,具有环保无污染、耗电
  • 专利名称:一种变压器及整流器的检测工装的制作方法技术领域:—种变压器及整流器的检测工装涉及领域本实用新型涉及变压器以及整流器的生产,特别涉及一种变压器及整流器的检测工装。背景技术:随着电子变压器以及整流器设计技术的日趋成熟和完善,各个设计和
  • 专利名称:大口径叶轮式脉冲信号流量传感器的制作方法技术领域:本实用新型涉及一种传感器,尤其是一种用于监测管道中流体流量的大口径叶轮 式脉冲信号流量传感器。背景技术:叶轮式脉冲信号流量传感器安装方便,价格低廉,被广泛应用。一股情况下,其 口径
  • 专利名称:一种槽深测量仪的制作方法技术领域:本发明涉及ー种槽深测量仪。背景技术:目前测量槽深都是使用样板卡測量,但是样板卡只能測量出槽是否与样板卡一致,对于槽的实际深度与要求深度存在多少偏差无法得知,也就无法得出实际的槽深是否符合设计要求。
  • 专利名称:真皮干细胞的分离方法技术领域:本发明涉及一种从皮肤组织中分离真皮干细胞的方法。 背景技术:干细胞是兼具产生分化为多个细胞的细胞的多分化能力、和通过细胞分裂产生与该细胞相同的细胞的自我复制能力这两种性质的细胞。源自作为受精卵的初期发
  • 专利名称:无线热电阻温度仪表的制作方法技术领域:本发明是一种无线电通信技术、信号处理技术和热电阻温度传感技术相结合的, 用来在工业生产中测量中低温区的目标物体温度(通常在-200摄氏度到500摄氏度)的无线热电阻温度仪表(简称无线热电阻)。
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12