山东科威数控机床有限公司铣床官方网站今天是:2025-06-10切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

一种具有可调拉曼散射效应的探针及其制备方法

时间:2025-06-09    作者: 管理员

专利名称:一种具有可调拉曼散射效应的探针及其制备方法
技术领域
本发明涉及一种具有可调拉曼散射效应的探针及其制备技术,尤其是一种由贵金属纳米颗粒组装成链状结构、其表面包覆有溶胶凝胶SiO2层、并在SiO2层表面修饰有不同官能团的增强拉曼散射探针及其制备方法。
背景技术
表面等离子体共振(surface plasmon resonance, SPR)性质是金属纳米晶所独具的光学性质,是近年来的国际研究热点之一,而表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)光谱则正是基于金属表面等离子体共振的最主要的应用之一。表面增强拉曼散射是指当一些分子被吸附到某些粗糙的金属(如银、铜、金等)表面上时,它们的拉曼散射强度会增加IO4 IO6倍。由于SERS具有很高的灵敏度,能够检测到吸附在金属表面的单分子层和亚单分子层的分子,又能给出表面分子的结构信息,被认为是一种很好的表面研究技术。大量研究表明贵金属纳米晶大多具有很强的表面拉曼散射增强效应,且研究发现,不同种类的贵金属纳米晶有其独特的表面等离子体吸收带,比如银纳米颗粒典型的吸收带位于370-430 nm,金纳米颗粒典型的吸收带则位于520 nm左右。除此之外,贵金属纳米晶的大小和形貌也对其表面拉曼散射增强效应产生直接影响。而基于这些纳米颗粒的自组装,则可以产生不同的链状结构,由此引起其表面等离子体吸收带峰位的变化,当入射光波长与等离子体吸收带峰位匹配时,则可以产生明显的拉曼增强效应,从而使得自组装后的纳米颗粒在拉曼检测方面显示出重要应用。自组装通常发生在溶液条件下,是一种不稳定的状态(容易解体),如欲对这些自组装进行实际应用,则必须将这些自组装的结构进行固定。溶胶凝胶SiO2是一种非常有用的材料,一方面溶胶凝胶化学使得贵金属纳米颗粒的自组装和SiO2包覆变得容易操作,另一方面,SiO2是一种很好的壳材料,自身有很好的生物适应性和稳定性,表面很容易功能化(表面修饰官能团分子后,易与待测物种键合,从而增强拉曼散射效应),而且由于SiO2层对拉曼信号没有任何吸收,其对于贵金属纳米颗粒的增强拉曼散射效应没有任何不良影响,因此用溶胶凝胶SiO2壳包覆自组装后的贵金属纳米颗粒,并在SiO2壳表面修饰不同官能团分子,这些官能团很容易的和拉曼分子结合,进而得到具有可调拉曼散射增强效应的探针,所得探针将会在探针领域具有重要应用。

发明内容
本发明的目的在于提供一种具有可调拉曼散射效应的探针,该探针含有贵金属纳米颗粒组装而成的链状结构,形成的探针的吸收带可以随探针的长度及直径而发生移动, 使探针在拉曼检测方面应用范围更广。本发明还提供了探针制备方法,该方法便于操作,采用自组装技术使纳米颗粒形成链状结构,并在其表面包覆上溶胶凝胶SiO2层,表面改性在溶胶凝胶反应中进行,所得产品更加具有实用性。
本发明是通过以下措施来实现的
一种具有可调拉曼散射效应的探针,该探针以贵金属纳米颗粒自组装形成的纳米链为核,核上包覆有一层二氧化硅外壳,二氧化硅外壳上连接有拉曼探针分子。具体的,二氧化硅外壳通过修饰与其表面的官能团与拉曼探针分子连接,所述官能团为羟基、氨基、巯基、 羧基或聚乙(烯)二醇基,所述官能团可以直接与拉曼分子共价及非共价连接。上述探针中,贵金属纳米颗粒为Au、Ag、Pt、Pd,或者是Au、Ag、Pt、Pd形成的合金,或者是Au、Ag、Pt、Pd形成的核壳结构,贵金属纳米颗粒粒径在l-25nm ;
上述探针中,二氧化硅外壳的厚度为O. 5-20nm ;贵金属纳米链与二氧化硅的摩尔比为
O.2-40 :30-70。本发明所得探针的长度为3nm-10um,直径为3_40nm。探针中除含有贵金属纳米颗粒及SiO2,还含有H、S、C、0、Na、B等成份,这些成分是是加入的各种化学试剂引入的,这些化学成分的摩尔比为SiO2 :金属纳米颗粒C H 0 N S Na :B为(30-70): (0· 2-40) (0. 1-1) (0. 05-3)(0.1-3)(0-3)(0-1)(0-1)(O-I)0本发明还提供了本具有可调拉曼散射效应的探针的制备方法,通过本发明的方法所得的探针显示出贵金属纳米晶增强拉曼散射的性质,由于这些由贵金属纳米颗粒组成的链状结构所具有的特殊性能,本发明所述的材料在医药、生物领域将会产生很高的应用价值。此外,这些探针还可以被用于催化技术及用作电导材料。本方法采用下述(I)、(3)、(5)、(6)步骤制备探针或者采用下述(2)、(4)、(5)、(6) 步骤制备探针,其中步骤(I)、(3)、(5)、(6)的方法是在包覆SiO2壳前完成贵金属纳米颗粒的自组装,而步骤(2)、(4)、(5)、(6)的方法是在包覆SiO2壳的过程中完成贵金属纳米颗粒的自组装,具体步骤如下
一、贵金属纳米颗粒的自组装
(1)、取贵金属纳米颗粒水溶液,加入用于自组装的极性分子试剂,搅拌反应,完成自组
装;
(2)、取贵金属纳米颗粒水溶液,加入醇、不含官能团的硅烷试剂和氨水,搅拌反应,完成自组装;
二、SiO2壳层的包覆
(3)、向步骤(I)中自组装后的溶液中加入醇,然后再加入不含官能团的硅烷试剂和氨水,搅拌反应,完成二氧化硅层的包覆,离心分离、洗涤得贵金属/ 二氧化硅复合颗粒;
(4)、向步骤(2)中自组装所得的溶液中加入不含官能团的硅烷试剂和氨水,搅拌反应, 完成二氧化硅层的包覆,离心分离、洗涤得贵金属/ 二氧化硅复合颗粒;
三、贵金属/二氧化娃复合颗粒的表面官能团修饰
(5)、将制得的贵金属/二氧化硅复合颗粒分散于水和醇的溶液中,加入含有官能团的硅烷试剂,搅拌反应进行二氧化硅壳层的表面修饰,离心分离后,得到表面官能团修饰的贵金属/二氧化硅复合颗粒。四、具有可调拉曼散射效应的探针的制备
(6)、将制得的表面修饰有各种官能团的贵金属/ 二氧化硅复合颗粒分散于水或醇中,加入拉曼探针分子,搅拌反应后,离心分离,得到具有可调拉曼散射效应的探针。上述制备方法中,在实际操作中,首先要通过已经掌握的水溶液法合成一系列的贵金属纳米晶(详见文献 Langmuir,2004,20,1909-1904 ;Langmuir, 2008,24,5562-5568 ; J. Phys. Chem. C, 2007,111,17158-17162 ;Langmuir, 2002,18,3318-3318 ;J. Phys. Chem. C,2007, 111, 5909-5914。),然后将这些贵金属纳米颗粒用化学手段组装成一维材料,之后在自组装后的一维材料上包覆溶胶凝胶SiO2层,并在SiO2层表面修饰不同官能团分子。上述步骤(I)中,贵金属纳米颗粒与极性分子的摩尔比为1.64X10_6
3.29X 1(T5 :1,搅拌反应3-48小时。上述步骤(2)中,贵金属纳米颗粒和不含官能团的硅烷试剂的摩尔比为I : IXlO2 2X103,不含官能团的硅烷试剂=H2O :醇氨水的摩尔比为2X10—9 2X10—2 1 0. 5 5 :0. I I,搅拌反应l_8h。上述步骤(3)中,加入的不含官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为 IXlO2 7X IO5 1,不含官能团的硅烷=H2O :醇氨水的摩尔比为2X10-9 4X10—3 1 0. 5 5 :0. I 1,搅拌反应I-IOh0上述步骤(4)中,加入的不含官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为 IXlO3 IXlO8 :1,不含官能团的硅烷=H2O :醇氨水的摩尔比为2X10—9 4X10—3 1
0.5 5 :0. I 1,搅拌反应I-IOh0步骤(5)中,加入的含有官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为I : IXlO2- 7X 105,含有官能团的硅烷=H2O :醇的摩尔比为2X 10_9 4X 10_3 :1 :0. 5 5,搅拌反应3-48h。上述步骤(6)中,搅拌反应3_15h。除氨水外,其他试剂均为纯的化学试剂。上述制备方法中,所述极性分子试剂为甲醇、乙醇、丙醇、丁醇、异丙醇、乙二胺、硼
氢化钠、巯基乙酸、巯基丙酸、乙醇胺、二乙醇胺或三乙醇胺。上述制备方法中,所述醇为甲醇、乙醇或丙醇;所述不含官能团的硅烷试剂为正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸丁酯、硅酸钠或偏硅酸钠。上述制备方法中,所述含有官能团的烧氧基娃烧试剂为含氣基的烧氧基娃烧试剂、含巯基的烷氧基硅烷试剂、含羧基的硅烷试剂或含PEG (聚乙(烯)二醇基)基的娃烧试剂;其中,含氣基的烧氧基娃烧试剂为氣丙基二甲氧基娃烧、氣乙基二甲氧基硅烷、氨甲基三甲氧基硅烷、氨丙基三乙氧基硅烷、氨乙基三乙氧基硅烷、氨甲基三乙氧基娃烧、氣甲基二丙氧基娃烧、氣乙基二丙氧基娃烧、氣丙基二丙氧基娃烧;含疏基的烧氧基娃烧试剂为疏丙基二甲氧基娃烧、疏乙基二甲氧基娃烧、疏甲基二甲氧基娃烧、疏丙基二乙氧基娃烧、疏乙基二乙氧基娃烧、疏甲基二乙氧基娃烧、疏甲基二丙氧基娃烧、 疏乙基二丙氧基娃烧、疏丙基二丙氧基娃烧;含竣基的娃烧试剂为竣乙基娃二醇纳盐或 2- (carboxymethylthio) ethyl trimethyl si lane ;含 PEG 基娃烧试剂为 2-[methoxy (polyethyleneoxy)propyl] -trimethoxy-silane>2-[methoxy (polyethyleneoxy)propyl] heptamethyItrisiloxane 或 2-[methoxy (polyethyIeneoxy) propyl]-trichlorosilane。 上述羧乙基娃三醇钠盐,英文命名为carboxyethylsilanetriol sodium ; 2- (carboxymethylthio) ethyl trimethyl si lane,化学式为 C7H16O2SSi ;2-[methoxy (polyethyleneoxy) propyl]-trimethoxy-silane,中文命名为 2~[甲氧基(聚乙烯氧代)丙基]三甲氧基娃烧;2-[methoxy (polyethyleneoxy)propyIJheptamethyItrisiIoxane, 中文命名2-甲基-3-轻丙基甲基(娃氧烧与聚娃氧烧);2-[methoxy (polyethyleneoxy) propyl]-trichlorosilane,化学式 CH3O(C2H4O)6_9C3H6Cl3Si,这些试剂可在市场上买到,厂商可选美国的Gelest Inc.公司。本发明探针主体是由不同形貌的贵金属纳米颗粒组装而形成的链状结构,链状结构表面包覆溶胶凝胶SiO2层,SiO2层表面修饰羟基(-0H),羧基(-C00H),巯基(-SH),氨基 (-NH2),聚乙(烯)二醇(polyethylene glycol, PEG)中的一种,链状结构所含有的纳米晶包括各种贵金属纳米晶,如Au、Ag、Pt、Pd纯纳米晶以及它们形成的合金及核壳结构纳米晶。纳米晶的自组装由各种化合物协助在溶液中完成,包括极性的有机分子如醇类(甲醇、 乙醇、丙醇)、巯基乙酸、巯基丙酸、乙醇胺、二乙醇胺、三乙醇胺;其它极性无机分子,如硼氢化钠;各种硅烷试剂,如正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸丁酯。探针的主要组成成分除含有金属纳米晶外,还含有Si、H、S、C、O、Na、N、B等元素。探针的制备方法包括纳米颗粒的制备、纳米晶在室温下的自组装、组装后溶胶凝胶SiO2包覆以及表面官能团修饰等步骤。探针的直径由纳米颗粒的直径及SiO2层厚度决定,探针的长度由纳米颗粒的自组装过程控制,该类探针具有不同拉曼散射效应,可用于Raman散射检测、传感器及其它生物检测领域,也可以用于催化化学、电导材料等领域。


图I金纳米颗粒的透射电镜照片;
图2透射电镜照片,TEOS引起的Au纳米颗粒的自组装;
图3探针的透射电镜照片;
图4金纳米颗粒和探针样品的紫外可见吸收谱。
具体实施例方式下面通过具体实施例对本发明进行进一步阐述。本发明所用到的水相合成的贵金属纳米颗粒在现有文献中有相关报道,纳米颗粒的合成并不是本发明的创新点,本领域技术人员可根据记载的文献得到本发明所用的贵金属纳米颗粒,下述实施例着重解释本发明技术方案部分,应该明白的是,下述说明仅是示例性的,并不对本发明进行限制。如无特别说明,本发明所制得的贵金属纳米颗粒粒径在I 25 nm范围内,探针的长度为3 nm 10 μπι,探针的直径为3 40 nm,探针表面的SiO2层厚度为0. 5 20 nm。实施例I
I. I采用氧化还原法制备Au纳米颗粒(NPs)(详见文献Langmuir 2004, 20, 1909-1904。)
首先,在单口烧瓶中加入18. 5 mL水,再加入0.5 mL 0.01 M柠檬酸钠溶液,搅拌均匀, 置于冰浴中。在搅拌下加入0.5 mL I mM的氯金酸,冰水浴中冷却溶液。然后,在强烈搅拌下慢慢地加入0.5 mL 0.1 M硼氢化钠,溶液变为橙色,低速离心下对产物进行提纯,得到的 Au NPs的粒径大约为3-4 nm。I. 2采用正硅酸乙酯对Au NPs进行自组装。强烈搅拌下,在8 mL乙醇和0. I mL 25%的氨水的混合液中加入I mL 0. I μΜ的Au溶液,再加入3 μ L正硅酸四乙酯,其注入速度为0. 05 ii L/min,继续反应3 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Au NPs的一维自组装结构。I. 3采用正娃酸乙酯对Au纳米颗粒自组装进行SiO2包覆。将Au纳米颗粒的一维自组装结构分散到ImL水中,加入6 mL乙醇和0.1 mL 25%的氨水,再加入20 uL的正硅酸乙酯,搅拌反应4小时,反应后的溶液在15000 rpm的速度下离心5 min,上层清液弃去, 用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Au/ SiO2复合颗粒。I. 4取I mL上述步骤I. 3制备的Au/Si02复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应5小时,反应完后,离心分离并用乙醇洗涤,与拉曼分子链接后得到SiO2 层包覆的一维Au NPs纳米链拉曼探针。实施例2
2.I采用氧化还原法制备Au NPs (详见文献Langmuir 2008, 24,5562-5568)。取 1250 ML 0.01 M氯金酸用水稀释到总体积为50 mL,加入到三口烧瓶中,加热至沸,快速加入2 mL 1%柠檬酸钠水溶液,继续煮沸10 min,撤去热源,再搅拌15 min,冷却到室温,低速离心下对产物进行提纯,反应得到的Au NPs的粒径大约为8 nm。2. 2采用巯基丙酸对Au纳米颗粒进行自组装(详见文献Langmuir. 2010, 26, 10005-10012)。取I mL 0.5 y M的Au纳米颗粒溶液,加入I mL乙醇,搅拌均匀,溶液颜色为红色,加入0.5 mL I mM的巯基丙酸,搅拌24 h后,溶液颜色变为蓝色,组装后的Au纳米颗粒为珍珠链状。2. 3采用正硅酸四甲酯直接对Au NPs进行包覆。在I mL 0. 2 UM的上述组装后的Au纳米颗粒溶液中加入4 mL乙醇和0.1 mL 25%的氨水,搅拌均匀。在搅拌下加入4 UL正硅酸四甲酯,其注入速度为0.2 yL/min,继续反应3 h。反应后的溶液在15000 rpm 的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到SiO2包覆后Au纳米颗粒的一维自组装结构。2. 4取I mL上述步骤2. 3制备的包覆有SiO2层的Au纳米颗粒的一维自组装结构的溶液,加入氨丙基三甲氧基硅烷I. 5uL,搅拌反应6小时,反应完后,离心分离并用乙醇洗涤,与拉曼分子链接后得到含有Au/Si02复合颗粒显示拉曼增强效应的探针。实施例3
3.1用经典的合成方法,在强烈搅拌下,于2 mL水中依次加入25 UL 20 mM氯金酸、 25 UL 0. I M柠檬酸钠、3 mL乙醇和冷冻过的100 U L 0. I M NaBH4。当加入硼氢化钠后, 溶液的颜色由浅黄色变为橙色,继续搅拌10 min,离心分离后得到Au纳米颗粒。3. 2采用极性分子乙醇或丙醇对Au纳米颗粒进行自组装(详见文献J. Phys. Chem. C. 2007, 111,17158-17162)。把金纳米颗粒分散于乙醇和水的溶液里,改变溶剂中乙醇和水的用量(ethanol/water= 0/5, 2/3, 1/1, 3/2, and 5/0),可以得到组装后不同形貌的Au NPs0其它试剂不变,将乙醇换为丙醇,也可以对Au纳米颗粒进行组装。3. 3采用正硅酸四丙酯直接对Au纳米颗粒进行包覆。在I mL 0. 2 UM的上述组装后的Au纳米颗粒溶液中加入I mL乙醇和I mL 25%的氨水,搅拌均匀。在搅拌下加入2 UL正硅酸四丙酯,其注入速度为0.2 yL/min,继续反应3 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到SiO2包覆后Au纳米颗粒的一维自组装结构。3. 4取I mL上述步骤3. 2制备的包覆有SiO2层的Au纳米颗粒的一维自组装结构的溶液,加入氨丙基三甲氧基硅烷O. 5 uL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,之后分散于水中,与拉曼分子链接后得到含有Au/Si02复合颗粒显示拉曼增强效应的探针。实施例4
4.I采用氧化还原法制备Au纳米颗粒(详见文献Langmuir 2008,24,5562-5568)。 取1250 μ 0.01 M氯金酸用水稀释到总体积为50 mL,加入到三口烧瓶中,加热至沸,快速加入850 μ 1%柠檬酸钠水溶液,继续煮沸10 min,撤去热源,再搅拌15 min,冷却到室温, 低速离心下对产物进行提纯,反应得到的Au纳米颗粒的直径大约为25 nm。4. 2采用硼氢化钠对Au纳米颗粒进行自组装(详见文献Langmuir. 2010, 26, 9214-9223)。取2 mL O. 2 μ M的Au溶液于小瓶中,加入O. I mL I mM冰冻过的硼氢化钠溶液,搅拌24 h后,溶液颜色变为蓝色,组装后的Au纳米颗粒为珍珠链状的。4. 3采用正硅酸四丁酯对组装后的Au纳米颗粒进行包覆。在I mL O. 2 μ M的上述组装后的Au纳米颗粒溶液中加入I mL乙醇和O. 2 mL 25%的氨水,搅拌均匀。在搅拌下加入10 μ L正硅酸四丁酯,其注入速度为O. 2 μ L/min,继续反应10 h。反应后的溶液在 15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到SiO2包覆后Au纳米颗粒的一维自组装结构。4. 4取I mL上述步骤4. 3制备的包覆有SiO2层的Au纳米颗粒的一维自组装结构的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,之后分散于水中,与拉曼分子链接后得到含有Au/Si02复合颗粒显示拉曼增强效应的探针。实施例5
5.I采用氧化还原法制备Ag纳米颗粒(详见文献Irit Lubitz and Alexander Kotlyar. Bioconjugate Chemistry, 2011 年 I 月 11 日被收录)。将 O. 45 mL O. I M 新制备的AgNO3溶液加入到180 mL预冷到4°C的水中并置于冰浴中。然后在强烈搅拌下加入O. 9 mL 50 mM的柠檬酸钠溶液和O. 75 mL 0.6 M的NaBH4溶液。溶液颜色变为亮黄色。将溶液 4°C下放置24小时,颜色变为深黄色。室温下,在强烈搅拌下加入O. 72 mL 2.5 M氯化锂溶液,继续搅拌15 min。在11000 rpm的离心速度下离心I. 2 h。丢弃上层清液,沉淀分散在水中,制备的Ag纳米颗粒的粒径大约为10 nm。5. 2采用巯基乙酸对Ag纳米颗粒进行自组装。取2 mL O. 5 μ M的Ag NPs溶液于小瓶中,加入I mL乙醇,搅拌均匀,加入ImL I mM的巯基乙酸,搅拌3 h后,得到组装后的Ag纳米颗粒。5. 3采用正硅酸四乙酯对组装后的Ag纳米颗粒进行包覆。在I mL O. 2 μ M的上述组装后的Ag NPs溶液中加入I mL乙醇和O. I mL 25%的氨水,搅拌均匀。在搅拌下加入 8 μ L正硅酸四乙酯,其注入速度为O. 2 μ L/min,继续反应5 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到SiO2包覆后Ag NPs的一维自组装结构。
5. 4取I mL上述步骤5. 3制备的包覆有SiO2层的Ag NPs的一维自组装结构的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应3. 5小时,反应完后,离心分离并用乙醇洗涤, 之后分散于水中,与拉曼分子链接后得到含有Ag/Si02复合颗粒显示拉曼增强效应的探针。实施例6
6.I采用氧化还原法制备Pt纳米颗粒(详见文献Langmuir. 2002, 18,3318-3318)。 在冰浴中,强烈搅拌下将20 mL 0.01 M硼氢化钠溶液逐滴加入到20 mL 0.65 mM六氯钼酸钾中,反应3 h。溶液颜色由黄褐色变为暗灰色,低速离心下对产物进行提纯,制备的Pt纳米颗粒的粒径大约为7 nm。6. 2采用乙醇胺对Pt NPs进行自组装。取2 mL 0. I y M的Pt纳米颗粒溶液于小瓶中,加入I mL乙醇,搅拌均匀,加入I mL ImM的乙醇胺,搅拌48 h后,得到组装后的 Pt纳米颗粒。6. 3采用正硅酸四乙酯对组装后的Pt纳米颗粒进行包覆。在I mL 0. 2 U M的上述组装后的Pt纳米颗粒溶液中加入2 mL乙醇和0.1 mL 25%的氨水,搅拌均匀。在搅拌下加入3 U L正硅酸四乙酯,其注入速度为0. 2 ii L/min,继续反应3 h。反应后的溶液在 15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到SiO2包覆后Pt纳米颗粒的一维自组装结构。6. 4取I mL上述步骤6. 3制备的包覆有SiO2层的Pt纳米颗粒的一维自组装结构的溶液,加入氨丙基三甲氧基硅烷2 uL,搅拌反应6小时,反应完后,离心分离并用乙醇洗涤,之后分散于水中,与拉曼分子链接后得到含有Pt/Si02复合颗粒显示拉曼增强效应的探针。实施例7
7.I采用氧化还原法制备Ag/Au核壳纳米晶(详见文献J. Phys. Chem. C. 2007, 111,5909-5914)。磁力搅拌下,在50 mL 0. 4 mM的AgNO3水溶液中加入5 mL I %柠檬酸钠溶液,将溶液加热到95 °C,保持15 min。然后逐滴加入0. 8 mL 25 mM氯金酸,继续加热15 min。将溶液冷却到室温。反应后的溶液经过多次离心分离和洗涤,洗去未反应的物质,将制备的Ag/Au核壳纳米晶重新分散在水中,得到粒径大约为13 nm的Ag/Au核壳纳米晶。7. 2采用正硅酸四甲酯直接对Ag/Au核壳纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和0. I mL 25%的氨水中加入I mL 0. 2 u M的上Ag/Au核壳纳米晶溶液,再加入2 UL正硅酸四甲酯,其注入速度为0.2 iiL/min,反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag/Au核壳纳米晶的一维自组装结构。7. 3采用正硅酸四甲酯直接对Ag/Au核壳纳米晶自组装进行SiO2包覆,强烈搅拌下,在4 mL乙醇和0.2 mL 25%的氨水中加入I mL 0.2 U M的上述组装后的Ag/Au核壳纳米晶溶液,再加入12 y L正硅酸四甲酯,继续反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag/Au/Si02复合颗粒。7. 4取I mL上述步骤7. 3制备的Ag/Au/Si02复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、Ag/Au/SiO2复合颗粒,与拉曼分子链接后得到含有Ag/Au/Si02复合颗粒显示拉曼增强效应的探针。实施例8
8.I采用氧化还原法制备Au NPs(详见文献Langmuir 2008, 24,5562-5568)。取1250 μ 0.01 M氯金酸用水稀释到总体积为50 mL,加入到三口烧瓶中,加热至沸,快速加入1300 μ 1%柠檬酸钠水溶液,继续煮沸10 min,撤去热源,再搅拌15 min,冷却到室温,低速离心下对产物进行提纯,反应得到的Au纳米颗粒的粒径大约为15 nm。8. 2采用二乙醇胺对Au纳米颗粒进行自组装。取I mL O. 5 μ M的Au溶液于小瓶中,加入I mL乙醇,搅拌均匀,加入I mL I mM的二乙醇胺,搅拌24 h后,溶液颜色变为紫红色,组装后的Au纳米颗粒多为二聚体。8. 3采用正硅酸四丙酯对组装后的Au纳米颗粒进行包覆。强烈搅拌下,在4 mL乙醇和O. I mL 25%的氨水中加入I mL 0.2 μ M的上述组装后的Au NPs溶液,再加入I μ L 正硅酸四丙酯,其注入速度为O. 2 μ L/min,继续反应12 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水中,得到Au/Si02复合颗粒。8. 4取I mL上述步骤8. 3制备的Au/Si02复合颗粒的溶液,加入巯丙基三甲氧基硅烷luL,搅拌反应10小时,反应完后,离心分离并用乙醇洗涤,得到巯基修饰的、Au/Si02 复合颗粒,与拉曼分子链接后得到含有Au/Si02复合颗粒显示拉曼增强效应的探针。实施例9
9.I采用氧化还原法制备Au纳米颗粒(详见文献Langmuir 2008,24,5562-5568。) 取1250 μ 0.01 M氯金酸用水稀释到总体积为50 mL,加入到三口烧瓶中,加热至沸,
快速加入1000 μ 1%柠檬酸钠水溶液,继续煮沸10 min,撤去热源,再搅拌15 min,冷却到室温,低速离心下对产物进行提纯,反应得到的Au纳米颗粒的直径大约为18 nm。9. 2采用三乙醇胺对Au纳米颗粒进行自组装。取I mL O. 5 μ M的Au溶液于小瓶中,加入I mL乙醇,搅拌均匀,加入I mL I mM的三乙醇胺,搅拌5 h后,溶液颜色变为蓝紫色,组装后的Au NPs多为珍珠链状结构。9. 3采用正硅酸四丁酯对组装后的Au纳米颗粒进行包覆。强烈搅拌下,在4 mL乙醇和O. I mL 25%的氨水中加入I mL 0.2 μ M的组装后的Au纳米颗粒溶液,再加入I μ L 正硅酸四丁酯,其注入速度为O. 2 μ L/min,继续反应48 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水中,得到Au/Si02复合颗粒。9. 4取I mL上述步骤9. 3制备的Au/Si02复合颗粒的溶液,加入2_[methoxy (polyethyleneoxy) propyl]-trimethoxy-silane 2 uL,搅拌反应 6 小时,反应完后,离心分离并用乙醇洗涤,得到PEG基修饰的、Au/Si02复合颗粒,与拉曼分子链接后得到含有Au/ SiO2复合颗粒显示拉曼增强效应的探针。实施例10
10.I采用氧化还原法制备Au纳米颗粒。称取90 mg柠檬酸钠置于100 mL三口烧瓶中,加入100 mL水,磁力搅拌,加热至沸。在沸腾下于3 min内均勻加入I mL 50 mM氯金酸水溶液,之后再煮沸4 min。取下,流水冷却到室温。用3000-MWC0的超滤管在6000 rpm离心速度下对产物进行洗涤,浓缩,将未反应的反应物洗去,反应得到的Au纳米颗粒的粒径大约为11 nm。10. 2采用乙二胺对Au纳米颗粒进行自组装。取I mL 0. 5 ii M的Au溶液于小瓶中,加入I mL乙醇,搅拌均匀,加入0. I mL I mM的乙二胺,搅拌5 h后,溶液颜色变为蓝紫色,组装后的Au纳米颗粒多为珍珠链状结构。10. 3采用正硅酸四乙酯对组装后的Au纳米颗粒进行包覆。强烈搅拌下,在4 mL 乙醇和0. I mL 25%的氨水中加入I mL 0. 2 y M的Au溶液,再加入5 y L正硅酸四乙酯, 其注入速度为0. 2 ii L/min,继续反应48 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水中,得到Au/Si02复合颗粒。10. 4取I mL上述步骤10. 3制备的Au/Si02复合颗粒的溶液,加入巯丙基三甲氧基硅烷luL,搅拌反应10小时,反应完后,离心分离并用乙醇洗涤,得到巯基修饰的、Au/Si02 复合颗粒,与拉曼分子链接后得到含有Au/Si02复合颗粒显示拉曼增强效应的探针。实施例11
11.I Au NPs的制备方法同上实施例10. I。11. 2采用正硅酸四甲酯直接对Au纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和0.1 mL 25%的氨水中加入I mL 0.2 U M的上Au纳米晶溶液,再加入2 y L正硅酸四甲酯,其注入速度为0.2 iiL/min,反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Au纳米晶的一维自组装结构。11. 3采用正硅酸四甲酯对Au纳米晶自组装进行SiO2包覆。强烈搅拌下,在4 mL 乙醇和0. 2 mL 25%的氨水中加入I mL 0. 2 u M的上述组装后的Au纳米颗粒溶液,再加入 12 y L正娃酸四甲酯,继续反应6 h。反应后的溶液在15000 rpm的速度下离心10 min, 上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Au/Si02复合颗粒。11. 4取I mL上述步骤11. 3制备的Au/Si02复合颗粒的溶液,加入 2-(carboxymethylthio) ethyl trimethyl si lane 娃烧 luL,搅拌反应 4 小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、Au/Si02复合颗粒,与拉曼分子链接后得到含有Au/ SiO2复合颗粒显示拉曼增强效应的探针。实施例12
12.I Ag纳米颗粒的制备方法同上实施例5. I。12. 2采用正硅酸四丙酯对Ag纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和0. I mL 25%的氨水中加入I mL 0.2 PM的上Ag纳米晶溶液,再加入2 UL正硅酸四丙酯,其注入速度为0. 2 ii L/min,反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag纳米晶的一维自组装结构。12. 3采用正硅酸四丁酯直接对Ag纳米晶自组装进行SiO2包覆强烈搅拌下,在 4 mL乙醇和0. 2 mL 25%的氨水中加入I mL 0. 2 uM的上述组装后的Ag纳米晶溶液,再加入12 ii L正硅酸四丁酯,继续反应6 h。反应后的溶液在15000 rpm的速度下离心10
12min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag /SiO2复合颗粒。12. 4取I mL上述步骤12. 3制备的么8/5丨02复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、Ag/ SiO2 复合颗粒,与拉曼分子链接后得到含有Ag /SiO2复合颗粒显示拉曼增强效应的探针。实施例13
13.I Pt NPs的制备方法同上实施例6. I。13. 2采用正硅酸四乙酯对Pt纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和O. I mL 25%的氨水中加入I mL 0.2 μ M的上Pt纳米晶溶液,再加入2 yL正硅酸四乙酯,其注入速度为O. 2 μ L/min,反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Pt纳米晶的一维自组装结构。13. 3采用正硅酸四丁酯直接对Pt纳米晶自组装进行SiO2包覆强烈搅拌下,在
4mL甲醇和O. 2 mL 25%的氨水中加入I mL O. 2 μΜ的上述组装后的Pt纳米晶溶液,再加入12 μ L正硅酸四丁酯,继续反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到PVSiO2复合颗粒。13. 4取I mL上述步骤13. 3制备的?^^丨02复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、Pt/Si02 复合颗粒,与拉曼分子链接后得到含有PVSiO2复合颗粒显示拉曼增强效应的探针。实施例14
14.I采用氧化还原法制备Pd NPs
在三口瓶中加入5 mL 2 mM H2PdCl4溶液,磁力搅拌下加入O. 5 mLl %柠檬酸钠溶液, 搅拌均匀后,加入200 uL H2O2,反应完毕后,低速离心下对产物进行提纯,制得Pd NPs014. 2采用正硅酸四甲酯直接对Pd纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和O. I mL 25%的氨水中加入I mL 0.2 μ M的上Pd纳米晶溶液,再加入3 μ L正硅酸四甲酯,其注入速度为O. 3 μ L/min,反应8 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Pd纳米晶的一维自组装结构。14. 3采用正硅酸四甲酯直接对Pd纳米晶自组装进行SiO2包覆强烈搅拌下,在
5mL乙醇和O. 2 mL 25%的氨水中加入I mL 0.2 μ M的上述组装后的Pd纳米晶溶液,再加 Λ 12 uL正娃酸四甲酯,继续反应5 ho反应后的溶液在15000 rpm的速度下离心10 min, 上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到PVSiO2复合颗粒。14. 4取I mL上述步骤14. 3制备的Pt/Si02复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应5小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、Pt/Si02 复合颗粒,与拉曼分子链接后得到含有PVSiO2复合颗粒显示拉曼增强效应的探针。实施例15
15.I采用氧化还原法制备Ag/Au合金纳米晶(详见文献J. Phys. Chem. C. 2007,111,5909-5914)。磁力搅拌下,在50 mL 0. 4 mM的AgNO3水溶液中和0. 5 mL 25 mM氯金酸加入5 mL I %柠檬酸钠溶液,将溶液加热到95 °C,保持15 min。将溶液冷却到室温。 反应后的溶液经过多次离心分离和洗涤,洗去未反应的物质,将制备的Ag/Au合金纳米晶重新分散在水中,得到粒径大约为13 nm的Ag/Au合金纳米晶。15. 2采用正硅酸四甲酯直接对Ag/Au合金纳米晶进行自组装。强烈搅拌下,在4 mL乙醇和0. I mL 25%的氨水中加入I mL 0. 2 u M的上Ag/Au合金纳米晶溶液,再加入2 UL正硅酸四甲酯,其注入速度为0.2 iiL/min,反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag/Au合金纳米晶的一维自组装结构。15. 3采用正娃酸四甲酯直接对Ag/Au合金纳米晶自组装进行SiO2包覆强烈搅拌下,在4 mL乙醇和0.2 mL 25%的氨水中加入I mL 0.2 U M的上述组装后的Ag/Au合金纳米晶溶液,再加入12 y L正硅酸四甲酯,继续反应6 h。反应后的溶液在15000 rpm的速度下离心10 min,上层清液弃去,用乙醇洗涤沉淀物两次,离心分离,最后将沉淀物重新分散在水和乙醇的溶液中,得到Ag/Au合金/SiO2复合颗粒。15. 4取I mL上述步骤15. 3制备的Ag/Au合金/SiO2复合颗粒的溶液,加入氨丙基三甲氧基硅烷luL,搅拌反应4小时,反应完后,离心分离并用乙醇洗涤,得到氨基修饰的、 Ag/Au合金/SiO2复合颗粒,与拉曼分子链接后得到含有Ag/Au合金/SiO2复合颗粒显示拉曼增强效应的探针。
权利要求
1.一种具有可调拉曼散射效应的探针,其特征是以贵金属纳米颗粒自组装形成的纳米链为核,核上包覆有一层二氧化硅外壳,二氧化硅外壳上连接有拉曼探针分子。
2.根据权利要求I所述的具有可调拉曼散射效应的探针,其特征是二氧化硅外壳通过修饰与其表面的官能团与拉曼探针分子连接,所述官能团为羟基、氨基、巯基、羧基或聚乙(稀)~■醇基。
3.根据权利要求I或2所述的具有可调拉曼散射效应的探针,其特征是所述贵金属纳米颗粒为Au、Ag、Pt、Pd,或者是Au、Ag、Pt、Pd形成的合金,或者是Au、Ag、Pt、Pd形成的核壳结构,贵金属纳米颗粒粒径在l_25nm。
4.根据权利要求I或2所述的具有可调拉曼散射效应的探针,其特征是二氧化硅外壳的厚度为0. 5-20nm。
5.根据权利要求I或2所述的具有可调拉曼散射效应的探针,其特征是贵金属纳米链与二氧化硅的摩尔比为0. 2-40 :30-70。
6.根据权利要求I或2所述的具有可调拉曼散射效应的探针,其特征是长度为 3nm-10um,直径为 3_40nm。
7.—种权利要求2所述的具有可调拉曼散射效应的探针的制备方法,其特征是,采用下述(I)、(3)、(5)、(6)步骤制备探针或者采用下述(2)、(4)、(5)、(6)步骤制备探针一、贵金属纳米颗粒的自组装(I )、取贵金属纳米颗粒水溶液,加入用于自组装的极性分子试剂,搅拌反应,完成自组装;(2)、取贵金属纳米颗粒水溶液,加入醇、不含官能团的硅烷试剂和氨水,搅拌反应,完成自组装;二、SiO2壳层的包覆(3)、向步骤(I)中自组装后的溶液中加入醇,然后再加入不含官能团的硅烷试剂和氨水,搅拌反应,完成二氧化硅层的包覆,离心分离、洗涤得贵金属/ 二氧化硅复合颗粒;(4)、向步骤(2)中自组装所得的溶液中加入不含官能团的硅烷试剂和氨水,搅拌反应, 完成二氧化硅层的包覆,离心分离、洗涤得贵金属/ 二氧化硅复合颗粒;三、贵金属/二氧化娃复合颗粒的表面官能团修饰(5)、将制得的贵金属/二氧化硅复合颗粒分散于水和醇的溶液中,加入含有官能团的硅烷试剂,搅拌反应进行二氧化硅壳层的表面修饰,离心分离后,得到表面官能团修饰的贵金属/二氧化硅复合颗粒;四、具有可调拉曼散射效应的探针的制备(6)、将制得的表面修饰有各种官能团的贵金属/二氧化硅复合颗粒分散于水或醇中, 加入拉曼探针分子,搅拌反应后,离心分离,得到具有可调拉曼散射效应的探针。
8.根据权利要求7所述的制备方法,其特征是步骤(I)中,贵金属纳米颗粒与极性分子的摩尔比为I. 64 X 10_6 -3. 29 X 10_5 :1 ;步骤(2)中,贵金属纳米颗粒和不含官能团的硅烷试剂的摩尔比为I =IXlO2 2X103,不含官能团的硅烷试剂H20 :醇氨水的摩尔比为 2X10—9 2X10—2 1 :0. 5 5 :0. I I ;步骤(3)中,加入的不含官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为IXlO2 7X105 :1,不含官能团的硅烷H20 :醇氨水的摩尔比为2X10_9 4X10_3 1 :0. 5 5 :0. I I ;步骤(4)中,加入的不含官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为IXio3 IXlO8 :1,不含官能团的硅烷h2o :醇氨水的摩尔比为2X10-9 4X10-3 1 :0. 5 5 :0. I I ;步骤(5)中,加入的含有官能团的硅烷试剂与贵金属纳米颗粒的摩尔比为I = IXlO2 7X 105,含有官能团的硅烷H20 :醇的摩尔比为 2X10—9 4X10—3 1 0. 5 5。
9.根据权利要求7所述的制备方法,其特征是步骤(I)中,搅拌反应3-48小时;步骤 (2)中,搅拌反应l-8h ;步骤(3)中,搅拌反应I-IOh ;步骤(4)中,搅拌反应I-IOh ;步骤(5) 中,搅拌反应3-48h ;步骤(6)中,搅拌反应3-15h。
10.根据权利要求7所述的制备方法,其特征是所述极性分子试剂为甲醇、乙醇、丙醇、丁醇、异丙醇、乙二胺、硼氢化钠、巯基乙酸、巯基丙酸、乙醇胺、二乙醇胺或三乙醇胺;所述醇为甲醇、乙醇或丙醇;所述不含官能团的硅烷试剂为正硅酸甲酯、正硅酸乙酯、 正娃酸丙酯、正娃酸丁酯、娃酸钠或偏娃酸钠;所述含有官能团的烷氧基硅烷试剂为含氨基的烷氧基硅烷试剂、含巯基的烷氧基硅烷试剂、含羧基的硅烷试剂或含PEG (聚乙(烯)二醇基)基的硅烷试剂;其中,含氨基的烷氧基硅烷试剂为氨丙基三甲氧基硅烷、氨乙基三甲氧基硅烷、氨甲基三甲氧基硅烷、氨丙基三乙氧基硅烷、氨乙基三乙氧基硅烷、氨甲基三乙氧基硅烷、氨甲基三丙氧基硅烷、氨乙基二丙氧基娃烧或氣丙基二丙氧基娃烧;含疏基的烧氧基娃烧试剂为疏丙基二甲氧基娃烧、 疏乙基二甲氧基娃烧、疏甲基二甲氧基娃烧、疏丙基二乙氧基娃烧、疏乙基二乙氧基娃烧、 疏甲基二乙氧基娃烧、疏甲基二丙氧基娃烧、疏乙基二丙氧基娃烧或疏丙基二丙氧基娃烧; 含羧基的硅烷试剂为羧乙基硅三醇钠盐或C7H16O2SSi ;含PEG基的硅烷试剂为2-[甲氧基 (聚乙烯氧代)丙基]三甲氧基硅烷、2-甲基-3-羟丙基甲基(硅氧烷与聚硅氧烷)或 CH3O (C2H4O) 6_9C3H6Cl3Si。
全文摘要
本发明公开了一种具有可调拉曼散射效应的探针,以贵金属纳米颗粒自组装形成的纳米链为核,核上包覆有一层二氧化硅外壳,二氧化硅外壳上通过修饰于其表面的官能团连接有拉曼探针分子。本发明还公开了其制备方法,该方法便于操作,所得探针的吸收带可以随探针的长度及直径而发生移动,具有不同拉曼散射效应,可用于Raman散射检测、传感器及其它生物检测领域,也可以用于催化化学、电导材料等领域。
文档编号G01N21/65GK102608097SQ20121002397
公开日2012年7月25日 申请日期2012年2月3日 优先权日2012年2月3日
发明者师瑞霞, 张爱玉, 曹永强, 朱元娜, 杨萍, 王建荣, 马谦 申请人:济南大学

  • 专利名称:一种阀门泄漏检测装置的制作方法技术领域:本实用新型涉及阀门泄漏检测设备技术领域,特别涉及一种阀门泄漏检测装置。 背景技术:阀门尤其是高压阀门,作为一种通用的机械产品,在国民经济的各个领域被广泛应用,由于经常接触化学品又带有很高的压
  • 专利名称:一种卷烟烟气中苯并[a]芘的提取净化方法技术领域:本发明涉及化学检测技术领域,具体涉及一种卷烟烟气中苯并[a]芘的提取净化方法。背景技术:苯并[a]花(Benzo [a]pyrene,简称BaP)是一种带有5个环的的稠环芳烃化合物
  • 专利名称:一种方便取出较重产品的检具的制作方法技术领域:本实用新型涉及一种方便取出较重产品的检具,属于汽车零部件检具装置技术领域。背景技术:随着汽车工业的发展,对汽车零件检验效率等方面的要求也越来越高。常规的汽车零件检验过程中,较重产品的取
  • 专利名称:一种裸眼检测醋酸根离子的方法技术领域:本发明涉及一种检测醋酸根离子的方法,具体属于一种可应用到生物、环境、医药等领域的在中性溶液中“裸眼”检测醋酸根离子的方法。背景技术:食醋的特性和医疗保健功能主要由醋酸根阴离子来决定。醋酸钙是补
  • 专利名称:一种用于混凝土喷射机械手臂架旋转角度信号的采集装置的制作方法技术领域:本实用新型属于隧道拱壁湿混凝土浇注设备,特别是涉及一种用于混凝土喷射机械手臂架旋转角度信号的采集装置。背景技术:混凝土喷射机是一种用于隧道拱壁湿混凝土浇注的设备
  • 专利名称:一种应用于超宽带信号激励下线性阵列的波束形成系统的制作方法技术领域:本发明专利涉及一种应用于超宽带信号激励下线性阵列的波束形成系统,是雷达系统中超宽带信号激励下线性阵列的波束形成系统实现,用于高分辨多目标定位。背景技术: 超宽带(
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12