山东科威数控机床有限公司铣床官方网站今天是:2025-06-20切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

电流检测方法和电流检测装置的制作方法

时间:2025-06-20    作者: 管理员

专利名称:电流检测方法和电流检测装置的制作方法
技术领域
本发明涉及一种准确检测电流的方法和装置,特别涉及用于准确检测在复合动力汽车上搭载的充电电池的电流的最佳电流检测方法和装置。
在现有技术的电流检测装置中,有通过电流磁场转换元件根据磁场变化检测电流的类型、和通过检测电流检测电阻两端的电压,检测出给定时间带的电流累计值的类型。采用电流磁场转换元件的类型具有在一定采样周期内可以高速检测电流的优点。但是,在大电流范围内要准确检测电流是很困难的。特别是,检测大电流时容易产生误差。并且,这种类型也会因元件本身的残磁成分的影响产生检测误差。因此,这种类型,在大电流范围内要高精度检测电流是很困难的。而累计电流检测电阻的电压的类型,虽然具有可以高精度检测电流的优点,但在对算出的电流进行通信的时间段等,出现不能检测电流的不能检测时间带,即不能在整个时间带进行高精度电流检测。特别是,在不能检测时间带中,如果电流发生变化,则检测误差增大,因此存在不能准确检测急剧变化的电流的缺点。
本发明的电流检测方法,采用第1电流传感器1以给定的采样周期作为数字化值检测出电流,同时采用第2电流传感器2以比该第1电流传感器1慢的周期作为数字化值高精度检测出电流。并且,电流检测方法,采用第1电流传感器1检测的电流值,对在第2电流传感器2在给定的周期进行电流检测的检测期间中形成的电流不能进行检测的不能检测时间带的电流进行补充。
在本发明的电流检测方法中,第1电流传感器1和第2电流传感器2非同步进行电流检测,对第2电流传感器2的检测电流与第1电流传感器1的检测电流进行比较,计算第2电流传感器2进行电流检测的检测时间带,根据所计算的检测时间带确定不能检测时间带,用第1电流传感器1的检测电流补充不能检测时间带的电流。
本发明的电流检测装置,包括以给定的采样周期进行电流检测的第1电流传感器1、以比该第1电流传感器1慢的周期高精度检测电流的第2电流传感器2。在该电流检测装置中,采用第2电流传感器2以给定周期检测电流,同时用第1电流传感器1检测的电流值,对该第2电流传感器2不能检测的不能检测时间带的电流进行补充。
并且,本发明的电流检测装置包括根据第1电流传感器1和第2电流传感器2的检测电流计算电流值的运算电路3,第1电流传感器1和第2电流传感器2可以非同步进行电流检测。在运算电路3中,对第2电流传感器2的检测电流与第1电流传感器1的检测电流进行比较,计算第2电流传感器2进行电流检测的检测时间带,根据所计算的检测时间带确定不能检测时间带,用第1电流传感器1的检测电流补充不能检测时间带的电流。
图2表示第1电流传感器检测电流的状态的曲线。
图3表示第2电流传感器检测电流的时间带的曲线。
图4表示运算电路用第1电流传感器的电流值补足第2电流传感器在不能检测时间带中的电流值的流程图。
其中1—第1电流传感器、2—第2电流传感器、3—运算电路、4—负载、5—电池。
并且,该说明书,为了容易理解权利要求的范围,实施例中所示的部件所对应的编号,也标在[权利要求书]、以及[发明内容]中所示的部件上。但是,这绝不意味权利要求书中所示的部件就是特指实施例的部件。


图1所示的电流检测装置包括以给定的采样周期检测电流的第1电流传感器1;以比第1电流传感器1要慢的周期高精度地检测电流的第2电流传感器2;以及根据从第1电流传感器1和第2电流传感器2输入的检测电流计算准确电流的运算电路3。
第1电流传感器1和第2电流传感器2相互串联连接后与负载4串联连接。第1电流传感器1,以比第2电流传感器2快的采样周期检测电流,并将数字化的检出信号输出到运算电路3。第1电流传感器1采用电流磁场转换元件根据磁场变换检测电流。但是,第1电流传感器1也可以采用将低电阻的电流检测电阻与负载串联,对因流过的电流而在电流检测电阻两端所产生的电压用放大器进行放大的类型的检测电路。检测出的电流信号,如图2所示,用A/D转换器(图中未画出)按一定采样周期变换成数字化电流信号。A/D转换器将以给定周期采样的电流值变换成数字化值。图中所示的第1电流传感器1的A/D转换器,以50msec的采样周期将检测电流变换成数字化值并输出给运算电路3。但是,第1电流传感器1的A/D转换器也可以以例如50μsec~200msec的采样周期进行数字化转换,优选1~100msec,更优选10~100msec。第1电流传感器1中内藏有选定采样周期的定时器(图中未画出)。定时器向A/D转换器输出给定周期的时钟信号。A/D转换器根据来自定时器的时钟信号,对电流进行采样,并变换成数字化值后输出。
第2电流传感器2,以比第1电流传感器1慢的周期高精度检测电流,并将所检测的电流变换成数字化值后输出。第2电流传感器2,如图3所示,对给定时间带的电流值累计,根据累计值测定准确的平均值并以数字化值输出。第2电流传感器2,如图3所示,虽然可以在给定周期内准确检测电流,但不能检测所有时间带的电流。在检测时间带和检测时间带之间,存在不能检测电流的不能检测时间带。第2电流传感器2在不能检测时间带的期间,根据在检测时间带所累计的电流值计算出准确的电流值,变换成数字化值后,将该数字化值与运算电路3之间进行通信。图中所示的第2电流传感器2,检测时间带为350msc,不能检测时间带为150msec,检测时间带和不能检测时间带一起构成的一个循环周期为500msec。但是,第2电流传感器2的检测时间带和不能检测时间带并没有特定为该时间,检测时间带,例如可以是第1电流传感器1的采样周期的1.5~1000倍,优选3~100倍,更优选5~10倍。另外,不能检测时间带可以是检测时间带的10~100%。
图3所示的第2电流传感器2以500msec的周期检测电流并转换成数字化值输出给运算电路3。但该周期与第1电流传感器1的采样周期不同步。也就是说,第1电流传感器1和第2电流传感器2虽然按一定的周期检测电流,但相互不同步地进行电流检测,并输出给运算电路3。也就是说,第1电流传感器1和第2电流传感器2相互独立进行电流检测并输出给运算电路3。第2电流传感器2虽然内藏有确定检测电流的时刻的定时器(图中未画出),但该定时器与第1电流传感器1的定时器不同步,非同步地输出时钟信号。
第2电流传感器2,图中虽然未画出,包括与负载4串联连接的低电阻电流检测电阻;对在该电流检测电阻上产生的电压进行放大的放大器;通过对放大器的输出电压累计准确计算给定时间带的电流的电流检测电路;以及将电流检测电路的输出进行A/D转换的A/D转换器。在电流检测电阻上,会产生与电池5中所流过的电流成正比的电压。由于电池5的充电电流和放电电流在方向上相反,充电电流和放电电流在电流检测电阻上所产生的电压的极性也相反。因此,检测电流检测电阻的电压可以测定电池5中流过的电流。放大器是为了减小电流检测电阻的电阻值、减小所产生的电压而设置的。检测时间带的准确电流值,在不能检测时间带的期间输出给运算电路3。
运算电路3对从第1电流传感器1和第2电流传感器2输入的数字化值进行运算,计算出准确的电流。从第1电流传感器1和第2电流传感器2输入的电流信号,具有给定周期但相互不同步。第1电流传感器1以图2所示的50msec的周期将电流信号输出给运算电路3,第2电流传感器2以图3所示的500msec的周期将电流信号输出给运算电路3。第2电流传感器2虽然按500msec的周期输出电流信号,但不是500msec期间的电流值。是将检测时间带的350msec的时间带的平均电流在不能检测时间带输出给运算电路3。第2电流传感器2的电流值虽然比第1电流传感器1的电流值更准确,但不是整个时间带的电流值。第2电流传感器2不能检测电流的不能检测时间带的电流值,采用第1电流传感器1所检测的电流值进行补充。
第2电流传感器2和第1电流传感器1的输出由于相互不同步,运算电路3,将第2电流传感器2的检测电流和第1电流传感器1的检测电流进行比较,计算出第2电流传感器2检测电流的检测时间带。由于第1电流传感器1和第2电流传感器2检测电流的检测时间带不同,所以对照时间带后比较电流值。图2的第1电流传感器1以50msec的周期检测电流,图3的第2电流传感器2检测350msec期间的电流。这时,第1电流传感器1连续7次检测的时间相当于第2电流传感器2的检测时间。因此,将第1电流传感器1的检测值7次的平均值与第2电流传感器2的检测值进行比较。当第1电流传感器1和第2电流传感器2检测电流的时间一致时,所检测的电流应一致,或者是最相近的检测值。第2电流传感器2以比第1电流传感器1高的精度进行电流检测。因此,第1电流传感器1和第2电流传感器2即使检测电流的时间带一致,两电流传感器检测电流的检测值并不一定一致。但是,如果两电流传感器检测电流的时间带一致,即使检测值不一致也应该是最相近的值。因此,运算电路3在考虑到误差的情况下对第1电流传感器1和第2电流传感器2的电流值进行比较,或者当第1电流传感器1和第2电流传感器2的检测值最相近时,判定第1电流传感器1和第2电流传感器2检测电流的时间带一致。
对第1电流传感器1和第2电流传感器2的检测电流进行比较,如图2所示,如果确定了第1电流传感器1的检测时间带,不能检测时间带也被确定。在图2中,由于不能检测时间带为150msec,在该时间带第1电流传感器1连续3次检测电流。因此,利用该3次的检测电流补充第2电流传感器2的不能检测时间带的电流值。
运算电路3包括保存第1电流传感器1输入的给定时间带的电流值的缓冲存储器(图中未画出)。缓冲存储器保存至少第2电流传感器2的一个循环周期以上的时间带中的第1电流传感器1所输出的电流值。缓冲存储器优选保存相当于第2电流传感器2的1.5个循环周期以上、例如2个循环周期的时间带中的第1电流传感器1所输出的电流值。第2电流传感器2的1个循环周期为500msec时,缓冲存储器保存第1电流传感器1输出的1sec期间的检测值。缓冲存储器保存的时间设定成包含第2电流传感器2的检测时间带的时间。
运算电路3,将在缓冲存储器中保存的第1电流传感器1的电流值与第2电流传感器2所输入的电流值进行比较,确定第1电流传感器1中第2电流传感器2的检测时间带。在缓冲存储器中保存的第1电流传感器1的电流值,以7次平均值与第2电流传感器2的检测值进行比较。这是为了使第1电流传感器1检测电流的时间宽度与第2电流传感器2检测电流的时间宽度一致。这样之后,运算电路3,从在缓冲存储器中保存的第1电流传感器1的电流值,对照第2电流传感器2检测电流的时间宽度后计算电流值,将所计算的电流值与第2电流传感器2的检测值进行比较。
运算电路3对第1电流传感器1和第2电流传感器2的电流值进行比较,使第1电流传感器1和第2电流传感器2输出的非同步的电流信号同步。这是因为第1电流传感器1采样电流的时间和第2电流传感器2检测电流的时间已被确定的缘故。
运算电路3,按照以下的流程采用第1电流传感器1的电流值补充第2电流传感器2的不能检测时间带的电流值。运算电路3,将第1电流传感器1输入的电流值保存在缓冲存储器中。缓冲存储器重复保存第1电流传感器1所输入的1秒期间的电流值。第1电流传感器1,由于以50msec的周期检测电流,所以1秒期间检测20次电流值。因此,在缓冲存储器中第1电流传感器1连续检测的20次检测电流值作为n=0~19的值保存数字化值。在缓冲存储器中保存的第1电流传感器1的电流值中,包含第2电流传感器2所输入的检测时间带的电流值。换言之,使其包含第2电流传感器2的检测时间带的电流值地,在缓冲存储器中保存第1电流传感器1的电流值。
运算电路3,按照图4的流程图,利用第2电流传感器2和第1电流传感器1的检测值计算整个时间的电流值,即准确计算包含第2电流传感器2的不能检测时间带的电流值的电流。
在该步骤中,运算电路3获取第2电流传感器2检测的高精度电流值。运算电路3每隔500msec获取第2电流传感器2检测的电流值。
运算电路3将内藏计数器的值设置为n=0。

运算电路3,对保存在缓冲存储器中的n=0~6的电流值I0~I6相加后计算平均值∑。第1电流传感器1检测的电流I0~I6的平均值∑,与第2电流传感器2检测电流的时间宽度的350msec的平均电流具有相同的时间宽度。但是,第1电流传感器1检测的平均值∑,由于与第2电流传感器2检测电流的时间不同步,所以在以下的步骤中使其同步。
将运算电路2的计数器的值加1,即计数器设置为n=1。
在该步骤中,运算电路3计算第1电流传感器1检测的n=1~7的电流值I1~I7的平均值∑。
将前次的平均值∑和本次的平均值∑与第2电流传感器2检测的电流值进行比较,保存更相近的平均值∑时的n值。
在n=13之前循环执行第s=4~7步的流程。在第s=4~7步中,运算电路3保存平均值∑与第2电流传感器2检测的电流值更相近时的n值。
根据n值使第1电流传感器1检测的时间带,与第2电流传感器2检测的时间带同步。例如,假定第2电流传感器2检测的时间带,如图2所示,处于包含第1电流传感器1检测电流的时刻n=5~11的时间带时,则保存在缓冲存储器中的n=5~11的平均值∑,与第2电流传感器2检测的电流值最相近。这是因为,第1电流传感器1在n=5~11的时刻检测电流的时间,与第2电流传感器2的检测时间带一致的缘故。
如果计算出第1电流传感器1在n=5~11时检测的连续7次的电流平均值∑属于第2电流传感器2的检测时间带,在该平均值∑之后的3次的平均值则为第2电流传感器2的不能检测时间带的电流。如图2所示,这是因为第2电流传感器2的检测时间带的时间带为350msec,而不能检测时间带是在检测时间带之后的150msec的时间带。因此,采用保存在缓冲存储器中的n=12~14的电流值I12~I14的平均值,作为第2电流传感器2的不能检测时间带的电流值进行补充。也就是说,第1电流传感器1检测的n=5~11时间带的电流值,采用更高精度的第2电流传感器2的检测值,而在第2电流传感器2不能检测电流的不能检测时间带中,采用保存在缓冲存储器中的n=12~14的电流值,用第1电流传感器1的检测值补充第2电流传感器2的不能检测时间带的电流值,准确检测连续的电流值。
循环重复上述步骤,运算电路3根据第12电流传感器1和第2电流传感器2计算出更准确的电流值。
并且,在图4的流程图中,当第2电流传感器2不能准确检测电流时,经过采用第1电流传感器1的检测值的步骤之后,在第s=11步,用第1电流传感器1的检测值补充第2电流传感器2的不能检测时间带的电流。
在该步骤中,运算电路3判定第2′电流传感器2输入的电流值是否连续变化。当第2电流传感器2的检测电流异常时电流值会急剧变动。因此,第2电流传感器2的检测值是否连续变化,可以确认第2电流传感器2是否在正常检测电流。
另外,运算电路3,在该步骤中,将第2电流传感器2的检测值与第1电流传感器1的平均值∑进行比较,判定其差是否很大。但第2电流传感器2检测异常时,第2电流传感器2的检测值和第1电流传感器1的平均值∑差异大。因此,在该步骤中也可以判定第2电流传感器2是否正常检测电流。
如果第2电流传感器2的检测值不连续变化,或者第2电流传感器2的检测值与第1电流传感器1的平均值∑差异大时,不采用第2电流传感器2的检测值,而置换成第1电流传感器1的平均值∑作为检测电流值。也就是说,忽略第2电流传感器2的检测,采用第1电流传感器1的检测值。
如果第2电流传感器2的检测值连续变化,并且第2电流传感器2的检测值与第1电流传感器1的平均值∑差异不大时,即第2电流传感器2正常检测电流时,如上所述方法,采用第1电流传感器1的电流值补充第2电流传感器2的不能检测时间带的电流。
发明的效果本发明的电流检测方法和电流检测装置,具有即使对于变动大的电流,也可以准确高精度进行检测的特点。这是因为,本发明通过将以给定周期进行电流检测的第1电流传感器、和以比第1电流传感器慢的周期高精度进行电流检测的第2电流传感器组合使用,用第1电流传感器检测的电流值补充第2电流传感器2不能检测的不能检测时间带的电流。本发明,通过采用第1电流传感器检测的电流值对可以高精度检测电流的整个时间带中不能检测的第2电流传感器2的不能检测时间带的电流值,有效利用两传感器的长处,可以获得各单个传感器不能获得的、更高精度的电流值。
并且,本发明还具有,即使当第2电流传感器2一时不能动作,或者由于噪声不能读取数据时,也可以用第1电流传感器1检测电流值,进行补充,始终可以准确检测电流值,实现高可靠性的特点。
权利要求
1.一种电流检测方法,其特征在于,采用第1电流传感器(1)以给定的采样周期检测出作为数字化值的电流,同时采用第2电流传感器(2)以比该第1电流传感器(1)慢的周期高精度地检测出作为数字化值的电流,采用第1电流传感器(1)检测的电流值,对在第2电流传感器(2)在给定的周期进行电流检测的检测期间中形成的电流不能进行检测的不能检测时间带的电流进行补充。
2.根据权利要求1所述的电流检测方法,其特征在于,用第1电流传感器(1)和第2电流传感器(2)非同步地进行电流检测,并对第2电流传感器(2)的检测电流与第1电流传感器(1)的检测电流进行比较,计算出第2电流传感器(2)进行电流检测的检测时间带,再根据所计算的检测时间带确定不能检测时间带,用第1电流传感器(1)的检测电流补充不能检测时间带的电流。
3.一种电流检测装置,其特征在于,包括以给定的采样周期进行电流检测的第1电流传感器(1)、和以比该第1电流传感器(1)慢的周期高精度地检测电流的第2电流传感器(2),采用第2电流传感器(2)以给定周期检测电流,同时用第1电流传感器(1)检测的电流值,对该第2电流传感器(2)不能检测的不能检测时间带的电流进行补充。
4.根据权利要求3所述的电流检测装置,其特征在于,具有根据第1电流传感器(1)和第2电流传感器(2)的检测电流计算电流值的运算电路(3),第1电流传感器(1)和第2电流传感器(2)非同步地进行电流检测,在运算电路(3)中,对第2电流传感器(2)的检测电流与第1电流传感器(1)的检测电流进行比较,计算出第2电流传感器(2)进行电流检测的检测时间带,根据所计算的检测时间带确定不能检测时间带,用第1电流传感器(1)的检测电流补充不能检测时间带的电流。
全文摘要
一种电流检测方法和电流检测装置,采用第1电流传感器(1)以给定的采样周期作为数字化值检测出电流,同时采用第2电流传感器(2)以比第1电流传感器(1)慢的周期作为数字化值高精度检测出电流。进一步,电流检测方法,采用第1电流传感器(1)检测的电流值,对在第2电流传感器(2)在给定的周期内进行电流检测的检测期间中形成的电流不能进行检测的不能检测时间带的电流进行补充。从而可以准确并且高精度检测变动大的电流。
文档编号G01R31/36GK1435694SQ03103419
公开日2003年8月13日 申请日期2003年1月28日 优先权日2002年2月1日
发明者汤乡政树, 行田稔, 江木浩 申请人:三洋电机株式会社

  • 专利名称:吊锤装置的制作方法技术领域:本发明涉及设备垂直度的调节领域,更具体地涉及一种调节设备垂直度的吊锤装置。背景技术:在建筑装潢行业需要对垂直度进行调节以保证和提高工程质量。而在设备制造领 域,尤其是涉及多台设备时,设备垂直度的调节显得
  • 专利名称:小尺寸材料浅层缺陷检测系统的制作方法技术领域:本发明涉及一种缺陷检测系统,特别是一种用于检测小尺寸材料浅层缺陷的检测 系统。背景技术:在工业生产中,由于原材料材质、加工工艺、热处理等方面的原因,生产的工件内 往往存在缺陷。这些缺陷
  • 专利名称:自动加样枪封闭式走线装置的制作方法技术领域:本实用新型涉及一种加样设备,特别是涉及一种用于埋设加样设备中控制线路的直O背景技术:多通道加样设备是用于全自动化样本、试剂的稀释、分配、混勻及相关数据的文档自动化管理等操作的设备,多个加
  • 专利名称:温度变化时基于应变监测的松弛索逼近式识别方法技术领域:斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便
  • 专利名称:室温~70℃测量范围的勃氏粘度测定仪的制作方法技术领域:本实用新型属于生物制药、食品、保健品、明胶制品行业对明胶粘度性能的测量仪器,特别涉及一种室温7(rc测量范围的勃氏粘度测定仪。背景技术:目前国内生产的勃氏粘度测试仪,只能对6
  • 专利名称:纤维沥青混合料低温劈裂试验装置的制作方法技术领域:本发明属工程检测试验设备技术领域,是一种测试纤维浙青混合料劈裂强度及变形性能的试验装置。背景技术:浙青混合料是我国高等级公路路面的主要铺筑材料,低温时浙青混合料的强度和变形性能是评
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12