山东科威数控机床有限公司铣床官方网站今天是:2025-06-22切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

设备状态检测装置、设备状态检测方法、设备状态检测服务器及设备状态检测系统、生活...的制作方法

时间:2025-06-22    作者: 管理员

专利名称:设备状态检测装置、设备状态检测方法、设备状态检测服务器及设备状态检测系统、生活 ...的制作方法
技术领域
本发明涉及对设备的运转状态进行检测的设备状态检测装置、设备状态检测方 法、设备状态检测服务器及设备状态检测系统、对住所内的生活者的异常进行探测的生活 者异常探测装置、生活者异常探测系统及生活者异常探测方法、以及设备状态数据库维护 服务器。
背景技术
近年来,伴随家庭网络技术的普及,提出了关于推测在家庭内连接的电气设备的 动作状态的方案。例如,作为以“可以通过非侵入性的方法来推测包括逆变器设备的电气设 备的动作状态”为目的的技术,提出了如下装置“具备设置在需要电力的家的馈电线引 入口附近处的测定传感器;从由测定传感器检测出的测定数据中取出基波以及高次谐波的 电流和与相对它们的电压的相位相关的数据的数据抽出单元;以及根据来自数据抽出单元 的基波以及高次谐波的电流和与相对它们的电压的相位相关的数据,推测该需要电力的家 所使用的电气设备的动作状态的样式(pattern)识别单元”(例如,参照专利文献1)。另外,作为以得到“负荷需要推测精度较高、特别是可以可靠地判定设备的ON(接 通)或者OFF (断开)的变化来推测处于负荷状态的设备的类别的负荷需要推测装置”为目 的的技术,提出了如下装置“一种负荷需要推测装置,根据设置在测量点的电量检测单元 的输出来推测在所述馈电线的测量点的下游侧分别经由开闭单元连接的多个设备内的所 述开闭单元被闭路而处于负荷状态的设备的类别,其特征在于,具备负荷信息存储单元, 预先存储所述多个设备各自的规定周期下的负荷信息;电量变化检测单元,对所述电量检 测单元的每个所述规定周期的输出的时间变化进行检测;开闭变化设备推测单元,在存在 该电量变化时,对根据所述电量变化量制作出的检测量变化量与存储在所述负荷信息记录 单元中的各负荷信息进行比较,抽出与所述检测量变化量最近似的负荷信息,将与该抽出 的负荷信息相当的设备的类别作为开闭变化设备;以及第1负荷设备推测单元,根据所述 开闭变化设备的信息,使处于负荷状态的设备的类别从所述电量变化前的状态变更,从而 推测所述电量变化后的处于负荷状态的设备的类别”(例如,参照专利文献2)。但是,近年来,独自生活的高龄者的户数急速地增加。在这样的单人生活的生活者 中,存在在产生了脑梗塞、或心肌梗塞等需要紧急处理的异常事态的情况下发现过晚这样 的问题。为了解决这样的问题,期待对生活者的异常进行检测,而直接通知医院、或急救中 心的传感器。在对生活者安装某种传感器的方法中,产生如下问题生活者感受到被监视这样 的压力,由于反感等而作为结果拒绝使用装置。因此,对生活者不安装任何传感器的系统是 比较现实的。在不将传感器安装到人体的情况下,根据生物体信息以外的信息、例如人的动作、或生活样式来推测有无异常。作为根据室内的人的动作来探测异常的方法,提出了不使用发送机的更简易的结 构、并且可以较宽地探测住所内的空间、且可以高精度地探测人物的存在的使用了电波的 人物存在探测系统。其根据尽管人居住在住所内、但没有人的动作这样的状况来探测异常 (例如,参照专利文献3)。另外,作为根据生活样式来探测异常的方法,提出了对独居老人等被监视者自律 地按照一定的样式来过的生活进行支援的生活监视系统。其中,生成生活的基准样式,在判 断为是基准外的状况的情况下判断为异常(例如,参照专利文献4)。专利文献1 日本特开2000-292465号公报(第2页)专利文献2 日本特开2002-152971号公报(第4页)专利文献3 日本特开2006-221213号公报(第5-6页、图1-图9)专利文献4 日本特开2005-284535号公报(第8_9页、图8-图10)

发明内容
但是,根据所述专利文献1记载的以往技术,需要学习存在于家庭内的所有设备 的运转状态的组合,所以如果设备增加则其学习量成为庞大的数量,而非常难以实现。另外,根据所述专利文献2记载的以往技术,在将未知的设备导入到家庭内并开 始运转该设备的情况下,有可能造成误推测。另外,如上所述提出了对生活者的异常进行探测的方法,但它们在判定异常的前 后的逻辑关系中存在难点,根据状况而有可能造成误探测。即,如果仅根据“人不移动,,这 样的状况来探测异常,则在就寝中造成误探测。另外,如果仅根据“进行着与通常不同的行 动”这样的状况来探测异常,则存在在周末等与平日不同的生活节奏的情况下造成误探测 这样的课题。本发明是为了解决所述那样的课题而完成的,其目的在于提供一种设备状态检测 装置,对存在于家庭内的所有设备的运转状态的组合进行学习的工夫较少、并且即使在未 知的设备运转了的情况下推测错误也较少。另外,本发明是为了解决上述那样的课题而完成的,其目的在于提供一种生活者 异常探测装置、生活者异常探测系统以及生活者异常探测方法,根据表示设备的运转状态 等的设备信息和表示人的活动状态的活动信息来探测生活者有无异常。本发明提供一种设备状态检测装置,其特征在于,具有测量单元,对设置了设备 的环境的物理量进行测量;特征量计算单元,计算所述测量单元测量出的测量值的特征量; 存储单元,预先将每个所述设备的所述特征量和与其对应的设备状态存储为字典数据;以 及设备状态检测单元,将所述特征量计算单元计算出的特征量作为检索关键字而检索存储 在所述字典数据中的特征量,根据与确定为检索结果的该特征量对应的设备状态来检测设 备状态。另外,本发明提供一种对与馈电线连接的设备的状态进行检测的设备状态检测装 置,其特征在于,具备电流检测单元,对馈电线中流过的电流进行测量;电流电压变换单 元,将由所述电流检测单元测量出的电流变换为电压值;波形滤波器单元,使通过所述电流 电压变换单元变换为电压值的电流中的特定频率的分量通过;波形放大单元,对通过了所述波形滤波器单元的包括特定频率分量的电流进行放大;AD变换单元,对通过所述波形放 大单元放大后的电流波形进行AD变换而作为数字值;特征量计算单元,根据所述AD变换 后的数字值的电流值计算出特征量;设备状态数据库,存储多个针对各设备各自的每个设 备状态,登记了该设备状态下的设备特征量的参照设备条目;设备状态检测单元,对所述特 征量计算单元计算出的特征量、与所述设备状态数据库内的参照设备条目的设备特征量进 行对比,确定具有与所述特征量计算单元计算出的特征量吻合的设备特征量的参照设备条 目;以及输出装置,将由所述设备状态检测单元确定的参照设备条目作为设备状态信息而 输出。另外,本发明一种生活者异常探测装置,其特征在于,具备无线通信单元,对来自 无线通信机的接收电波的强度进行测量;活动判定单元,根据由该无线通信单元测量出的 电波强度的时间变化来判定生活者的活动状态,将该判定结果作为活动信息;运转设备探 测单元,对设置在生活者的周边的设备的运转状态进行探测,将该状态作为设备信息;以及 异常探测单元,根据所述活动信息以及所述设备信息探测生活者有无异常。根据本发明的设备状态检测装置,可以根据设置了设备的环境的物理量来检测该 设备的设备状态。另外,在本发明中,“环境的物理量”是指,与1个或者多个设备的使用相伴的负荷 物理量、或者设置了这些设备的环境的物理量中的至少一个。作为前者的具体例,例如是设 备使用的电流、煤气流量、自来水流量、以及网络上的数据传送量。另外,作为后者的具体 例,例如是照度、温度。另外,根据本发明的设备状态检测装置,针对每个各设备各自的设备状态预先在 设备状态数据库中存储多个登记了该设备状态下的设备特征量的参照设备条目,对馈电线 中流过的电流进行处理而计算与馈电线连接的设备的特征量,对该特征量与设备状态数据 库的各参照设备条目进行对比,确定具有与通过所述计算而得到的特征量吻合的设备特征 量的参照设备条目,从而掌握设备状态,所以即使在各种设备同时动作着的情况、未知的设 备动作着的情况下,也无需学习所有设备的组合的工夫,并且不会产生推测错误,而可以高 精度地检测设备的运转状态。另外,根据本发明的生活者异常探测装置,根据活动判定单元的活动信息以及运 转设备探测单元的设备信息来探测有无生活者的异常,所以可以正确地探测生活者的状 态。另外,可以检测例如忘记关闭照明、空调而外出这样的事态,可以削减能量的浪费使用。 另外,与以往相比,异常探测的可靠度提高,可以更早地探测异常,可以确保生活者的安全。 特别,对于接收异常通知的人,易于得知表示状况的前后的逻辑关系。例如,被通知了异常 的人通过接收“虽然IH动作,但人不在家”这样的信息,可以容易地理解是异常事态。


图1是本发明的实施方式1的设备状态检测装置100的系统结构图。图2是本发明的实施方式1的设备状态检测装置100的功能结构图。图3是示出本发明的实施方式1的设备状态检测装置100的数据结构的图。图4是示出本发明的实施方式1的生活行为推测装置400的数据结构的图。图5是本发明的实施方式1的设备状态检测装置100的动作流程。
14
图6是示出测量值112a和特征量122a的数据结构的图。图7是示出本发明的实施方式2的通过特征量计算单元120进行的特征量计算方 法的图。图8是本发明的实施方式2的测量值112a和特征量122a的具体例。图9是示出本发明的实施方式4的通过特征量计算单元120进行的特征量计算方 法的图。图10是示出本发明的实施方式5的参照设备条目字典210以及吻合参照设备条 目133的数据结构的图。图11是本发明的实施方式5的设备状态检测装置100的动作流程。图12是本发明的实施方式6的设备状态检测单元130的动作流程。图13是本发明的实施方式7的匹配单元410的动作流程。图14是说明本发明的实施方式8的匹配单元410的处理的图。图15是示出实施方式9的设置了设备状态检测装置2000的住所2010内的结构 的图。图16是实施方式9的设备状态检测装置2000的功能框图。图17是示出图16的输出装置2250中显示的结果画面的一个例子的图。图18是实施方式9的设备状态检测装置2000对设备进行检测时的动作流程。图19是示出在附加了电视机2130的情况下馈电线2140上流过的电流2502和此 时的馈电线2140的电压2501的图。图20是示出通过波形滤波器单元对图19的电流值进行了滤波的例子的图。图21是示出通过波形平滑化单元对图20的滤波后的电流值进行了平滑化的例子 的图。图22是示出对图21的平滑化后的电流值进行了小波变换的例子的图。图23是示出根据图22的小波变换结果计算出的特征量的图。图24是示出根据所测量出的特征量从设备状态数据库中检索吻合的设备条目时 的动作的图。图25是示出实施方式10中的设备状态检测服务器2100的概略结构的示意图。图26是示出图25的设备状态检测服务器2100的结构的功能框图。图27是示出实施方式11的设备状态检测系统2200的利用方式的图。图28是示出图27的设备状态检测系统2200的结构的功能框图。图29是示出本发明的实施方式12的生活者异常探测装置的框图以及外观立体 图。图30是示出从无线接入点发送到生活者异常探测装置的电波的路径的示意图。图31是示出实施方式12的生活者异常探测装置的无线通信单元以及活动判定单 元的动作的流程图。图32是示出由无线通信单元测量出的接收电波的强度的图。图33是示出实施方式12的生活者异常探测装置的运转设备探测单元的动作的流 程图。图34是示出实施方式12的生活者异常探测装置的异常探测单元的动作的流程
15图。图35是示出通过异常探测单元探测有无异常的探测例的图。图36是示出实施方式12的生活者异常探测装置的设置例的图。图37是示出本发明的实施方式13的生活者异常探测装置的外观的主视图。图38是示出实施方式13的生活者异常探测装置的运转设备检测单元的动作的流 程图。图39是示出本发明的实施方式14的生活者异常探测装置的外观的主视图。图40是示出实施方式14的生活者异常探测装置的运转设备检测单元的动作的流 程图。图41是示出本发明的实施方式15的生活者异常探测装置的外观的立体图。图42是示出实施方式15的生活者异常探测装置的运转设备检测单元的动作的流 程图。图43是示出本发明的实施方式16的生活者异常探测装置的无线通信单元以及活 动判定单元的动作的流程图。图44是示出本发明的实施方式17的生活者异常探测装置的无线通信单元以及活 动判定单元的动作的流程图。图45是示出本发明的实施方式18的生活者异常探测系统的结构的图。图46是示出本发明的实施方式18的生活者异常探测装置的异常探测单元的动作 的流程图。图47是示出本发明的实施方式19的生活者异常探测装置的异常探测单元的动作 的流程图。图48是示出本发明的实施方式21的设备状态检测装置的结构的图。图49是示出本发明的实施方式21的设备状态检测服务器的结构的图。图50是示出本发明的实施方式21的设备状态检测系统的结构的图。(符号说明)100 设备状态检测装置;300 测量装置;301 电力线;302 输出装置;400 生 活行为推测装置;110 测量单元;120 特征量计算单元;130 设备状态检测单元;140 存 储装置;150 输出单元;112 测量条目;112a 测量值;122 特征量条目;122a :特征量; 131 吻合参照设备条目;131a 设备特征量;131b 设备状态;131c 特征量距离;132 设 备状态条目;132a 设备状态时刻;132b 设备状态;200 参照设备条目字典;201 :参照设 备条目;201a 设备特征量;201b 设备状态;410 匹配单元;420 输出单元;430 :存储装 置;411 吻合参照行为条目;411a 参照行为时刻;411b 参照设备状态;411c 参照生活 行为;411d 参照在室场所;500 参照行为条目字典;501 参照行为条目;501a 参照行为 时刻;501b 参照设备状态;501c 参照生活行为;501d 参照在室场所;2000 设备状态检 测装置;2100 设备状态检测服务器;2101 馈电线;2102 电压传感器;2103 电压传感 器;2104 馈电线;2105 电压传感器;2106 电流传感器;2107、2108 设备状态检测装置; 2140 馈电线;2200 设备状态检测系统;2201 电压传感器;2201A、2202A 设备状态检测 装置;2202 电流传感器;2203 电流电压变换单元;2204 阻抗提高单元;2204A:网络; 2205 波形滤波器单元;2206 波形放大单元;2207 =AD变换单元;2208 波形切分单元;
162209 波形平滑化单元;2210 特征量计算单元;2210A 通信单元;2210a 特征量;2211 邮 箱;2212 存储单元;2212A 设备状态信息管理单元;2213 设备状态信息数据库;2214 显 示单元;2215 控制单元;2216 设备状态数据库;2217 设备状态数据库管理单元;2220 设备状态检测单元;2221 吻合参照设备条目;2230 设备状态数据库;2231 参照设备条 目;2231a 设备特征量;2231b 设备状态;2240 设备状态信息制作单元;2250 输出装置; 2260 设备状态数据库更新单元;2270 通信单元;2300 处理部;2310 综合单元;2320 控 制单元;3001 生活者异常探测装置;3002 无线通信单元;3003 天线;3004 活动判定单 元;3005 =LED显示部;3006 运转设备探测单元;3007 天线;3008 =LED显示部;3009 异常 探测单元;3010 天线;3011 警报蜂鸣器;3013 变流器;3014 连接端子;3015 =EMC用天 线;3020 无线接入点;3030 设备;3060 插座;3070 路由器;3080 因特网;3090 异常探 测中心。
具体实施例方式实施方式1.图1是设置了本发明的实施方式1的设备状态检测装置100的家庭内环境的概略 系统结构图。如图1所示,设备状态检测装置100与测量装置300、生活行为推测装置400连接。测量装置300是用于对电力线301的供电口的电流进行测量的装置,例如使用电 流传感器等。测量装置300设置在电力线301的供电口、或者台用分接头、OA分接头那样 的延长软线(cord)的上游部分中。设备状态检测装置100根据测量装置300的测量结果对家庭内的设备状态进行检 测,所检测出的设备状态被输出到生活行为推测装置400。生活行为推测装置400是用于根据设备状态检测装置100检测出的设备状态来推 测家庭内的生活行为的装置。生活行为推测装置400与输出装置302连接。输出装置302 是用于输出生活行为推测装置400检测出的生活行为的装置,例如使用显示器、或数据输 出装置等。图2是设备状态检测装置100以及生活行为推测装置400的功能结构图。根据图 2,对整体的动作概要进行说明。设备状态检测装置100包括测量单元110、特征量计算单元120、设备状态检测单 元130、以及存储装置140。测量单元110、特征量计算单元120、以及设备状态检测单元130 分别与存储装置140连接。存储装置140是用于存储测量条目112、特征量条目122、吻合 参照设备条目131、设备状态条目132、以及参照设备条目字典200的装置。输出单元150 与存储装置140连接,进行向生活行为推测装置400的输出动作。另外,输出单元150相当 于本发明的“输出单元”以及“警告状态输出单元”。在图2中,测量单元110具有A/D变换功能,按照一定周期对测量装置300测量出 的电流的瞬时值进行采样而测量。将测量结果作为测量条目112存储在存储装置140中。 特征量计算单元120根据测量条目112通过规定的方法计算特征量。将特征量作为特征量 条目122而存储在存储装置140中。设备状态检测单元130对特征量条目122与参照设备 条目字典200进行对照。将对照的结果吻合的条目存储为吻合参照设备条目131。对吻合参照设备条目131适宜地附加/削除信息,以适合于输出到生活行为推测装置400的形式, 并重新存储为设备状态条目132。生活行为推测装置400包括匹配单元410、输出单元420、以及存储装置430。匹配 单元410、输出单元420分别与存储装置430连接。存储装置430是用于存储参照行为条目 字典500、吻合参照行为条目411的装置。在图2中,匹配单元410从设备状态检测装置100取得设备状态条目132,将其与 参照行为条目字典500进行对照。将对照的结果吻合的条目作为吻合参照行为条目411而 存储在存储装置430中。输出单元420将吻合参照行为条目411输出到输出装置302,通过 输出装置302输出吻合参照行为条目411。测量单元110、特征量计算单元120、设备状态检测单元130、匹配单元410、以及输 出单元420既可以使用实现这些功能的电路设备等硬件来实现,也可以实现为在微型机、 或CPU等运算装置上执行的软件。另外,存储装置140以及存储装置430由存储器、HDD (Hard Disk Drive,硬盘驱动 器)等构成。另外,在本实施方式1中,对分别设置一个存储装置140和存储装置430的情 况的例子进行说明,但也可以设置多个存储装置。另外,存储装置140以及存储装置430也 可以作为外部装置设置而与设备状态检测装置100、生活行为推测装置400连接。图3是示出设备状态检测装置100的存储装置140中存储的数据结构的图。(A)所示的测量条目112通过环缓冲器形式等作为履历而保持有多个。在各个测 量条目112中,保持有通过测量单元110测量出的测量值112a和未图示的附加信息。作为 附加信息,例如有测量值112a的整理编号、值的取得时刻等。(B)所示的特征量条目122也通过环缓冲器形式等作为履历而保持有多个。在各 个特征量条目122中,保持有通过特征量计算单元120计算出的特征量122a和未图示的附 加信息。作为附加信息,例如有通过特征量计算单元120进行的计算方法、或计算中使用的 参数等。另外,测量条目112与特征量条目122—对一对应。(C)是参照设备条目字典200,是参照设备条目201的集合体。参照设备条目201 由以设备特征量201a和与其对应的设备状态201b为1组的数据构成。设备特征量201a 相当于特征量计算单元120计算出的特征量,设备状态201b是与该设备特征量201a对应 的设备状态。即,在检测到设备特征量201a时,设备处于设备状态201b所示的状态。参照 设备条目字典200预先保持在存储装置中,并且,还可以追如/更新。(D)是吻合参照设备条目131,由以设备特征量131a和与其对应的设备状态131b、 特征量距离131c、以及未图示的附加信息为1组的数据构成。该吻合参照设备条目131是 对设备状态检测单元130检索了参照设备条目字典200的结果附加特征量距离131c而得 到的。设备特征量131a、设备状态131b分别对应于参照设备条目201的设备特征量201a、 设备状态201b。特征量距离131c是检索中使用的特征量条目122的特征量122a、与检索 的结果吻合的参照设备条目201的设备特征量201a的距离。(E)是设备状态条目132,由以设备状态时刻132a和设备状态132b为1组的数据 构成。设备状态时刻132a是当前时刻,设备状态132b与吻合参照设备条目131的设备状 态131b相同。通过环缓冲器形式等作为履历保持了多个设备状态条目132。图4是示出生活行为推测装置400的存储装置430中存储的数据结构的图。
18
(A)是参照行为条目字典500,是参照行为条目501的集合体。参照行为条目501 由以参照行为时刻501a、参照设备状态501b、参照生活行为501c、以及参照在室场所501d 为1组的数据构成。参照行为条目字典500预先保持在存储装置中,并且,还可以追加/更 新。(B)是吻合参照行为条目411,由以参照行为时刻411a、参照设备状态411b、参照 生活行为411c、以及参照在室场所411d为1组的数据构成。该吻合参照行为条目411与匹 配单元410对参照行为条目字典500进行检索的结果而得到的参照行为条目501相同。图5示出本实施方式1的设备状态检测装置100的动作流程。在图5中,记载于 连接各步骤之间的箭头附近的数字表示在步骤之间交换的数据(例如,“112a”表示测量值 112a)。以下,按照各步骤,详细说明动作。(S601)测量单元110对测量值112a进行测量。该测量值112a是对测量装置300测量出 的电流的瞬时值按照一定周期进行采样而测量出的。此处,在图6(A)示出测量值112a的数据结构例。测量值112a是矢量,是在规定 的时间的期间采样的电流值(112a-ll、112a-12、-112a-ln)0将这些各个电流值总称为 测量值112a。另外,规定的时间是指,电压的周期即50Hz到60Hz的波的周期的常数倍的时 间。另外,采样的周期是50Hz到60Hz的波的周期的常数分之一的时间。测量值112a内的 电流值成为按照时间顺序排列的状态。测量单元110继续地进行该测量动作,依次保持测量值112a。(S602)测量单元110根据测量值112a生成测量条目112。测量条目112包括测量值112a、 和例如测量时刻等附加信息。然后,将所生成的测量条目112依次输出到特征量计算单元 120。(S603)特征量计算单元120取得测量条目112,根据测量条目112中保持的测量值112a 来计算特征量122a。具体而言,根据测量值112a,计算加权平均值与该测量值112a的差分, 将其作为特征量121a。此处,图6 (B)示出特征量122a的数据结构例。特征量122a是矢量,由与所述测 量值112a对应的值构成。测量值112a与特征量122a分别一对一对应。另外,各个测量值 112a-ln与122a_ln也分别一对一对应。(S604)接下来,根据所计算出的特征量121a来生成特征量条目122。特征量条目122包 括特征量122a、例如特征量的计算方法、以及计算中使用的参数等附加信息。然后,将所生 成的特征量条目122依次输出到设备状态检测单元130。(S605)设备状态检测单元130取得特征量条目122,将包含在该特征量条目122中的特 征量122a作为检索关键字而对参照设备条目字典200进行检索。此处,参照设备条目字典 200是以设备特征量201a和设备状态201b为1组的参照设备条目201的集合体。参照设 备条目201表示在检测了设备特征量201a时,该设备处于由设备状态201b表示的状态。对于设备状态201b,例如存储了“电视机ON(接通)” “壶ON” “微波炉ON”等设备状态、或
“漏电中”、“异常产生中”等警告状态。此处警告状态是指,在设备中产生某种异常的可能性高的状态、或者产生异常的 危险高的状态。设备由于经年劣化、或某种故障,随着月单位或者年单位的长期而逐渐变 化,而劣化。该变化的状态表现在测量值112a中,进一步表现在特征量122a中。将处于该 警告状态时的设备特征量201a和设备状态201b作为参照设备条目201而保持在参照设备 条目字典200中。在检索的结果,发现了具有与特征量122a吻合的设备特征量201a的参照设备条 目201的情况下,进入到接下来的步骤,在没有发现的情况下,结束本处理。此处,“吻合”并不意味着仅完全一致。也可以根据所计算出的特征量122a和参照 设备条目201的设备特征量201a通过规定的计算方法计算两者的距离(以下,称为特征量 距离),在该距离处于规定的阈值内的情况下视为“吻合”。(S606)设备状态检测单元130根据步骤S605中的检索结果,生成吻合参照设备条目131。 吻合参照设备条目131如图3(D)所示包括设备特征量131a、设备状态131b、特征量距离 131c、以及未图示的附加信息。设备特征量131a和设备状态131b分别对应于在步骤S605 中检索出的参照设备条目201的设备特征量201a和设备状态201b,特征量距离131c是在 步骤S605中计算出的特征量距离。在此前的步骤S601到S606中,根据测量单元110测量出的测量值112a,导出了设 备状态131b。即,根据电流的值例如检测“微波炉ON” “壶ON”等设备的状态。另外,在吻合参照设备条目131中,也可以代替保持设备特征量131a和设备状态 131b,而保持唯一地表示从参照设备条目字典200中检索出的参照设备条目201的整理编 号。即使这样,也可以达成同样的目的。另外,也可以省略保持所述特征量距离131c。(S607)设备状态检测单元130生成设备状态条目132。设备状态条目132如图3 (E)所示 包括设备状态时刻132a和设备状态132b。设备状态时刻132a是当前时刻,设备状态132b 与在步骤S606中生成的吻合参照设备条目131的设备状态131b相同。通过该设备状态条 目132,可知在某时刻下(设备状态时刻132a)是什么样的设备状态(设备状态132b)。然 后,将所生成的设备状态条目132输出到输出单元150。(S608)输出单元150将设备状态条目132输出到匹配单元410。(S609)匹配单元410取得设备状态条目132,将设备状态131b作为关键字而对参照行为 条目字典500进行检索。此处,参照行为条目字典500是参照行为条目501的集合体,参照 行为条目501是以参照行为时刻501a、参照设备状态501b、参照生活行为501c、以及参照在 室场所501d为1组的数据。参照行为条目501是表示在某个时刻(参照行为时刻501a) 下,处于规定的设备状态(参照设备状态501b)时,使用者进行着什么样的行为(参照生活 行为501c),并处于何处(参照在室场所501d)的数据。参照行为时刻501a例如存储为“上 午7点10分”等。参照设备状态501b例如存储为“电视机ON”等。在处于警告状态的情况下,存储为“电视机产生异常中”等。在多个设备同时运转的情况下,按照“电视机ON、壶 ON”等而存储了多个设备状态。参照生活行为501c表示生活者进行的行为的具体的内容, 例如存储为“早餐”、“外出”等。参照在室场所501d表示在生活者进行参照生活行为501c 时存在的场所,例如在参照生活行为501c是“早餐”的情况下,参照在室场所501d存储为
“餐厅”等。在检索的结果,具有与设备状态条目132的设备状态132b —致的参照设备状态 501b的参照行为条目501是1个的情况下,将该参照行为条目501作为检索结果。在具有 与设备状态132b —致的参照设备状态501b的参照行为条目501是多个的情况下,对当前 时刻或者设备状态时刻132a、与参照行为时刻501a进行比较,将其差分最小的条目作为检 索结果。另外,在没有发现具有与设备状态132b —致的参照设备状态501b的参照行为条 目501的情况下,结束本处理。(S610)接下来,匹配单元410将从参照行为条目字典500中检索出的参照行为条目501 存储为吻合参照行为条目411。参照行为时刻411a、参照设备状态411b、参照生活行为 411c、以及参照在室场所411d分别对应于在S609中检索出的参照行为条目501的相应信
肩、ο在此前的步骤S601到S610中,从测量单元110测量出的测量值112a,导出设备状 态131b,进而导出生活者的参照生活行为411c、参照在室场所411d。即,根据电流的值,检 测“微波炉ON”、“壶ON”等设备状态,进而根据该设备状态来推测“早餐”等生活行为。(S611)输出单元420取得吻合参照行为条目411,进行输出。所输出的数据例如是吻合参 照行为条目411其自身、或者参照生活行为411c或参照在室场所411d。通过输出单元420 输出的数据例如被输出到生活者阅览的显示器等输出装置302。另外,既可以仅在参照设备 状态411b是“异常产生中”等警告状态的情况下,输出该参照设备状态411b,也可以在警告 状态的情况下与通常的设备状态相比改变输出方法。由此,可以将在设备中产生异常的情 况更明确地传递给生活者。通过以上那样的一系列的动作,可以根据测量单元110测量出的测量值112a得到 设备状态131b,进而得到参照生活行为411c、参照在室场所411d。即,可以根据家庭内的电 流值,推测家庭内的设备的状态,推测生活者的生活行为以及在室场所。另外,在参照行为条目字典500中,可以按照参照行为时刻501a的降序或升序对 参照行为条目501进行排序。由此,还可以参照检索的结果吻合的参照行为条目501的前 后的参照行为条目501。因此,在推测了某时刻下的使用者的生活行为时,还可以推测紧在 之前进行着什么样的行为、并且接下来要进行什么样的行为。同样地,还可以推测当前的生 活者的在室场所、紧在之前的前一个在室场所、以及接下来的在室场所等。可以根据这些推 测结果,例如进行设备的ON(接通)/0FF(断开)状态、动作模式等运转控制。另外,该活用 方法是一个例子,活用方法不限于此。另外,在本实施方式1中,说明为在参照行为条目501中独立地保持参照生活行 为501c和参照在室场所501d,但也可以仅保持它们中的某一个,也可以使两者一体化来使 用。例如,在仅希望推测生活者进行的行为的情况下,还可以仅保持参照生活行为501c。
21
另外,在希望将生活者进行的行为和此时的在室场所一体地捕捉而推测为“生活 者的行动”的情况下,也可以使参照生活行为501c与参照在室场所501d —体化,而处理为 “在客厅进餐”、“在卧室中使照明点亮”、“在客厅”这样的数据。另外,在本实施方式1中,说明了在家庭内设置设备状态检测装置100的情况的例 子,但当然也可以设置在家庭内以外的环境中。其在以后叙述的其他实施方式中也是同样的。另外,匹配单元410为了提高检索的精度,也可以将连续的2个以上的设备状态条 目132用作检索关键字。在该情况下,例如在连续两个设备状态条目132具有的设备状态 132b、与连续的2个参照行为条目501具有的参照设备状态501b分别吻合的情况下,可以 将吻合的2个参照设备条目作为检索结果而输出。如上所述,根据本实施方式1的设备状态检测装置100,可以根据家庭内的电流值 来检测家庭内的设备状态。另外,可以通过生活行为推测装置400,根据该设备状态来推测 使用者的生活行为。另外,设备状态检测装置100由于可以检测警告状态,所以例如在设备 中产生了缺陷等异常的情况可以早期地发现,可以提高设置了设备的环境的安全性。另外, 还可以早期发现漏电等异常,可以将浪费的能量的损失限制在最小限。在生活行为推测装置400中,在通过匹配单元410进行的参照行为条目字典500 的检索中,得到了设备特征量吻合的多个检索结果的情况下,加入时刻而取得检索结果。因 此,可以进行适合于与时刻对应的生活者的行动样式的行动推测,起到推测精度提高这样 的效果。另外,由于按照参照行为时刻501a的降序或升序来分类参照行为条目501,而存 储在参照行为条目字典500中,所以除了可以推测某时点的生活者的生活行为以外,还可 以推测其前后的生活行为。由此,例如可以使电气设备与推测为生活者接下来进行的行动 对应地自动运转、如果存在忘记关闭不需要的电气设备则使其停止,可以对生活者的便利 性提高和能量消耗量削减作出贡献。实施方式2.在本实施方式2中,说明通过特征量计算单元120进行的特征量121a的计算方 法。进一步详细说明所述图5中的步骤S603。另外,图1所示的系统结构、图2所示的设备 状态检测装置100、以及生活行为推测装置400的结构与所述实施方式1相同,所以省略说明。图7是示出通过特征量计算单元120进行的特征量计算方法的示意图。在图7(A)中,测量值112a是测量单元110测量出的电流的测量值。特征量计 算单元120如果接收到测量值112a,则针对构成测量值112a的各个测量值112a_ll、 112a-12、…112a-ln,求出窗宽2的加权平均,将该值作为测量值平均值1202。“窗宽2”是 指,求出“2个”值的平均。具体而言,求出测量值112a-ll与测量值112a-12的加权平均, 将其作为测量值平均值1202-11。针对构成测量值112a的其他值也进行同样的计算。进 而,求出测量值平均值1202与测量值112a的差分而得到测量值差分值1204。具体而言,根 据测量值112a-ll与测量值平均值1202-11的差分来得到测量值差分值1204-11。同样地, 根据测量值112a_12与测量值平均值1202-11的差分来得到测量值差分值1204-12。通过 进行以上那样的计算,将测量值112a分解为测量值平均值1202和测量值差分值1204。
22
在图7(B)中,对测量值平均值1202进行与上述操作同样的操作。图7 (B)所示的 测量值平均值1202是图7(A)的测量值平均值1202。针对构成该测量值平均值1202的各 个测量值平均值1202-11、1202-12、…,求出窗宽2的加权平均,将该值作为第二测量值平 均值1205。具体而言,求出测量值平均值1202-11与1202-12的平均值,将其作为测量值平 均值1205-11。针对构成测量值平均值1202的其他值也进行同样的计算。进而,求出测量 值平均值1202与第二测量值平均值1205的差分而得到第二测量值差分值1206。具体而 言,根据测量值平均值1202-11与第二测量值平均值1205-11的差分来得到第二测量值差 分值 1206-11。直到进行平均而得到的值的采样数小于平均化的窗宽为止,反复执行以上那样的 计算,从而得到多个测量值差分值矢量和测量值平均值矢量。将该多个测量值差分值矢量 和测量值平均值矢量合起来作为特征量122a。在该情况下,构成测量值112a的数据的个数 与构成特征量122a的数据的个数未必一致。通过进行这样的运算,可以分成较细的变动分 量和较大的变动分量,所以可以高效地表现测量值112a的特征。图8是实际上对电视机的电流值进行测量而得到测量值112a,并通过所述特征量 计算单元120计算出特征量122a的例子。图8 (A)是在20ms的期间测量电视机的电流波 形而得到的图。测量值112a针对每个设备成为不同形状。图8(B)是示出通过所述图7所 示的方法来计算出特征量122a的结果的图。在特征量122a中,使针对每个设备而不同的 测量值112a的特征量更突出地表现。通过将这样求出的特征量122a预先存储为参照设备条目字典200的参照设备条 目201的设备特征量201a,可以在得到了与其吻合的特征量122a的情况下判断为电视机运转。如上所述根据本实施方式2,通过对测量值112a实施规定的计算来得到特征量 122a,可以更显著地表现设备中固有的测量值112a的特征。因此,通过将这样求出的特征 量122a应用于所述实施方式1中,可以进行精度更高的设备状态的检测。另外,在图7中的特征量的计算方法中,将多个测量值差分值矢量和测量值平均 值矢量合起来作为特征量,但也可以在多个测量值差分值矢量和测量值平均值矢量中,舍 去采样数较多且变动较小的分量而将剩余作为特征量。由此,可以减小特征量的维,来压缩 数据量。另外,在图7中的特征量的计算方法中,将多个测量值差分值矢量和测量值平均 值矢量合起来作为特征量,但也可以在多个测量值差分值矢量和测量值平均值矢量中,仅 取出设备之间的差异较大的维的分量而作为特征量。由此,设备之间的特征量的差异变大, 可以提高检索中的吻合判定的精度。另外,在图7中的特征量的计算方法中,将多个测量值差分值矢量和测量值平均 值矢量合起来作为特征量,但也可以在多个测量值差分值矢量和测量值平均值矢量中,仅 取出电流值大幅变化的区间的加权平均值、差分值而作为特征量。例如,如图8(A)的测量值112a所示,实际的设备的电流值是大致0的区间较大。 通过去除电流值是0的区间来生成特征量,可以减小特征量的维。另外,在本实施方式2中,将测量值差分值矢量和测量值平均值矢量合起来作为 特征量,但也可以仅将测量值平均值矢量作为特征量。即使这样,也可以削减特征量矢量的数据量,而得到设备的特征量。另外,特征量122a的计算方法也可以是不求出加权的平均值,而取出测量值112a 的周期性的运算。例如,通过针对每个周期抽出峰值间距离、波的波峰因数、上升沿时间、以 及下降沿时间等值,可以抽出周期性。为了取出周期性,对测量值进行傅立叶变换、或小波变换即可。在该情况下,通过针对每个高次谐波的分量将其强度和相位作为特征量122a,可 以高效地表现高次谐波分量。即使这样,也可以得到每个设备的特征量122a。另外,在求出特征量122a时,还可以不对每个测量值112a进行计算,而根据连续 的多个测量值112a来计算特征量122a。由此,可以计算周期不同的设备的特征量。实施方式3.在本实施方式3中,说明设备状态检测单元130对参照设备条目字典200进行检 索时的检索动作。进一步详细说明所述图5所示的步骤S605。另外,图1所示的系统结构、 图2所示的设备状态检测装置100、以及生活行为推测装置400的结构与所述实施方式1相 同,所以省略说明。在本实施方式3中,设备状态检测单元130在对参照设备条目字典200进行检索 时,使用特征量吻合度这样的指标来表示特征量条目122与参照设备条目201的吻合程度。 然后,根据该特征量吻合度的大小,判定是否吻合。通过计算特征量条目122的特征量122a、与参照设备条目201保持的设备特征量 201a的每个维的值之差,而求出特征量吻合度。如图6(B)所示,特征量122a是矢量。另 外,设备特征量201a也是与其相同维的矢量。如果将特征量122a的各要素设为&、将设备 特征量201a的各要素设为Bi,则可以通过下式(1)来求出特征量吻合度S。此时特征量吻 合度S取0 1的值。[式1]
_ 1_
_ s 一 f D 线j )+1
或者,也可以计算特征量122a与设备特征量201a的矢量的内积,并将该内积除以 各自的矢量的模方(norm),将其结果得到的值作为特征量吻合度S。或者,也可以对特征量122a与设备特征量201a的矢量的各维的值进行比较,数出 大致一致的个数,将该个数除以维的总数,将其结果得到的值作为特征量吻合度S。如上所述,本实施方式3的设备状态检测装置100使用特征量吻合度这样的指标, 将特征量吻合度高的参照设备条目201作为检索结果,所以即使在不存在完全一致的参照 设备条目201那样的情况下,也可以推测设备状态。另外,通过使用所述计算方法,可以提 高特征量吻合度的精度。实施方式4.在本实施方式4中,说明在多个设备同时运转着的状态下,设备状态检测单元130 检索参照设备条目字典300时的检索动作。进一步详细说明所述图5中的步骤S605。另 外,图1所示的系统结构、图2所示的设备状态检测装置100、以及生活行为推测装置400的 结构与所述实施方式1相同,所以省略说明。
图9(A)所示的特征量1220是对特征量122a连续地进行图形显示的特征量。如 上所述特征量计算单元120将特征量条目122依次输出到设备状态检测单元130。因此,设 备状态检测单元130取得的特征量条目122的特征量122a可以被视为连续的值,图9 (A) 示意地示出该特征量122a。S卩,可以将特征量122a视为对特征量1220按照规定的时间单 位进行分割而得到的特征量。设备状态检测单元130在图5的步骤S605中检索参照设备条目字典200时,首 先,求出图9(A)所示的当前的特征量122a与过去的特征量122a的差分。此处使用的过去 的特征量122a是比当前早1个周期以上的部分。图9(B)示出所求出的差分的例子。在图 9(B)中,用实线来示出用单点划线表示的过去的特征量122a与用虚线表示的当前的特征 量122a的差分。该差分可以视为在从过去到当前的期间变化的设备的特征量。例如,在过 去某1个设备运转着的情况下,如果在从过去到当前的期间其他设备新开始运转,则该新 开始运转的设备的特征量是所述差分。设备状态检测单元130将该差分作为检索关键字, 对参照设备条目字典200进行检索。然后,将具有与所述差分吻合的设备特征量201a的参 照设备条目201确定为检索结果。这样,根据本实施方式4,由于将当前的特征量122a与过去的特征量122a的差分 用作检索关键字,所以即使在多个设备同时运转着的情况下,也可以检测设备状态。例如, 还可以检测在从过去到当前的期间状态新变化了的设备的设备状态。所述差分的特征量 122a中出现的急剧的变化是针对每个设备固有的,所以通过将所述差分作为检索关键字而 对参照设备条目字典200进行检索,可以检测新开始运转的设备的设备状态。另外,由于将当前的特征量122a与过去的特征量122a的差分作为检索关键字而 检测设备状态,所以仅将关于各个设备状态201b的设备特征量201a保持在参照设备条目 字典200中即可,对于多个设备同时运转着的情况的设备状态,无需保持在参照设备条目 字典200中。因此,不需要预先对多个设备同时运转着的情况的设备状态进行学习等的工 夫。另外,由于所保持的信息量较少,所以所需的存储装置140的容量也较少。另外,在参照设备条目字典200中不存在的未知的设备运转着的期间参照设备条 目字典200中存在的既知的设备开始了运转的情况下,通过使用所述差分,也可以检测既 知的设备的设备状态。另外,在本实施方式4中,也可以将当前的特征量122a追加到参照设备条目字典 200中。此时,新制作以当前的特征量122a为设备特征量201a、以所检索出的设备状态为 参照设备条目201的设备状态201b的参照设备条目201,并将其追加到参照设备条目字典 200中。这样,通过在参照设备条目字典200中追加参照设备条目201,在以后的检索时可 以进行精度更高的检索。另外,在求出当前的特征量122a与过去的特征量122a的差分时,可以使用在进行 设备操作之前计算出的过去的特征量122a。可以通过特征量122a具有的周期长的分量的 长度是否变化了一定值以上,来判断是否进行了设备操作。因此,通过关注特征量122a具 有的周期长的分量,计算比强度变化了一定值以上的时点之前的特征量122a、与当前的特 征量122a的差分,可以检测新操作的设备的设备状态。另外,对于本实施方式4中示出的设备状态检测方法,可以与所述实施方式1或者 2组合使用。
实施方式5.在所述实施方式1中,在对参照设备条目字典200进行检索而得到的参照设备条 目201的设备状态201b是警告状态的情况下,检测出该设备是警告状态。在本实施方式5 中,对设备的警告状态的其他检测方法进行说明。另外,对于与实施方式1相同的部分,省 略说明。图10是本实施方式5的参照设备条目字典210以及吻合参照设备条目133的数 据结构。在本实施方式5中,代替所述实施方式1中示出的参照设备条目字典200而具备 参照设备条目字典210,代替吻合参照设备条目131而具备吻合参照设备条目133。在图10(A)中,参照设备条目字典210是参照设备条目211的集合体。参照设备 条目211由以设备特征量211a、设备状态211b、以及设备特征量履历211c为1组的数据构 成。设备特征量211a和设备状态211b与所述实施方式1中叙述的设备特征量201a和设 备状态201b相同。设备特征量201c由通过特征量计算单元120计算出的特征量122a的 履历构成。图10(B)所示的吻合参照设备条目133由以设备特征量133a和与其对应的设备 状态133b、特征量距离133c、以及警告状态133d为1组的数据构成。与所述吻合参照设备 条目131不同点仅在于具备警告状态133d的点,其他相同。图11示出本实施方式5的设备状态检测装置100的动作流程。在图11中,仅步 骤S611、S612、S606a与所述图5不同,其他相同,所以对于同一部分,省略说明。以下,按照 各步骤,详细说明动作。(S611)设备状态检测单元130在步骤S605中检索出的参照设备条目211的设备特征量 履历211c中,将用作检索关键字的特征量122a存储为履历。如所述实施方式1中所述,在 步骤S605中,不仅在作为检索关键字的特征量122a与设备特征量211a完全一致的情况 下,而且将特征量吻合度高的部分作为检索结果,所以即使在检索结果成为相同的参照设 备条目211的情况下,在用作检索关键字的特征量122a中也有偏差。因此,在设备特征量 履历211c中存储各种特征量122a。(S612)设备状态检测单元130计算所积蓄的设备特征量履历211c的平均值,进而判定该 平均值是否超过规定的阈值。然后,将超过了阈值的状态判断为警告状态。设备按照月单 位或者年单位逐渐变化而劣化。该变化的状态表现在测量值112a中,进一步表现在特征量 122a中。在该步骤S612中,通过计算设备特征量履历211c的平均值来判定该值是否超过 阈值,来判定在特征量122a中是否产生了变化、即是否为警告状态。另外,在判定是否为警告状态时,也可以不根据设备特征量履历211c的平均值进 行判定,而计算方差并通过该值是否超过规定的阈值来进行判定。另外,也可以使用平均值 和方差值这双方来进行判定。即使这样,也可以判定是否为警告状态。另外,规定的阈值既可以在所有设备中设定共通的值,或者,也可以针对每个设备 设定独立的值。(S606a)在步骤S612中判定为是警告状态的情况下,在吻合参照设备条目131的警告状态131d中追记警告内容。另外,也可以不追记警告内容,而仅追记是否为警告状态这样的信 肩、ο如上所述,根据本实施方式5,由于根据特征量122a的履历来判定是否为警告状 态,所以不仅可以检测设备是否为运转中这样的状态,还可以检测与经年变化相伴的劣化 状态、设备的动作缺陷等状态。另外,即使在得到了没有存储于参照设备条目字典210中那 样的特征量122a的情况下,根据本实施方式5,也可以检测是否为警告状态。另外,在步骤S612中也可以如下所述进行警告状态的判定。求出用作检索关键字的当前的特征量122a与设备特征量履历211c的差分或者 比,判定该值是否超过了规定的阈值。由此,可知当前的特征量122a与过去的特征量122a 的背离程度。在超过了阈值的情况下,判定为警告状态。另外,规定的阈值既可以在所有设 备中设定共通的值,或者,也可以针对每个设备设定独立的值。或者,在步骤S612中也可以如下所述进行警告状态的判定。计算设备特征量履历211c的平均值,计算该平均值与当前的特征量122a的差分 或者比,判定该值是否超过了规定的阈值。由此,可知当前的特征量122a与过去的特征量 122a的平均的背离程度。在超过了阈值的情况下,判定为警告状态。另外,规定的阈值既可 以在所有设备中设定共通的值,或者,也可以针对每个设备设定独立的值。或者,在步骤S612中也可以如下所述进行警告状态的判定。在设备特征量履历211c中,求出旧的履历的规定次数量的平均值、与新的履历的 规定次数量的平均值,对两方的平均值进行比较而计算出其差分或者比,判定该差分或者 比是否超过了规定的阈值。由此,可以适当地捕捉作为连续变量的特征量122a的变化的样 子。在超过了阈值的情况下,判定为警告状态。另外,规定的阈值既可以在所有设备中设定 共通的值,或者,也可以针对每个设备设定独立的值。另外,在计算这些平均或者方差时,无需将所有特征量122a的履历保持为设备特 征量履历211c。例如,在求出新的平均值时,可以按照下式求出。平均=(所追加的值+(过去的平均值*过去的履历数))/(过去的履历数+1)因此,如果在求出平均值时保持该平均值和履历数,则在下次中也可以计算平均 值,所以不必保持设备特征量履历211c。另外,例如在求出方差时,可以通过下式求出。方差=Σ (平均值_设备特征量履历211c)2 = Σ平均值2_2*平均值* Σ设备特 征量履历+ Σ设备特征量履历2因此,如果在求出方差时保持该平均值、履历数、以及设备特征量履历的平方和, 则在下次中也可以计算方差,所以不必保持设备特征量履历211c。另外,在本实施方式5中,说明了作为设备特征量履历211c保持特征量122a的 情况的例子,但作为履历而保存的也可以并非特征量122a,而是特征量122a与设备特征量 211a的距离。即使这样,也可以得到与所述同样的效果。另外,在本实施方式5中,在吻合参照设备条目131中设置了警告状态131d,但还 可以为不设置警告状态131d的结构。此时,可以通过在设备状态131b中追记警告状态来 应对。例如,如果追记为“电视机ON/警告状态”等,则可以同时保持设备的动作状态和警 告状态。
27
另外,对于本实施方式5中示出的警告状态检测方法,可以与所述实施方式1 4 组合来使用。实施方式6.在本实施方式6中,对检测警告状态的其他实施例进行说明。另外,在本实施方式 6中,仅设备状态检测单元130的动作不同,对于其他的结构,与实施方式5相同,所以对于 同一部分,省略说明。图12是针对本实施方式6的设备状态检测单元130的动作,详细示出了图11的 步骤S612的动作流程。以下,对各步骤进行说明。(S701)设备状态检测单元130开始图11的步骤S612的处理。(S702)设备状态检测单元130判定本次的步骤S605中的处理执行是否在从上次的步骤 S605中的处理执行起规定时间以内。在规定时间以内的情况下进入到步骤S703,在超过规 定时间的情况下进入到步骤S705。(S703)设备状态检测单元130在检索出上次的步骤S605中的参照设备条目字典210时, 判定是否检测出警告状态。在检测出“警告状态”的情况下,进入到步骤S704。在没有检测 出警告状态的情况下,进入到步骤S705。(S704)将当前的设备状态判定为警告状态。例如,即使在通过本次的步骤S605中的参照 设备条目字典210的检索没有检测出警告状态的情况下,在本步骤S704中也判定为警告状 态。(S705)按照所述实施方式5中叙述的方法,判定是否为警告状态。如上所述,在本实施方式6中,通过基于特征量122a的参照设备条目字典210的 检索而检索出警告状态的情况下,对于在之后规定时间内检测出的设备,也判定为是警告 状态。如所述实施方式1 6中所述,本发明的设备状态检测装置100通过对根据电流 值计算出的特征量122a与预先存储的参照设备条目字典210进行对照,可以判定是否为警 告状态。此处,如上所述“警告状态”表示由于经年劣化、或某种异常而产生缺陷等的可能 性较高。一般难以简单地治愈这样的缺陷等。但是,由于经年劣化引起的变化非常缓慢地 产生的情况较多,并且还有可能产生测量误差等,即使在检测出警告状态的情况下在下次 的检索中还有时被视为并非警告状态。在本实施方式6中,在这样的情况下,也将在从检测警告状态起规定时间内检测 出的设备的状态判定为警告状态,所以可以更可靠地检测警告状态。另外,在步骤S704中,也可以并非立即判定为警告状态,而判定为预警告状态,在 判定为该预警告状态的次数达到了规定数时,才判定为警告状态。由此,可以防止警告状态的乱发,并且可以进行高精度的警告状态判定。
28
另外,对于本实施方式6中示出的警告状态检测方法,可以与所述实施方式1 4 组合来使用。实施方式7.在本实施方式7中,说明匹配单元410对参照行为条目字典500进行检索时的检 索动作。进一步详细说明所述图5中的步骤S609。另外,图1所示的系统结构、图2所示的 设备状态检测装置100、以及生活行为推测装置400的结构与所述实施方式1相同,所以省 略说明。匹配单元410在对参照行为条目字典500进行检索时,使用参照行为吻合度这样 的指标,来表示设备状态条目132与参照行为条目501的吻合程度。例如,即使在作为检索关键字的设备状态132b与参照设备状态501b —致的情况 下,在设备状态时刻132a与参照行为时刻501a较大地不同的情况下,也视为条目彼此吻合 的程度、即参照行为吻合度较低的部分。在吻合度的计算中,使用设备状态时刻132a与参照行为时刻501a之差。例如,将 吻合度设为Y,将设备状态时刻132a设为XI,将参照行为时刻501a设为X2,通过下式(2) 进行计算。吻合度Y取0到1的大小。[式2]
权利要求
一种设备状态检测装置,对1个或者多个设备的状态进行检测,其特征在于,具有测量单元,对设置了设备的环境的物理量进行测量;特征量计算单元,计算所述测量单元测量出的测量值的特征量;存储单元,预先将每个所述设备的所述特征量和与其对应的设备状态存储为字典数据;以及设备状态检测单元,将所述特征量计算单元计算出的特征量作为检索关键字而检索存储在所述字典数据中的特征量,根据与确定为检索结果的该特征量对应的设备状态来检测设备状态。
2.根据权利要求1所述的设备状态检测装置,其特征在于,所述测量单元将所述测量值按照时刻顺序输出到所述特征量计算单元。
3.根据权利要求1或2所述的设备状态检测装置,其特征在于, 所述测量单元对供给到设备的电流值进行测量。
4.根据权利要求3所述的设备状态检测装置,其特征在于,所述测量单元对连接了设备的电力线的供电口中流过的电流进行测量。
5.根据权利要求3所述的设备状态检测装置,其特征在于,所述测量单元对连接了设备的延长软线的上游中流过的电流进行测量。
6.根据权利要求3 5中的任意一项所述的设备状态检测装置,其特征在于, 所述测量单元在电压周期的常数倍的时间内,对电流进行测量。
7.根据权利要求3 6中的任意一项所述的设备状态检测装置,其特征在于, 所述测量单元以电压周期的常数分之一的采样周期对电流进行测量。
8.根据权利要求1或2所述的设备状态检测装置,其特征在于, 所述测量单元对设备使用的自来水的流量进行测量。
9.根据权利要求1或2所述的设备状态检测装置,其特征在于, 所述测量单元对设备使用的煤气的流量进行测量。
10.根据权利要求1或2所述的设备状态检测装置,其特征在于, 所述测量单元对设置了设备的环境的照度进行测量。
11.根据权利要求1或2所述的设备状态检测装置,其特征在于, 所述测量单元对设置了设备的环境的温度进行测量。
12.根据权利要求1或2所述的设备状态检测装置,其特征在于,所述测量单元对设置了设备的环境的通信网络上的数据传送量进行测量。
13.根据权利要求1 12中的任意一项所述的设备状态检测装置,其特征在于, 所述特征量计算单元将所述特征量按照时刻顺序输出到所述设备状态检测单元。
14.根据权利要求1 13中的任意一项所述的设备状态检测装置,其特征在于, 所述特征量计算单元针对所述测量值按照规定的窗宽单位通过加权进行平均化而求出测量值平均值,将该测量值平均值作为所述特征量。
15.根据权利要求14所述的设备状态检测装置,其特征在于,所述特征量计算单元求出所述测量值平均值与平均化前的所述测量值的差分值,将该 值作为测量值差分值,将所述测量值平均值和所述测量值差分值作为所述特征量。
16.根据权利要求15所述的设备状态检测装置,其特征在于, 所述特征量计算单元针对所述测量值平均值按照规定的窗宽单位通过加权进行平均化而作为第2测量值 平均值,进而求出与进行平均化之前的值的差分而作为第2测量值差分值, 将所述测量值平均值、所述测量值差分值、所述第2测量值平均值以及所述第2测量值 差分值作为所述特征量。
17.根据权利要求1 13中的任意一项所述的设备状态检测装置,其特征在于, 所述特征量计算单元进行规定的运算而取出所述测量值的周期性,针对所取出出的每个周期,将确认了周期性的测量值内的位置和其强度作为所述特征量。
18.根据权利要求17所述的设备状态检测装置,其特征在于,所述特征量计算单元使用傅立叶变换或者小波变换来取出所述测量值的周期性。
19.根据权利要求1 18中的任意一项所述的设备状态检测装置,其特征在于,所述设备状态检测单元计算所述特征量计算单元计算出的特征量、与存储在所述字典 数据中的特征量的吻合度,根据该吻合度来确定检索结果。
20.根据权利要求19所述的设备状态检测装置,其特征在于, 所述特征量由多维矢量值构成,所述设备状态检测单元求出所述特征量计算单元计算出的特征量、与存储在所述字典 数据中的特征量在每个维上的差分,使用该差分计算出所述吻合度。
21.根据权利要求19所述的设备状态检测装置,其特征在于, 所述特征量由多维矢量值构成,所述设备状态检测单元求出所述特征量计算单元计算出的特征量、与存储在所述字典 数据中的特征量在每个维上的差分,对该差分处于规定的范围内的维的个数进行计数,将 该计数结果除以总维数而得到的值作为所述吻合度。
22.根据权利要求19所述的设备状态检测装置,其特征在于, 所述特征量由多维矢量值构成,所述设备状态检测单元求出所述特征量计算单元计算出的特征量、与存储在所述字典 数据中的特征量的矢量的内积,将该内积除以各自的矢量的模方而得到的值作为所述吻合度。
23.根据权利要求19所述的设备状态检测装置,其特征在于, 针对每个所述设备将所述特征量保持为履历,所述设备状态检测单元求出在进行设备操作的时点之前计算出的第1特征量、与在进行设备操作的时点之后 计算出的第2特征量的差分,并将其作为第3特征量,计算所述第3特征量与存储在所述字典数据中的特征量的吻合度,根据该吻合度来确定检索结果。
24.根据权利要求23所述的设备状态检测装置,其特征在于,所述设备状态检测单元将所述第2特征量、和与确定为所述检索结果的特征量对应的 设备状态组合而新存储在字典数据中。
25.根据权利要求23或24所述的设备状态检测装置,其特征在于,所述设备状态检测单元将所述特征量中的周期长的分量变化了规定值以上的点判断 为是进行了设备操作的时点。
26.根据权利要求1 25中的任意一项所述的设备状态检测装置,其特征在于, 具备输出所述设备状态检测单元检测到的设备状态的输出单元。
27.根据权利要求1 26中的任意一项所述的设备状态检测装置,其特征在于,在所述字典数据保持的设备状态中,包括表示在该设备中产生某种异常的可能性高的 状态即警告状态。
28.根据权利要求1 27中的任意一项所述的设备状态检测装置,其特征在于, 所述设备状态检测单元将在对存储于所述字典数据中的特征量进行检索时成为检索关键字的特征量在确定为检索结果的所述字典数据中存储为特征量履历。
29.根据权利要求28所述的设备状态检测装置,其特征在于,所述设备状态检测单元根据所述特征量履历判定设备是否为警告状态。
30.根据权利要求29所述的设备状态检测装置,其特征在于,所述设备状态检测单元计算所述特征量履历的平均或者方差中的某一个或者两方,在 这些值超过了规定的阈值时判定为警告状态。
31.根据权利要求29所述的设备状态检测装置,其特征在于,所述设备状态检测单元计算所述特征量履历的平均或者方差中的某一个或者两方,在 这些值超过了针对每个设备设置的规定的阈值时判定为警告状态。
32.根据权利要求29所述的设备状态检测装置,其特征在于, 所述设备状态检测单元计算并记录所述特征量履历的平均或者方差中的某一个或者两方, 在新计算出所述特征量履历的平均或者方差中的某一个或者两方时,求出所述记录的 值与新计算出的值的差分,在该差分超过了规定的阈值时判定为警告状态。
33.根据权利要求29所述的设备状态检测装置,其特征在于, 所述设备状态检测单元计算并记录所述特征量履历的平均或者方差中的某一个或者两方, 在新计算出所述特征量履历的平均或者方差中的某一个或者两方时,求出所述记录了 的值与新计算出的值的差分,在该差分超过了针对每个设备设置的规定的阈值时判定为警 告状态。
34.根据权利要求29所述的设备状态检测装置,其特征在于, 所述设备状态检测单元在所检测出的设备状态是警告状态的情况下,将在其前后规定的时间以内所述设备状态检测单元检测出的设备状态判定为是警告 状态。
35.根据权利要求29所述的设备状态检测装置,其特征在于, 所述设备状态检测单元在所检测出的设备状态是警告状态的情况下,将在其前后规定的时间以内所述设备状态检测单元检测出的设备状态判定为是预警 告状态,在该预警告状态的判定达到了规定的次数时将该设备状态判定为是警告状态。
36.根据权利要求28 35中的任意一项所述的设备状态检测装置,其特征在于, 具有输出所述警告状态的警告状态输出单元,在判定为所述警告状态时所述警告状态输出单元动作。
37.一种设备状态检测方法,对1个或者多个设备的状态进行检测,其特征在于,具有 测量步骤,对设置了设备的环境的物理量进行测量;特征量计算步骤,计算所述测量步骤测量出的测量值的特征量; 存储步骤,预先将每个所述设备的所述特征量和与其对应的设备状态存储为字典数 据;以及设备状态检测步骤,将所述特征量计算步骤计算出的特征量作为检索关键字,对预先 存储了每个所述设备的所述特征量和与其对应的设备状态的字典数据进行检索,根据与确 定为检索结果的该特征量对应的设备状态来检测设备状态。
38.根据权利要求37所述的设备状态检测方法,其特征在于,所述测量步骤将所述测量值按照时刻顺序输出而转移到所述特征量计算步骤。
39.根据权利要求37或38所述的设备状态检测方法,其特征在于, 在所述测量步骤中,对供给到设备的电流值进行测量。
40.根据权利要求39所述的设备状态检测方法,其特征在于,在所述测量步骤中,对连接了设备的电力线的供电口中流过的电流进行测量。
41.根据权利要求39所述的设备状态检测方法,其特征在于,在所述测量步骤中,对连接了设备的延长软线的上游中流过的电流进行测量。
42.根据权利要求39 41中的任意一项所述的设备状态检测方法,其特征在于, 在所述测量步骤中,在电压周期的常数倍的时间内,对电流进行测量。
43.根据权利要求39 42中的任意一项所述的设备状态检测方法,其特征在于, 在所述测量步骤中,以电压周期的常数分之一的采样周期对电流进行测量。
44.根据权利要求37或38所述的设备状态检测方法,其特征在于, 在所述测量步骤中,对设备使用的自来水的流量进行测量。
45.根据权利要求37或38所述的设备状态检测方法,其特征在于, 在所述测量步骤中,对设备使用的煤气的流量进行测量。
46.根据权利要求37或38所述的设备状态检测方法,其特征在于, 在所述测量步骤中,对设置了设备的环境的照度进行测量。
47.根据权利要求37或38所述的设备状态检测方法,其特征在于, 在所述测量步骤中,对设置了设备的环境的温度进行测量。
48.根据权利要求37或38所述的设备状态检测方法,其特征在于,在所述测量步骤中,对设置了设备的环境的通信网络上的数据传送量进行测量。
49.根据权利要求37 48中的任意一项所述的设备状态检测方法,其特征在于, 所述特征量计算步骤将所述特征量按照时刻顺序输出而转移到所述设备操作检测步马聚o
50.根据权利要求37 49中的任意一项所述的设备状态检测方法,其特征在于,在所述特征量计算步骤中,针对所述测量值按照规定的窗宽单位通过加权进行平均化 而求出测量值平均值。
51.根据权利要求50所述的设备状态检测方法,其特征在于,在所述特征量计算步骤中,求出所述测量值平均值与平均化前的所述测量值的差分值 而将该值作为测量值差分值,将所述测量值平均值和所述测量值差分值作为所述特征量。
52.根据权利要求51所述的设备状态检测方法,其特征在于, 在所述特征量计算步骤中,针对所述测量值平均值按照规定的窗宽单位通过加权进行平均化而作为第2测量值 平均值,进而求出与进行平均化之前的值的差分而作为第2测量值差分值, 将所述测量值平均值、所述测量值差分值、所述第2测量值平均值以及所述第2测量值 差分值作为所述特征量。
53.根据权利要求37 49中的任意一项所述的设备状态检测方法,其特征在于, 在所述特征量计算步骤中,进行规定的运算而取出所述测量值的周期性,针对所取出的每个周期,将确认了周期性的测量值内的位置和其强度作为所述特征量。
54.根据权利要求53所述的设备状态检测方法,其特征在于,在所述特征量计算步骤中,使用傅立叶变换或者小波变换来取出所述测量值的周期性。
55.根据权利要求37 54中的任意一项所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,计算所述特征量计算步骤计算出的特征量、与存储在所 述字典数据中的特征量的吻合度,根据该吻合度来确定检索结果。
56.根据权利要求55所述的设备状态检测方法,其特征在于, 所述特征量由多维矢量值构成,在所述设备状态检测步骤中,求出所述特征量计算步骤计算出的特征量、与存储在所 述字典数据中的特征量在每个维上的差分,使用该差分来计算出所述吻合度。
57.根据权利要求55所述的设备状态检测方法,其特征在于, 所述特征量由多维矢量值构成,在所述设备状态检测步骤中,求出所述特征量计算步骤计算出的特征量、与存储在所 述字典数据中的特征量在每个维上的差分,对该差分处于规定的范围内的维的个数进行计 数,将把该计数结果除以总维数而得到的值作为所述吻合度。
58.根据权利要求55所述的设备状态检测方法,其特征在于, 所述特征量由多维矢量值构成,在所述设备状态检测步骤中,求出所述特征量计算步骤计算出的特征量、与存储在所 述字典数据中的特征量的矢量的内积,将把该内积除以各自的矢量的模方而得到的值作为 所述吻合度。
59.根据权利要求55所述的设备状态检测方法,其特征在于,针对每个所述设备将所述特征量保持为履历, 在所述设备状态检测步骤中,求出在进行设备操作的时点之前计算出的第1特征量、与在进行设备操作的时点之后 计算出的第2特征量的差分而将其作为第3特征量,计算所述第3特征量与存储在所述字典数据中的特征量的吻合度,根据该吻合度来确定检索结果。
60.根据权利要求59所述的设备状态检测方法,其特征在于, 在所述设备状态检测步骤中,将所述第2特征量、和与确定为所述检索结果的特征量对应的设备状态组合而新存储 在字典数据中。
61.根据权利要求59或60所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,将所述特征量中的周期长的分量变化了规定值以上的点 判断为是进行了设备操作的时点。
62.根据权利要求37 61中的任意一项所述的设备状态检测方法,其特征在于, 具备输出所述设备状态检测步骤检测出的设备状态的输出步骤。
63.根据权利要求37 62中的任意一项所述的设备状态检测方法,其特征在于,在所述字典数据保持的设备状态中,包括表示在该设备中产生某种异常的可能性高的 状态即警告状态。
64.根据权利要求37 63中的任意一项所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,将在对存储于所述字典数据中的特征量进行检索时成为 检索关键字的特征量在确定为检索结果的所述字典数据中存储为特征量履历。
65.根据权利要求64所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,根据所述特征量履历来判定设备是否为警告状态。
66.根据权利要求65所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,计算所述特征量履历的平均或者方差中的某一个或者两 方,在这些值超过了规定的阈值时判定为警告状态。
67.根据权利要求65所述的设备状态检测方法,其特征在于,在所述设备状态检测步骤中,计算所述特征量履历的平均或者方差中的某一个或者两 方,在这些值超过了针对每个设备设置的规定的阈值时判定为警告状态。
68.根据权利要求65所述的设备状态检测方法,其特征在于, 在所述设备状态检测步骤中,计算并记录所述特征量履历的平均或者方差中的某一个或者两方, 在新计算所述特征量履历的平均或者方差中的某一个或者两方时,求出所述记录的值 与新计算出的值的差分,在该差分超过了规定的阈值时判定为警告状态。
69.根据权利要求65所述的设备状态检测方法,其特征在于, 在所述设备状态检测步骤中,计算并记录所述特征量履历的平均或者方差中的某一个或者两方, 在新计算出所述特征量履历的平均或者方差中的某一个或者两方时,求出所述记录的 值与新计算出的值的差分,在该差分超过了针对每个设备设置的规定的阈值时判定为警告状态。
70.根据权利要求65所述的设备状态检测方法,其特征在于, 在所述设备状态检测步骤中,在所检测出的设备状态是警告状态的情况下,将在其前后规定的时间以内所述设备状态检测步骤检测出的设备状态判定为是警告 状态。
71.根据权利要求65所述的设备状态检测方法,其特征在于, 在所述设备状态检测步骤中,在所检测出的设备状态是警告状态的情况下,将在其前后规定的时间以内所述设备状态检测步骤检索出的设备状态判定为是预警 告状态,在该预警告状态的判定达到了规定的次数时将该设备状态判定为是警告状态。
72.根据权利要求64 71中的任意一项所述的设备状态检测方法,其特征在于, 具有输出所述警告状态的警告状态输出步骤,在判定为所述警告状态时执行所述警告状态输出步骤。
73.一种设备状态检测装置,对与馈电线连接的设备的状态进行检测,其特征在于,具备电流检测单元,对馈电线中流过的电流进行测量; 电流电压变换单元,将由所述电流检测单元测量出的电流变换为电压值; 波形滤波器单元,使通过所述电流电压变换单元变换为电压值的电流中的特定频率的 分量通过;波形放大单元,对通过了所述波形滤波器单元的包括特定频率分量的电流进行放大; AD变换单元,对通过所述波形放大单元放大后的电流波形进行AD变换而作为数字值; 特征量计算单元,根据所述AD变换后的数字值的电流值计算出特征量; 设备状态数据库,存储多个针对每个各设备各自的设备状态,登记了该设备状态下的 设备特征量的参照设备条目;设备状态检测单元,对所述特征量计算单元计算出的特征量、与所述设备状态数据库 内的参照设备条目的设备特征量进行对比,确定具有与所述特征量计算单元计算出的特征 量吻合的设备特征量的参照设备条目;以及输出装置,将由所述设备状态检测单元确定的参照设备条目作为设备状态信息而输出o
74.根据权利要求73所述的设备状态检测装置,其特征在于,还具备对所述馈电线的电压进行测量的电压检测单元、波形切分单元以及波形平滑化 单元,所述AD变换单元对由所述电压检测单元测量出的所述馈电线的电压进行AD变换而作 为数字值,将由所述波形放大单元放大后的电流波形与AD变换后的数字值一起输出到所 述波形切分单元,所述波形切分单元按照所述AD变换单元进行了数字化的电压的周期,对所述AD变换 单元进行了数字化的电流波形的数字值进行切分,以使切分后的电流的数字值的采样数成 为规定数的方式,插入或者删除值,所述波形平滑化单元对于针对每一个电压周期由所述波形切分单元切分后的电流的 采样电流值,按多个电压周期量读入来进行卷积运算。
75.根据权利要求74所述的设备状态检测装置,其特征在于,所述特征量计算单元使用所述波形平滑化单元平滑化后的电流值来求出特征量。
76.根据权利要求73 75中的任意一项所述的设备状态检测装置,其特征在于,具有提高输出阻抗并将所述电流电压变换单元的电压值输入到所述波形滤波器单元的阻抗提高单元。
77.根据权利要求73 76中的任意一项所述的设备状态检测装置,其特征在于,所述波形滤波器单元使50Hz或者60Hz以上的高次高次谐波通过。
78.根据权利要求73 77中的任意一项所述的设备状态检测装置,其特征在于,所述波形放大单元设定放大程度,以使通过了所述波形滤波器单元的电流的振幅等于 或者小于所述AD变换单元的输入范围。
79.根据权利要求73 78中的任意一项所述的设备状态检测装置,其特征在于,所述特征量计算单元对由所述AD变换单元变换后的所述电流值进行小波变换而求出 小波系数,使用规定的阈值对所述小波系数进行74值化而作为特征量。
80.根据权利要求73 79中的任意一项所述的设备状态检测装置,其特征在于,所述参照设备条目具有设备的ON、OFF状态、设备的模式状态或者设备的劣化状态而 作为所述设备状态。
81.一种设备状态检测服务器,其特征在于,具备至少2组在权利要求73 80中的任 意一项所述的设备状态检测装置内,去除了所述输出装置的结构,对所述各设备状态检测 装置的设备状态信息进行一并管理,其中,所述设备状态检测服务器具备综合单元,对所 述各设备状态检测装置的设备状态信息进行综合;以及输出装置,输出综合结果。
82.—种设备状态检测系统,其特征在于,具有通信单元,经由网络连接到权利要求73 80中的任意一项所述的设备状态检测装置 或者权利要求81所述的设备状态检测服务器;设备状态信息数据库;以及设备状态信息管理单元,经由所述通信单元接收从所述设备状态检测装置或者所述设 备状态检测服务器发送的设备状态检测结果,作为设备状态信息而存储在所述设备状态信 息数据库中,对由与所述网络连接的设备状态检测装置或者所述设备状态检测服务器检测 出的设备状态进行管理。
83.根据权利要求82所述的设备状态检测系统,其特征在于,所述设备状态检测装置或者设备状态检测服务器的所述输出装置针对每一定时间通 过电子邮件发送所述设备检测结果,本设备状态检测系统具备积蓄发送来的电子邮件的邮 箱。
84.一种生活者异常探测装置,其特征在于,具备无线通信单元,对来自无线通信机的接收电波的强度进行测量;活动判定单元,根据由该无线通信单元测量出的电波强度的时间变化来判定生活者的 活动状态,将该判定结果作为活动信息;运转设备探测单元,对设置在生活者的周边的设备的运转状态进行探测,将该状态作为设备信息;以及异常探测单元,根据所述活动信息以及所述设备信息探测生活者有无异常。
85.根据权利要求84所述的生活者异常探测装置,其特征在于,所述异常探测单元在探测到异常时,对在生活者的周边正在运转的设备进行控制。
86.根据权利要求84或85所述的生活者异常探测装置,其特征在于,所述运转设备探测单元接收从设置在所述设备中的无线通信机发送的设备的状态通 知,将该状态通知作为设备信息。
87.根据权利要求84或85所述的生活者异常探测装置,其特征在于,所述运转设备探测单元对所述设备中流过的电流值进行测量而与预先设定的阈值进 行比较,将该比较结果作为设备的设备信息。
88.根据权利要求84或85所述的生活者异常探测装置,其特征在于,所述运转设备探测单元从所述设备的馈电线中流过的电流中抽出高次谐波而与预先 设定的高次谐波进行比较,将该比较结果作为设备的设备信息。
89.根据权利要求84或85所述的生活者异常探测装置,其特征在于,所述运转设备探测单元取得从所述设备发射的电磁波噪声而与预先设定的电磁波噪 声进行比较,将该比较结果作为设备的设备信息。
90.根据权利要求84 89中的任意一项所述的生活者异常探测装置,其特征在于, 所述无线通信单元接收带有错误检测符号的无线分组,所述异常探测单元仅在判定为所接收到的无线分组中没有错误时探测生活者有无异常。
91.根据权利要求84 90中的任意一项所述的生活者异常探测装置,其特征在于, 所述无线通信单元对所述无线通信机请求无线分组的发送。
92.根据权利要求84 91中的任意一项所述的生活者异常探测装置,其特征在于, 所述异常探测单元具备预先保存有生活者的异常状态的数据库,根据所述活动信息以及所述设备信息对所述数据库进行检索而探测有无异常。
93.一种生活者异常探测系统,其特征在于,权利要求84 92中的任意一项所述的生活者异常探测装置通过网络与异常探测中心 连接,所述异常探测单元在探测到异常时通知到所述异常探测中心。
94.一种生活者异常探测系统,其特征在于,权利要求84 92中的任意一项所述的生活者异常探测装置通过网络与异常探测中心 连接,所述异常探测单元将所述活动信息以及所述设备信息通知到所述异常探测中心, 所述异常探测中心具备用于判定异常状态的数据库,根据来自所述异常探测单元的活 动信息以及设备信息对所述数据库进行检索,将检索结果通知到所述异常探测单元。
95.一种生活者异常探测方法,其特征在于,具有第1步骤,对来自无线通信机的接收电波的强度进行测量; 第2步骤,在接收电波的强度的时间变化是规定值以上时判定为有生活者的活动; 第3步骤,对设置在生活者的周边的设备的运转状态进行探测;以及第4步骤,根据第2步骤的结果和第3步骤的结果来探测有无异常。
96.根据权利要求95所述的生活者异常探测方法,其特征在于, 在所述第4步骤中,在所述第2步骤中判定为生活者没有活动,并且在所述第3步骤中探测为生活者的周边的设备正在运转时,判定为是异常。
97.根据权利要求73 80中的任意一项所述的设备状态检测装置,其特征在于,具备通信单元,与装置外进行数据的发送接收;以及设备状态数据库更新单元,连接到所述设备状态数据库,根据经由所述通信单元从外 部接收到的参照设备条目数据,更新设备状态数据库。
98.根据权利要求81所述的设备状态检测服务器,其特征在于,具备 通信单元,与装置外进行数据的发送接收;以及设备状态数据库更新单元,连接到所述设备状态数据库,根据经由所述通信单元从外 部接收到的参照设备条目数据,更新设备状态数据库。
99.一种设备状态数据库维护服务器,其特征在于,具备 设备状态数据库,存储参照设备条目数据;以及 设备状态数据库管理单元,向权利要求97所述的设备状态检测装置或者权利要求98所述的设备状态检测服务器 发送参照设备条目数据,更新发送目的地的设备状态数据库。
100.根据权利要求82或83所述的设备状态检测系统,其特征在于, 具备权利要求99所述的设备状态数据库维护服务器。
全文摘要
本发明提供一种设备状态检测装置等,对存在于家庭内的所有设备的运转状态的组合进行学习的工夫较少、并且即使在未知的设备运转着的情况下推测错误也较少。具备对设置了设备的环境的物理量进行测量的测量单元(110);计算出所述测量单元(110)测量出的测量值的特征量的特征量计算单元(120);预先将每个所述设备的所述特征量和与其对应的设备状态存储为参照设备条目字典(200)的存储单元(140);以及将所述特征量计算单元(120)计算出的特征量作为检索关键字而对存储在所述参照设备条目字典(200)中的特征量进行检索,根据与检索出的该特征量对应的设备状态来检测设备状态的设备状态检测单元(130)。
文档编号G01R11/00GK101981601SQ20098011162
公开日2011年2月23日 申请日期2009年3月18日 优先权日2008年4月11日
发明者中田成宪, 久代纪之, 伊藤善朗, 樋原直之, 樋熊利康, 胜仓真, 黑岩丈瑠 申请人:三菱电机株式会社

  • 专利名称:弹体内壁圆跳动检测杆的制作方法技术领域:本实用新型涉及一种检测装置,确切的说是涉及一种利用电涡流位移传感器进行 内孔多点圆跳动检测的自动检测杆。背景技术:目前,在弹体的生产过程中,弹体内腔的加工控制精度主要在其内壁的园跳动,因 而
  • 专利名称:用于管道检查的设备的制作方法技术领域:本公开涉及管道检查设备。背景技术:已知使用在管道内行进以测量或检测在管道壁中的缺陷的设备(通常被称作管道“清管器”)来执行管道的检查。这样的设备可包括超声传感器阵列,其用于测量管道的壁厚和或用
  • 专利名称:斜置式易燃液体快速鉴别系统的制作方法技术领域:本发明涉及借用于测定材料物理性质的系统,具体地说是一种斜置式易燃液体快速鉴别系统。背景技术: 易燃液体快速鉴别系统是一种用于机场、车站、码头进行安全检查的设备。2002年5月7日由于不
  • 专利名称:具有吸尘功能的金属探测器的制作方法技术领域:本实用新型涉及一种金属探测器,尤其是指一种具有吸尘功能的金属探测器。背景技术:金属探测器作为一种安全检查装置被广泛应用于机场、港口边防等安检场所以及银行、监狱、军、警、司法等重要部门,其
  • 专利名称:于测试作业模式期间用于保障集成电路上数字信息安全的方法与设备的制作方法技术领域:本发明一般而言是关于集成电路(ICs)与集成电路的各种作业模式,如包含可测 试性设计(DFT)模式的测试模式,并且进一步关于该集成电路内所含有的加密金
  • 专利名称:一种风电轴承保持架检测仪的制作方法技术领域:本实用新型涉及一种风电轴承保持架检测仪,属于轴承制造相关领域。 背景技术:风电轴承保持架的直径尺寸很大且厚度很薄,非常容易发生弹性变形。当前,利用通用的测量工具对风电轴承保持架进行尺寸精
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12