专利名称:微观流场粒子图像显微测速系统的制作方法
技术领域:
本发明涉及流场检测系统,特别是涉及一种微观流场粒子图像显微测速系统。
背景技术:
粒子图像测速技术(Particle Image Velocimetry,PIV)是70年代末由固体力学散斑法发展起来的一种全流场多点测量技术。该技术突破了传统单点测量的限制,可瞬时无接触测量流场中流动方向上二维平面的速度分布,且具有较高的精度。其基本原理是在流场中均匀布撒示踪粒子,并用脉冲激光片光源入射到所测流场区域中,通过连续两次或多次曝光,将粒子图像记录在PIV底片上或由CCD相机得到数字图像。在图像处理中采用杨氏条纹法、自相关或互相关等算法获得二维速度分布。
随着MEMS技术以及微流控技术的发展,微观流场检测的需求逐渐增多,但是,由于微流场的特征尺度只有微米级,因此在照明方式、显微拍摄以及成像质量等方面均存在一系列技术难题,因此常规PIV装置无法直接用于微观流场的速度测量。其主要问题在于(1)缺少显微放大装置。由于微流体机械流动特征尺寸很小,因此常规PIV装置无法通过CCD照相机直接获得粒子图像。
(2)片光源不适合微流体。常规PIV激光片厚度至少达到0.5mm,否则会使图像曝光光强不够。而微流体机械的内部腔体一般只有几百微米甚至几微米,因此该设备在此条件下无法完成平面照明,所以在微流体PIV中不能采用片光源形式。
(3)示踪粒子尺寸。常规PIV技术所采用的示踪粒子直径约为几十或几百微米,显然无法在微流体测量中继续使用。
(4)图像噪声影响严重。如果采用常规的PIV示踪粒子及拍摄手段,那么所采集的流场图像中背景光以及激光反射干扰严重,往往会引起较大的图像误差,影响后继图像处理的精度。
发明内容
为了解决微观流体粒子图像测速技术中的显微拍摄问题,本发明的目的在于提供一种微观流场粒子图像显微测速系统。采用特殊光路系统设计,解决照明激光与激发荧光的筛选,采用高数值孔径的物镜解决平面拍摄问题,以实现对微观流场进行激光诱导荧光方式的显微平面检测。
为了达上述目的,本发明提供一种微观流场粒子图像显微测速系统包括跨帧CCD照相机,成像镜头组,长通滤光片,45°激光反射棱镜,长工作距离、高数值孔径的显微物镜,凸面镜,凹面镜,双脉冲激光器,反射镜,控制及图像处理计算机,信号同步器;控制及图像处理计算机接信号同步器后分成两路,一路经激光器控制线接双脉冲激光器,另一路经CCD照相机控制线及数据线接跨帧CCD照相机,脉冲激光光束依次经凹面镜、凸面镜、45°激光反射棱镜全反射至长工作距离、高数值孔径的显微物镜照射至被测工件流道内的示踪粒子,被激光激发的荧光,经过长工作距离、高数值孔径的显微物镜,透过45°激光反射棱镜、长通滤光片、反射镜、成像镜头组至跨帧CCD照相机,被反射的激光经过长工作距离、高数值孔径的显微物镜,经45°激光反射棱镜反射。
本发明具有的有益的效果是a、激光采用全场照明方式,而不采用片光源形式;b、微观流场平面检测方式通过高数值孔径显微物镜的聚焦平面来解决,由于高数值孔径显微物镜的聚焦平面厚度约为几个微米左右,同时在此聚焦平面厚度以外的粒子图像很模糊,基本不会干扰图像质量,因此采用显微物镜来操控微流场检测中的成像平面位置,以实现平面检测;c、采用亚微米级尺度的示踪粒子,同时粒子表面涂有激光诱导荧光材料,示踪粒子在激光的照射下将激发出荧光;d、采用45°激光反射棱镜将侧向入射的激光全反射到显微物镜方向,同时该45°棱镜表面经过光学镀膜,具有滤光片作用,允许示踪粒子激发的荧光透过而将激光全反射;e、目镜及CCD接口前端光路安装长通滤光片,再次阻止波长较短的激光通过,而允许荧光透射,采用这种光学系统设计一方面避免激光入射到CCD引起损伤,另一方面降低了背景光对图像质量的影响,大幅提高图像信噪比。
该装置可针对微米级流场进行精密检测,具有较高的平面成像精度及图像信噪比,是微观流体检测的重要技术。
附图为本发明的结构原理示意图。
附图中1、跨帧CCD照相机,2、成像镜头组,3、长通滤光片,4、45°激光反射棱镜,5、长工作距离高数值孔径的显微物镜,6、凸面镜,7、凹面镜,8、双脉冲激光器,9、反射镜,10、激光器控制线,11、控制及图像处理计算机,12、信号同步器,13、CCD照相机控制线及数据线。
具体实施例方式
下面结合附图和实施例对说明本发明作进一步说明。
如附图所示,本发明提供一种微观流场粒子图像显微测速系统包括跨帧CCD照相机1,成像镜头组2,长通滤光片3,45°激光反射棱镜4,长工作距离、高数值孔径的显微物镜5(如尼康CFI PLAN系列物镜等),凸面镜6,凹面镜7,双脉冲激光器8,反射镜9,控制及图像处理计算机11,信号同步器12(如TSI610034等);控制及图像处理计算机11接信号同步器12后分成两路,一路经激光器控制线10接双脉冲激光器8,另一路经CCD照相机控制线及数据线13接跨帧CCD照相机1,脉冲激光光束依次经凹面镜7、凸面镜6、45°激光反射棱镜4全反射至长工作距离、高数值孔径的显微物镜5照射至微流控被测工件14流道内的示踪粒子,被激光激发的荧光,经过长工作距离、高数值孔径的显微物镜5,透过45°激光反射棱镜4、长通滤光片3、反射镜9、成像镜头组2至跨帧CCD照相机1,被反射的激光经过长工作距离、高数值孔径的显微物镜5,经45°激光反射棱镜4反射。
所说的长通滤光片3是表面经过光学镀膜处理,允许中心波长为610纳米以上光通过的滤光片。
所说的45°激光反射棱镜4是表面经过光学镀膜处理,全反射中心波长为532纳米激光的、全透射中心波长为610纳米荧光的反射棱镜。
具体工作过程如下控制及图像处理计算机11首先向信号同步器12下达控制信息,信号同步器12控制双脉冲激光器8及跨帧CCD照相机1的工作时序,每个工作周期双脉冲激光器8给出一对脉冲来分别曝光两幅图像,两幅图像的曝光时间间隔由激光脉冲对控制,因此可以将间隔时间控制到微秒级,以利于拍摄流速较高的流场,跨帧CCD照相机1同步地将两幅图像信息快速存储并输送到控制及图像处理计算机11内并进行后继的图像处理。
双脉冲激光器8发出的脉冲激光束首先通过凹面镜7扩散成锥形光以扩大照明范围,并通过凸面镜7转变为平行光束,然后水平入射到45°激光反射棱镜4,该棱镜表面的光学镀膜层可使入射激光按90°全反射至显微物镜5,为微观流场提供光强较高且均匀的照明光,流场中的示踪粒子表面涂有荧光材料,在激光的照射下激发出荧光,该荧光连同反射及散射的激光一起通过高数值孔径的显微物镜5射至45°激光反射棱镜4,此时45°激光反射棱镜4表面的光学镀膜层允许荧光透过,而激光则被再次发射。透过45°激光反射棱镜4的荧光通过长通滤光片3再次将少量透射的激光过滤,进一步提高了荧光的纯度,以避免激光引起CCD感光阵列的损伤,荧光通过反射镜9发射至CCD成像镜头组2,最终通过跨帧CCD照相机1得到信噪比较高的流场图像。
权利要求
1.一种微观流场粒子图像显微测速系统,其特征在于包括跨帧CCD照相机(1),成像镜头组(2),长通滤光片(3),45°激光反射棱镜(4),长工作距离、高数值孔径的显微物镜(5),凸面镜(6),凹面镜(7),双脉冲激光器(8),反射镜(9),控制及图像处理计算机(11),信号同步器(12);控制及图像处理计算机(11)接信号同步器(12)后分成两路,一路经激光器控制线(10)接双脉冲激光器(8),另一路经CCD照相机控制线及数据线(13)接跨帧CCD照相机(1),脉冲激光光束依次经凹面镜(7)、凸面镜(6)、45°激光反射棱镜(4)全反射至长工作距离、高数值孔径的显微物镜(5)照射至被测工件(14)流道内的示踪粒子,被激光激发的荧光,经过长工作距离、高数值孔径的显微物镜(5),透过45°激光反射棱镜(4)、长通滤光片(3)、反射镜(9)、成像镜头组(2)至跨帧CCD照相机(1),被反射的激光经过长工作距离、高数值孔径的显微物镜(5),经45°激光反射棱镜(4)反射。
2.根据权利要求1所述的一种微观流场粒子图像显微测速系统,其特征在于所说的长通滤光片(3)是表面经过光学镀膜处理,允许中心波长为610纳米以上光通过的滤光片。
3.根据权利要求1所述的一种微观流场粒子图像显微测速系统,其特征在于所说的45°激光反射棱镜(4)是表面经过光学镀膜处理,全反射中心波长为532纳米激光的、全透射中心波长为610纳米荧光的反射棱镜。
全文摘要
本发明公开了一种微观流场粒子图像显微测速系统。由跨帧CCD照相机,成像镜头组,长通滤光片,45°激光反射棱镜,长工作距离、高数值孔径的显微物镜,凸面镜,凹面镜,双脉冲激光器,反射镜,控制及图像处理计算机,信号同步器组成。它采用高数值孔径、长工作距离的显微物镜控制成像平面的厚度与位置,采用全场照明的方式替代传统粒子图像测速技术的片光源,采用微米至纳米级的荧光示踪粒子,在光路设计中采用45°激光反射棱镜将激光从侧向引入,避免了激光对CCD照相机的损伤,同时采用荧光过滤方式,大幅提高了图像信噪比。该装置可针对微米级流场进行精密检测,具有较高的平面成像精度及图像信噪比,是微观流体检测的重要技术。
文档编号G01P3/38GK1588092SQ20041005392
公开日2005年3月2日 申请日期2004年8月18日 优先权日2004年8月18日
发明者傅新, 谢海波, 杨华勇 申请人:浙江大学