山东科威数控机床有限公司铣床官方网站今天是:2025-06-27切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

基于信息融合的超宽带探地雷达自动目标识别方法

时间:2025-06-27    作者: 管理员

专利名称:基于信息融合的超宽带探地雷达自动目标识别方法
技术领域
本发明涉及一种基于信息融合的超宽带探地雷达自动目标识别方法----基于宽相关处理、韦尔奇(Welch)功率谱分析、径向基函数(RBF)神经网络以及形状特征数据对目标进行全面自动识别,可广泛应用于地下金属/非金属管道探测、考古遗址定位、地质剖面勘探、高速公路质量检查以及安全检查等国家安全和经济领域中。
背景技术
探地雷达作为非破坏性探测手段正被广泛应用于地下目标(如空洞、管道、地雷等)的探测,如何对雷达回波信号进行处理以识别地下埋设的目标始终是困扰探地雷达应用的难题。目前主要的处理手段包括成像识别和特征变量识别。
成像处理通过对探地雷达回波信号的处理,获取了埋藏物体几何特征,从而可以根据几何特征(主要是外形)对目标加以判别,主要以合成孔径雷达(SAR)成像为主。实现的方法包括三维距(Stanislav Vitebskiy,Lawrence Carin and MarcA.Ressler,Ultra-wideband,short-pulse Ground-penetrating radarsimulation andmeasurement.IEEE Trans.On geoscience and remote sensing.35(3),1997,762-772)和相位处理(Sai,B.;Ligthart,L.P.;GPR Phase-Based Techniques forProfiling Rough Surfaces and Detecting Small,Low-Contrast Landmines Under FlatGround Geoscience and Remote Sensing,IEEE Transactions on,Volume42,Issue2,Feb.2004 Pages318-326)。由于大地的衰减和色散特性,使得探地雷达回波相互间具有不一致性,获取清晰的图像相对比较困难,从而造成很高的虚警率。同时成像识别忽略了信号中原有的其它特征信息,尤其是比较难于区分形状相似的目标。同时成像处理对实验设备要求高、计算复杂,不易实时处理。处理结果一般由人工加以解释,含有较多的主观因素。
基于特征变量识别主要是利用探地雷达的回波信号进行特征变量的提取,借助神经网络完成自动目标识别。已有的相关探地雷达特征提取方法包括连续子波变换(T.Le-Tien,H.Talhami and D.T.Nguyen,“Target SignatureExtraction Based on the Continuous Wavelet Transform in Ultra-WidebandRadar,”IEE Electronics Letters,Vol.33,Issue 1,January 1997),和时频分析(Guillermo C.Gaunaurd,Hans C.Strifors,Applications of(Wigner-Type)Time-Frequency Distributions to Sonar and Radar SignalAnalysis,7th.International Wigner Symposium held in College park,MD USA,2001)等。已有的方法主要是依据两维功率谱进行识别,特征量复杂不便于识别的工程识别,同时由于特征变量识别主要强调回波信号的特性,对于不同形状目标的识别却无能为力。

发明内容
本发明的目的在于针对现有技术存在的不足,提供一种新的基于信息融合的超宽带探地雷达自动目标识别方法,即克服成像技术的设备要求高,不能区分形状相似目标的缺点,也克服了现有特征变量识别技术的复杂不易实现和对于不同形状目标的识别无能为力的不足,可以对不同形状、不同材质的地下目标进行有效的自动识别,达到工程化的实用效果。
为实现这样的目的,本发明的技术方案中,首先对超宽带探地雷达回波信号进行直达波的剔除,利用宽相关处理进行信号滤波和典型数据提取。提取纵向和横向典型数据用于目标形状识别;提取典型回波道数据并进行韦尔奇(Welch)功率谱分析,并利用RBF神经网络对目标材质进行分类,最后把目标形状识别和材质识别的结果进行信息融合,从而实现目标的全面自动识别。
本发明的基于信息融合的超宽带探地雷达自动目标识别方法包括如下具体步骤1.数据处理数据处理主要包括直达波剔除和信号滤波,用于提取典型纵向和横向切面数据和典型道数据。将探地雷达的三维回波数据进行横向和纵向方向的平均,获取垂直方向的平均回波数据,从中选择第二和第三个回波的连接点作为截断点进行数据截断,抑制直达波,剔除前面的回波数据部分,将余下的回波数据作为含信号的数据进行后续处理,对截断后的探地雷达回波数据进行宽相关处理,得到三个典型切面和三个回波信号的最大值点处的X、Y、Z值。
由于探地雷达回波信号由收发天线间直接耦合波、地面反射波、地下介质不连续产生的后向散射波、随机干扰等构成。由直接耦合波和地面反射波组成的直达波直接影响回波目标信号。由于直达波相对目标信号有一个较大的时间差,因此本发明通过数据时间轴截断抑制直达波。
信号滤波采用宽相关处理方法实现。对截断后的探地雷达回波数据进行宽相关处理,可以提高回波信号的信噪比。宽相关处理的主要思想就是通过引入伸缩因子,所得的回波信号与伸缩的母波具有匹配关系。经过宽相关处理后,可以得到三个典型切面和三个回波信号的最大值点(X,Y,Z)。
2.特征提取特征提取主要包括两部分用于目标形状识别的纵向和横向典型数据的提取和用于目标材质识别的典型道数据的提取。根据宽相关处理后得到的回波信号最大值点处的X、Y值,得到对应的纵向切面和横向切面数据,再取切面图最大值附近的各道数据对应的最大值,得到两个切面的轮廓点,得到用于形状识别的特征数据,确定不同的X、Y值,得到对应的纵向切面和横向切面交点的典型道数据,然后经Welch功率谱处理后,可以得到用于材质识别的数据。
经过宽相关处理后,可以得到三个典型切面和三个回波信号最大值点处的X,Y,Z值。其中一个是水平切面,显示目标反射面的形状信息,一个纵向切面和一个横向切面,纵向切面的典型数据和横向切面的典型数据相结合用于目标形状的识别;最大值X、Y对应的宽相关处理数据代表回波的典型数据,用于目标材质的识别。
根据宽相关处理后得到的回波信号最大值点处的X、Y值,得到对应的纵向切面和横向切面数据,再取切面图最大值附近的各道数据对应的最大值,得到两个切面的轮廓点,得到用于形状识别的特征数据。根据两道数据的相似性进行目标形状的识别。
确定不同的X、Y值,得到对应的纵向切面和横向切面交点的典型道数据,然后经Welch功率谱处理后,可以得到用于材质识别的数据。
基于宽相关处理所得到的最大值X、Y以及宽相关处理的三维结果,提取对应于(X,Y)的单道宽相关处理数据形成典型道回波数据。由于探地雷达回波信号的非平稳性,尤其是对于超宽带瞬态电磁散射信号,传统的基于傅立叶变换的谱估计方法都将不能使用。考虑部分扫描的Welch平均重叠周期谱可以较好的用于非平稳信号的处理和一维的数据量,可以较好的用于目标特征的提取。将提取的典型道数据经Welch功率谱处理即可得到一维的功率谱,进而用于材质的识别。
3.分类识别将得到的形状识别特征数据进行曲线拟合,比较不同曲线对应的平方差,来确定拟合结果,利用不同形状目标回波信号对应不同的拟合曲线,并结合切面图显示,实现目标形状的识别;利用径向基函数RBF神经网络对目标材质进行分类,将与不同材质对应的典型道数据经Welch功率谱估计,得到用于材质识别的样本数据,送入径向基函数RBF神经网络进行训练建立特征量与目标值的函数关系,将上一步特征提取得到的用于材质识别的数据作为特征量输入神经网络,实现目标材质的自动识别;最后把目标形状识别和材质识别的结果进行信息融合,实现对不同材质,不同形状目标的全面自动识别。
利用特征提取得到的轮廓点的数据进行一次曲线和二次曲线拟合,比较两次拟合曲线的平方差,来确定拟合结果是直线还是二次曲线。并结合三维显示中的纵向和横向典型切面结果,不同形状物体的两个典型切面的典型道数据的分布形状的不同。如果两个切面数据拟合都是二次的,显示为两个高峰,对应为球;如果一个为一次的,一个为二次的,显示一个为高峰分布,一个为不连续极值分布,则对应为管。这样可以实现目标形状识别。
利用径向基函数RBF神经网络对目标材质进行分类,首先将与不同材质对应的典型道数据经Welch功率谱估计,得到用于材质识别的样本数据,送入径向基函数RBF神经网络进行训练建立特征量与目标值的函数关系,将上一步特征提取得到的用于材质识别的数据作为特征量输入神经网络,实现目标材质的自动识别。
针对得到的典型道特征数据,利用径向基函数RBF神经网络对目标材质进行分类。首先分别从测量数据选取典型的土壤、铁和PVC数据,分别通过直达波剔除、Welch功率谱估计得到典型特征用于神经网络训练的输入,同时将对应的目标信息——土壤、铁和PVC分别用不同的值表示形成训练的期望输出。当网络训练收敛以后的网络权值即代表了特征量与目标信息的映射关系。针对特征提取的典型道数据的功率谱,通过训练收敛的神经网络即可进行目标材质的自动分类识别。
最后把目标形状识别和材质识别的结果进行信息融合,可以实现对不同材质,不同形状目标的全面自动识别。
本发明的方法中,利用了探地雷达回波信号中的直达波相对目标信号有一个较大的时间差,进行直达波的剔除,并利用宽相关处理进行信号滤波和典型数据提取,提高了信号的信噪比。方法中提取纵向和横向典型数据用于目标形状识别,提取典型回波道数据并进行Welch功率谱分析,并利用RBF神经网络对目标材质进行分类,最后把目标形状识别和材质识别的结果进行信息融合,实现对不同材质,不同形状目标的自动识别。本发明的方法易于实现,即克服现有成像技术的设备要求高,不能区分形状相似目标的缺点,也克服特征变量识别技术的对于不同形状目标的识别无能为力的不足,为探地雷达的工程化提供了一个有效的技术实现方法。本发明对于实际的应用系统,特别是手持机具有重要意义和实用价值。


图1为本发明基于信息融合的超宽带探地雷达自动目标识别的原理框图。
图2为不同形状物体的识别效果对照图。
其中,图2(a),(b),(c)为针对两根铁管的处理与显示对照图,图2(a)为原始数据显示,图2(b)为宽相关处理结果显示,图2(c)为三维显示;图2(d),(e),(f)为铝立方体的处理与显示对照图,图2(d)为原始数据显示,图2(e)为宽相关处理结果显示,图2(f)为三维显示。
图3为不同材质的典型道数据的Welch功率谱对照图。
其中,图3(a)为典型道数据的Welch功率谱,图3(b)为PVC的典型道数据的Welch功率谱,图3(c)为土壤的典型道数据的Welch功率谱。
具体实施例方式
为了更好地理解本发明的技术方案,以下结合附图对本发明的实施方式作进一步描述。
本发明基于信息融合的超宽带探地雷达自动目标识别的原理框图如图1所示,总共包括三个主要部分,即数据处理、特征提取和分类识别。其中数据处理部分主要包括直达波剔除和采用宽相关处理方法实现信号滤波,用于提取典型横向和纵向切面数据和典型道数据。特征提取部分包括用于目标形状识别的横向和纵向典型数据的提取和用于目标材质识别的典型道数据的提取及提取后的功率谱估计。分类识别部分利用横向和纵向两个典型数据完成目标形状的识别和分类,对得到的目标材质识别特征数据利用RBF神经网络对目标材质进行识别和分类。最后把目标形状识别和材质识别的结果进行信息融合从而获得目标识别结果。
各部分具体实施细节如下1.数据处理针对每一道测试数据,可建立超宽带探地雷达回波模型如下探地雷达超宽带天线发射的探测脉冲为r1(t)=x(t),则回波信号为S(t)=S0(t)+Σj=1m+1ΣφKi,jx(si,j(t-τi,j))+Σj=1m+1Σφ‾Ki,js(si,j(t-τi,j))]]>+n(t)]]>其中S0(t)为直达波,i表示第i次反射波,j表示第j层反射波。m表示地面距埋藏目标可分的层数。φ={i|τi,j∈目标回波信号宽度内},φ为φ补集。n(t)为高斯噪声。Ki,j为衰减常数(对应反射系数),sl,m+1和τl,m+1是待估计的未知参数,代表目标的时延、频谱展宽。
经过直达波剔除后的回波信号可描述为S′(t)+Σj=1m+1ΣφKi,jx(si,j(t-τi,j))+Σj=1m+1Σφ‾Ki,jx(si,j(t-τi,j))+n(t)]]>在均匀介质条件下,忽略介质和多次反射波的影响,则用于目标检测和参数估计的有效回波信号可近似描述为r2(t)=ΣiKi,Tx(si,T(t-τi,T))+n(t)]]>宽带相关处理器的输出为WC(s,τ)=s∫r*1(s(t-τ))r2(t)dt]]>在非均匀介质情况下,通过多道数据纵向或横向平均,以纵向或横向分辨率的降低为代价换取正确的匹配和参数得稳健估计。
经过宽相关处理后,可以得到三个典型切面和三个回波信号的最大值点(X,Y,Z)。一个是水平切面,显示目标反射面的形状信息,一个纵向切面和一个横向切面,纵向切面的典型数据和横向切面的典型数据相结合用于目标形状的识别。两个切面交点的道数据代表回波的典型数据,用于目标材质的识别。
2.特征提取特征提取主要包括两部分用于目标形状识别的纵向和横向典型数据的提取和用于目标材质识别的典型道数据的提取。
经过宽相关处理后,可以得到回波信号最大值点处的X、Y、Z值,分别取X、Y值,可以得到对应的纵向切面和横向切面数据,再取切面图最大值附近的各道数据对应的最大值,得到两个切面的轮廓点,这样就得到了用于形状识别的典型道数据。
部分扫描Welch功率谱被证明可以用于目标材质的有效识别,Welch法谱估计采取数据分段加窗处理再求平均的办法,先分别求出每段的谱估计,然后进行总平均。根据概率统计理论证明,若将原长度为N的数据分成K段,每段长度取M=N/K,如各段数据互为独立,则估计的方差将只有原来不分段的1/K,达到一致估计的目的。但若K增加、M减小,则分辨率下降。相反,若K减小、M增加,虽偏差减小,但估计方差增大。所以在实际中必须兼顾分辨率与方差的要求适当选取K与M的值。
Welch功率谱估计的计算过程如下设信号s(n)的长度为512,将其分成K=7段,每段长度为N=128,重叠50%。并对每个子集加上一个hanmin窗w(n)(n=128)。
Welch功率谱估计按下式计算Pw=1UKΣi=1kSi(w)Si*(w)]]>Si(w)=Si(n)w(n)e-2πmwn]]>U=1mΣn=0m-1w2(n)]]>图3为不同材质的典型道数据的Welch功率谱对照图,对比可以看到三者之间存在着较大的差别,因此可以用来作为目标的材质识别和目标的检测。确定不同的X,Y值,得到对应的纵向切面和横向切面交点的典型道数据,然后经Welch功率谱处理后,可以得到用于材质识别的数据。
3.分类识别本发明目标形状识别的试验采用的数据分别为针对球和管的测量数据。实验的方法是首先针对测量的数据进行宽相关信号处理,获得水平切面图、横向切面图和纵向切面图。结合纵向和横向切面中的典型数据进行目标形状识别。
经过宽相关处理,回波信号的信噪比得到了增强。利用特征提取得到的轮廓点的数据进行一次曲线和二次曲线拟合,比较两次拟合曲线的平方差,来确定拟合结果是直线还是二次曲线。并结合三维显示中的纵向和横向典型切面结果,不同形状物体的两个典型切面的典型道数据的分布形状的不同。如图2所示,如果两个切面数据拟合都是二次的,显示为两个高峰,对应为球;如果一个为一次的,一个为二次的,显示一个为高峰分布,一个为不连续极值分布,则对应为管。这样可以实现目标形状识别。
本发明采用RBF径向基函数神经网络进行目标识别。RBF选取具有单隐层的三层前馈网络,包括输入层、中间层和输出层。输入层个数的选取依据选取的特征向量的采样点数。考虑回波信号中有用信息的长度,本采样点数取为128。中间层个数的选取原则为2倍的输入层个数减去输出层个数。输出层个数为1,根据不同的应用分别用0,1,2代表待识别物体的种类---土壤、铁和PVC。
针对实际数据的宽相关处理结果,分别取土壤和目标上不同的X,Y值,将对应的不同的典型道数据经Welch功率谱估计,得到用于材质识别的样本数据,对比可以看到三者之间存在着较大的差别,因此可以用来作为目标的材质识别和目标的检测。将功率谱特征量送入径向基函数RBF神经网络进行训练。同时针对待识别的测量数据通过宽相关处理得到的回波信号最大值。对应(X,Y)的典型道信号经过Welch功率谱估计,进而通过神经网络进行分类识别。根据网络的输出值的范围进行目标材质的自动识别。当输出值∈(-0.5,0.5),判定为土壤;当输出值∈(0.5,1.5),判定为铁;当输出值∈(1.5,2.5),判定为PVC;其它输出值,判定其它。
如图3所示。对于伪铁管和PVC管的神经网络的训练与识别,输出结果为表1,反映Welch功率谱可以有效的借助神经网络完成对地下目标材质的识别。
表1

对比现有成像识别技术和特征变量识别,本发明可以有效地对不同形状,不同材质的地下目标进行有效的自动识别,能够达到工程化的实用效果。同时从整个实现步骤可知,本发明的方法易于实现,从而为探地雷达的工程化提供了一个技术实现方法。
权利要求
1.一种基于信息融合的超宽带探地雷达自动目标识别方法,其特征在于包括如下具体步骤1)数据处理包括直达波剔除和信号滤波,将探地雷达的三维回波数据进行横向和纵向方向的平均,获取垂直方向的平均回波数据,从中选择第二和第三个回波的连接点作为截断点进行数据截断,抑制直达波,剔除前面的回波数据部分,将余下的回波数据作为含信号的数据进行后续处理,对截断后的探地雷达回波数据进行宽相关处理,得到三个典型切面和三个回波信号的最大值点处的X、Y、Z值;2)特征提取包括用于目标形状识别的纵向和横向典型数据的提取和用于目标材质识别的典型道数据的提取,根据宽相关处理后得到的回波信号最大值点处的X、Y值,得到对应的纵向切面和横向切面数据,再取切面图最大值附近的各道数据对应的最大值,得到两个切面的轮廓点,得到用于形状识别的特征数据,确定不同的X、Y值,得到对应的纵向切面和横向切面交点的典型道数据,然后经Welch功率谱处理后,可以得到用于材质识别的数据;3)分类识别将得到的形状识别特征数据进行曲线拟合,比较不同曲线对应的平方差,来确定拟合结果,利用不同形状目标回波信号对应不同的拟合曲线,并结合切面图显示,实现目标形状的识别;利用径向基函数RBF神经网络对目标材质进行分类,将与不同材质对应的典型道数据经Welch功率谱估计,得到用于材质识别的样本数据,送入径向基函数RBF神经网络进行训练建立特征量与目标值的函数关系,将上一步特征提取得到的用于材质识别的数据作为特征量输入神经网络,实现目标材质的自动识别;最后把目标形状识别和材质识别的结果进行信息融合,实现对不同材质,不同形状目标的全面自动识别。
全文摘要
一种基于信息融合的超宽带探地雷达自动目标识别方法,首先利用探地雷达回波信号中的直达波相对目标信号有一个较大的时间差,进行直达波的剔除,利用宽相关处理进行滤波和典型数据提取,提高信号的信噪比,提取纵向和横向典型数据用于目标形状识别,提取典型回波道数据进行Welch功率谱估计,并利用RBF网络进行目标材质分类,最后把目标形状识别和材质识别的结果进行信息融合,达到对不同形状,不同材质的地下目标的全面有效的自动识别。本发明实现了超宽带探地雷达目标的全面自动识别,对于实际的应用系统,特别是手持机具有重要意义和实用价值。
文档编号G01S7/02GK1595195SQ20041002521
公开日2005年3月16日 申请日期2004年6月17日 优先权日2004年6月17日
发明者李建勋, 郑军庭 申请人:上海交通大学

  • 专利名称:一种高压开关导电臂安装及检测装置的制作方法技术领域:本实用新型涉及电力系统中的控制装置,尤其是涉及一种高压开关导电臂安装及检测装置。背景技术:户内铠装可移开式高压交流开关柜作为电力系统中不可缺少的主要控制和保护设备,已经在电力工业
  • 专利名称:难燃性试验数据采集装置的制作方法技术领域:本实用新型涉及燃烧试验技术领域,具体地说,是一种难燃性试验数据釆 集装置。 背景技术:随着人们生活水平的不断提高,各种高档的建筑装修材料不断进入到千家 万户,现代装修材料中大量使用各种易燃
  • 专利名称:一种“o”型密封胶圈截面直径测量尺的制作方法技术领域:本发明属于测量技术,涉及一种“0”型密封胶圈截面直径测量尺。 背景技术:目前,对于“0”型密封胶圈截面直径的测量一般采用千分尺、卡尺手工测量。由于 “0”型密封胶圈采用橡胶材料
  • 专利名称:基于统计数据检测的同频干扰抑制模块及同频干扰抑制方法技术领域:本发明涉及一种基于统计数据检测的同频干扰抑制模块及同频干扰抑制方法。背景技术:自1943年美国正式推出微波雷达以来,微波雷达一直广泛应用于舰船的导航领域,连续发射电磁波
  • 专利名称:探测电磁辐射的设备和方法探测电磁辐射的设备和方法背景技术:位于千兆-太赫兹(THz)频率范围的电磁波区域近来在科学和技术的各种领域中已日益得到关注。部分地,由于即将到来的对更高频率计算机通信通道和系统的需求引起这种关注。另外,大的
  • 专利名称:用于透射电子显微镜检测的样品组及其制作方法技术领域:本发明涉及半导体领域,尤其涉及用于TEM(Transmission ElectronMicroscope, 透射电子显微镜)检测的样品组及其制作方法。背景技术:在半导体制造业中,
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12