山东科威数控机床有限公司铣床官方网站今天是:2025-07-01切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

单分子实时测序装置、核酸分析装置和单分子实时测序方法

时间:2025-07-01    作者: 管理员

专利名称:单分子实时测序装置、核酸分析装置和单分子实时测序方法
技术领域
本发明涉及核酸序列解析方法和核酸序列解析装置。更具体而言,涉及用于解读 例如DNA或RNA等核酸的碱基序列的方法和装置。
背景技术
1990年至2005年间,投入30亿美元预算的人类基因组计划已经比预定提前2 3年读取出最容易解读的部分(全体的93% ),正如非专利文献1所述,解读所必需的技术 和方法已经作为一种遗产保留下来。这一技术在之后不断进行改进,时至今日,用约2000 万美元($2X107)左右已经能够以实用的精度解读基因组。即便如此,能用该金额实现大 规模碱基序列解读的仍仅限于专门解读中心或获得巨额预算的大型研究计划。但是,若能 够降低序列测定成本,则大多能够处理更大量的基因组。例如使患者和健康人群的基因组 的比较成为可能,从而能期待基因组信息价值的提高。如非专利文献2所示,预计这类基础 数据的取得将大大有助于未来向定制(tailor made)医疗的发展。上述现状下,美国国立卫生研究所(NIH)出资援助的用于“革新的基因组序列 测定技术”的2个计划的目标是,至2009年解读1个人的人类基因组降至10万美元 ($1 XlO5),并且使其在2014年前降至1000美元($1X103)。正在开发“ 1000美元基因组” 解读技术。如非专利文献3所述,目前几种新一代序列分析仪已经商品化。这些技术已能实 现现有技术的1/10 1/100的成本。此外,通过1次解析能测定的碱基数也达到IO9级。 然而,这些序列分析仪在成本方面的改善基本上达到极限,预计很难利用已商品化的装置、 方式实现$1000基因组。此外,目前销售的新一代序列分析仪虽能解读直至IO9左右的碱基序列,但是,仅 是对IO9左右的大量数据进行序列解读的运行时间(rim time)就需要2、3天以上的时间。 为了在医疗现场使个人水平的基因组序列解读成为日常工作,则不仅是成本方面的改良, 还需要序列解读的高速化。这种状况下,备受期待的最有希望的测序技术之一是单分子实时测序法。其为对 酶反应的现场直接以单分子水平进行实时测定的方法。单分子实时测序法中,在碱基进行 延伸时实时进行荧光检测。因此,能够飞速进行碱基序列解读。此外,单分子实时测序法中, 无需利用PCR对试样进行扩增,能大幅降低成本。因此,单分子实时测序法被视为最有希望 实现1000美元基因组的技术之一。非专利文献4中公开了一种单分子实时测序法。该文献中采用的方法为将用供 体荧光体修饰过的聚合酶固定在基板上,随着核酸的延伸反应,荧光能量向受体-核苷酸 转移,对该荧光能量转移进行测量。此外,作为控制在细胞内进行的各种生化过程、进行实时解析的技术,可列举出笼 锁化合物。笼锁化合物是将生理活性分子用光分解性保护基修饰使其暂时失去活性的物质的总称。按照使生理活性进入笼(cage)中并休眠的分子这一意思而命名为笼锁化合物 (caged compounds)。当对笼锁化合物照射最适合该化合物的波长的光时,在被光照的瞬 间、仅在被照射的地方保护基脱除,从而表现原有的生理活性。即,能通过光照控制化学反 应的时间、空间动力学。专利文献1、2中为制备寡核苷酸池而使用了笼锁化合物。但该方 法是使用逐次反应、使末端所结合的笼锁化合物随着反应而依次分解的方法。因此,该方法 无法用于实时解析。此外,该方法的对象是多分子而非单分子。现有技术文献专利文献 专利文献1 日本特表2006-503586专利文献2 :US 2007/0059692非专利文献非专利文献1 =Nature Reviews (自然评论),vol5, pp335,2004非专利文献2 :《t卜y 7 Λ完全解読力、^「t卜」理解 》(从人类基因组完全解 读到理解“人类”)、pp253,服部正平、东洋书店、2005非专利文献3 :Nature(自然),voll. 449,pp627,2007非专利文献 4 《Next-Generateion Sequencing :Scientific and Commercial Implications of the $1,000 Genome》(新一代测序技术$1, 000基因组的科学和商业上 的关联),Kevin Davies, pp41, Insight Pharma Reports非专利文献5 :Anal. Chem. vol. 78,6238-6245非专利文献6 :Nanotechnology (纳米科技),2007,vol. 18,pp 44017-44021.非专利文献7 =Nano Letters (纳米快报)· 2004,vol. 4,957-96
发明内容
发明要解决的问题作为单分子实时测序法的课题,可举出延伸反应开始的控制。通常,在延伸反应 中,通过物镜以CCD相机检测来自固定在基板上的单分子发出的荧光。然而,物镜能观察的 视野有限,因而无法一次性观察基板整面。另一方面,实时反应中,在注入反应液的同时,延 伸反应即开始。因此,需要构建仅在物镜能观察的基板区域内使延伸反应开始、在其它区域 内不进行反应的反应体系。为实现该目的,考虑了如下方法将流动池(flow cell)分成多 个反应场,对这些反应场独立或依次输送反应液。但是,为解读人类基因组,需要数百以上 的反应场,必须制作复杂的流路。此外,为准确地对多个反应场独立或依次输送液体,需要 多台高性能泵。并且,由于发生压力损失、产生气泡、产生作为测定噪音的杂质等问题,可以 预想,对多个反应场独立或依次稳定地输送液体是极其困难的。进而,还存在复杂的流路和 多个泵使成本变高的缺点。因此,寻求不制作复杂的流路、仅在基板内的目标区域内开始延 伸反应的方法论。本发明的目的涉及在基板内的目标区域内选择性控制延伸反应。解决问题的手段本发明将在其末端配置有笼锁化合物的寡探针固定在基板内的反应场区域。在包 含反应场区域的流动池内注入反应液后,仅对反应场区域照射光,使固定在该反应场区域内的寡探针末端的光分解活性保护基解离,选择性控制聚合酶的延伸反应的开始。在流动 池内,在基板上以一定间隔配置有多个反应场区域。使固定在可动载台(migration stage) 上的流动池移动相邻的反应场区域的距离的量,照射光,连续进行延伸反应的测定。通过重 复该动作,在流动池内既不使用复杂的流路、也不进行反应液的更换而稳定地测定碱基延 伸反应。发明效果根据本发明,能够实时测定碱基延伸反应而不必使用由复杂的流路构成的流动池 和输送液体机构。此外,由于采用简单的流路体系,因而能够预先防止随着输送液体而在流 路内产生气泡、产生杂质、和漏液等问题;此外,还能够降低流动池制作成本。


图1是表示流动池结构的基本构成的示意图;图2是关于实时碱基延伸反应的控制法的说明图;图3是关于寡探针的化学结构的说明图;图4是关于使用利用照射光的延伸反应控制法的装置构成的说明图;图5是实时延伸反应的流程图。
具体实施例方式实施例公开了一种单分子实时测序装置,其具有具有阻碍核酸延伸反应的光分 解性物质的核酸探针;配置有多个该核酸探针的反应场区域;设有多个该反应场区域的流 路;对前述流路供给用于核酸延伸反应的试剂的试剂供给机构;对目标的反应场区域照射 瞬逝光(Evanescent light)并检测产生的荧光的激发光学系统;对目标的反应场区域照 射使前述光分解性物质分解的光的反应控制光学系统。此外,实施例公开了一种核酸分析装置,其具有核酸分析器件,该器件具有与靶 核酸杂交但不照射UV光则不进行核酸延伸反应的核酸探针、配置有多个与不同的靶核酸 杂交的前述核酸探针的反应场区域、设有多个该反应场区域且能够保持用于核酸反应的试 剂的流路;激发光学系统,其对目标的反应场区域照射瞬逝光并检测产生的荧光;反应控 制光学系统,其对前述目标的反应场区域照射使前述光分解性物质分解的UV光;载台驱动 机构,其使核酸分析器件相对于前述激发光光学系统和前述反应控制光学系统相对移动而 使得能够对目标的反应场区域照射瞬逝光和UV光。此外,实施例公开了一种单分子实时测序方法,准备具有阻碍核酸延伸反应的光 分解性物质的核酸探针和设有多个配置有多个该核酸探针的反应场区域的流路,对前述流 路供给靶核酸和用于核酸延伸反应的试剂,对目标的反应场区域照射使前述光分解性物质 分解的UV光,对前述目标的反应场区域照射瞬逝光,检测产生的荧光,使前述流路相对于 照射前述UV光的反应控制光学系统和产生前述瞬逝光的激发光光学系统进行相对移动, 对不同的反应场区域照射使前述光分解性物质分解的UV光,对前述不同的反应场区域照 射瞬逝光,检测产生的荧光。此外,实施例公开了 其中,光分解性物质为在核酸探针的末端进行修饰的光分解 性保护基。
此外,实施例公开了 其中,光分解性保护基为2-硝基苄基型、癸基苯甲酰甲基 型、或香豆酰基甲基(Coumarinyl Methyl)型物质。此外,实施例公开了 其中,产生荧光增强场的金属结构体对应于各核酸探针配置 在反应区域场。此外,实施例公开了一种试剂,其含有用通过瞬逝光而产生各自不同的荧光的4 色荧光染料标记的四种脱氧核糖核苷酸dATP、dCTP、dTTP、dGTP、和进行核酸延伸反应的酶。此外,实施例公开了 其中,激发光学系统为全反射照射波长420nm SOOnm的范 围的可见光而产生瞬逝光的系统。此外,实施例公开了 其中,反应控制光学系统为照射波长250 400nm的范围的 UV光的系统。此外,实施例公开了 其中,反应控制光学系统对目标的反应区域场照射光后,移 动流路,使不同的反应区域场进入反应控制光学系统的视野。此外,实施例公开了一种反应控制装置,其具有作为测定对象的单一的分子;保 持前述单一分子的金属结构体;规则地配置有前述金属结构体的区域;规则地配置有前述 区域的流路;配置有一条以上前述流路的基板;含有与前述单一分子相互作用的化学物质 的反应溶液;阻碍前述单一分子和前述反应溶液内的化学物质进行化学反应的光分解性物 质;解除前述光分解性物质的阻碍而在局部使前述单一分子和前述反应溶液开始相互作用 的手段;使前述基板移动的手段;对前述流路供给前述反应溶液的手段。此外,实施例公开了 其中,前述单一分子是作为DNA或RNA的核酸,前述单一分子 的保持是利用与固定在前述金属结构体的前述单一分子的互补链的杂交而进行的,前述光 分解性物质是在前述互补链的末端进行修饰的光分解性保护基,解除前述光分解性保护基 的阻碍而使反应开始的手段为照射光,前述反应溶液所含的化学物质为用各自发出不同荧 光的4色荧光染料标记的四种脱氧核糖核苷酸dATP、dCTP、dTTP、dGTP和进行核酸的延伸 反应的酶即聚合酶。此外,实施例公开了 其中,特征为测定前述核酸的延伸反应的手段为利用使用了 波长420nm SOOnm的范围的可见光的全反射照射进行的荧光测定,前述金属结构体的尺 寸小于前述可见光的波长;前述金属结构体通过可见光的照射产生表面等离子体共振从而 使前述金属结构体附近的电场强度增强,来自前述荧光染料的荧光被增强。此外,实施例公开了 其中,解除前述光分解性保护基的手段具有使用波长250 400nm的范围的紫外光、仅对规则地配置有前述结构体的区域的区域选择性照射前述紫外 光的手段。此外,实施例公开了 其中,由仅对规则地配置有前述结构体的区域选择性照射紫 外光所引起的延伸反应完成后,使前述基板移动相邻的区域的间隔的量的手段是利用XY 载台的手段,其具有连续测定前述区域内的延伸反应的手段和对前述基板的荧光分子自动 对焦的手段。此外,实施例公开了 其中,前述光分解性物质为光分解性保护基,其保护基为 2-硝基苄基型,癸基苯甲酰甲基(phenacyl)型,香豆酰基甲基型。此外,实施例公开了 其中,固定在前述金属结构体的前述互补链的序列为用于捕 捉mRNA的po IyT序列。
此外,实施例公开了 其中,进行前述荧光检测的手段是由物镜、陷波滤波器 (notch filter)、分色镜、带通滤波器、聚光透镜、CXD相机构成的。此外,实施例公开了 其中,前述全反射照射是由多个激光器、反射镜、中性滤光片 (neutral-density filter)、λ/4波长板、快门、聚光透镜、棱镜、联轴节油(coupling oil) 构成的。此外,实施例公开了 其中,对前述流路供给前述反应溶液的手段由分注单元、废 液罐和前述基板的间隔物(septa)构成。此外,实施例公开了 其中,前述脱氧核糖核苷酸为AleXa488-dCTP、Cy3_dATP、 Cy5-dCTP 和 Cy5. 5-dCTP。下面,参照附图对发明的上述以及其它新特征和效果进行说明。另外,附图是为理 解发明而使用的,对保护范围并不构成限定。〔实施例〕作为本发明的实施例,下面使用图1对在1个流路配置有多个反应场的流 动池进行说明。在具有透光性的基板105、103间夹入形成有长方形空间部的PDMS 104(polydimethylsilozane 聚二甲基硅氧烷),从而形成流动池。PDMS是一种硅树脂,可 通过在流路模具中注入PDMS的未聚合溶液并使其聚合而形成流路。此外,PDMS在可见光 区域的光吸收极少,因此适合于显微镜下的荧光测定。此外,PDMS由于仅通过范德华力密 合在平滑的基板103表面,因此,仅通过挤压到基板103表面,PDMS即密合到基板上。基板 103中设置有用于注入反应液、洗涤液等试剂的橡胶性的间隔物(septa) 101、102。用注射 针等刺穿该间隔物,可通过手动或自动将目标的液体注入流路内。进而,基板105上直线状 地配置有200个反应场106。相邻的反应场106间的间隔为0. 5mm。此外,反应场106的大 小为Φ0. 5mm,被制成与使用的物镜的最大视野几乎相等的大小。图1的基板107为反应场106放大后的结果,在基板107内,金结构体108以Iym 的间距规则地配置成格子状。此外,在各金结构体108上分别固定有一条寡探针109。尤 其在进行mRNA表达解析的情况下,寡探针109具有dT重复序列。金结构体108为比激发 光的波长小的结构体,本实施例中采用直径80nm的金微粒。金结构体108配置在基板107 上。对金结构体108照射激发光时,通过等离子激元现象,金结构体108附近的电场发生增 强,测得的荧光会增强。等离子激元现象是指光的约束所致的自由电子的集体激发。用于荧光增强的金结构体108包括金字塔状、2个金结构体间夹有绝缘膜的形状 (层叠形状)、类似于领结那样配置有2个三棱柱的形状等。其为金字塔形状时,在其前端 部等配置寡探针。其为层叠形状时,在绝缘膜等配置寡探针。为配置有2个三棱柱的形状 时,在其所夹的空间配置寡探针。此外,作为能够产生定域型表面等离子激元的金属体,已 知有金、银、钼、铝和铜等,作为金结构体108的材质,除金外还可以使用上述金属。此外,表面等离子激元所致的荧光增强现象已知是使用Anal. Chem. to 1. 78, 6238-6M5(非专利文献5)报道的纳米级的银岛结构、Nanotechnology (纳米科技),2007, vol. 18, pp 44017-44021.(非专利文献6)报道的直径数十纳米的球状金微粒。Nano Letters (纳米快报)· 2004,vol. 4,951-961 (非专利文献7)中公开了 接近三棱柱时,其间 的空间内产生强的定域型表面等离子激元。本说明书中,将这些文献作为说明书的一部分 而并入。
接着,使用图2,对使用UV光209的实时碱基延伸反应的控制进行说明。在基 板213内的流路205内,反应液通过间隔物211、212被注入。反应液含有用各不相同的荧 光染料标记的4种核苷酸和聚合酶。各核苷酸分别为AleXa488-dCTP214、Cy3_dATP215、 y5-dCTP216、Cy5. 5-dCTP217。各核苷酸的浓度为200nM。此外,反应液的盐浓度、镁浓度和 PH进行了优化,以使得延伸反应能高效进行。如图1中说明那样,在反应场201、202、203、204内,金结构体207以Iym的间距 规则地配置成格子状。一条寡探针205共价结合在1个金结构体207上。此外,反应开始 前、待解读序列的mRNA206和寡探针205处于杂交的状态。寡探针205的3'末端的核苷酸 中的3' OH标记有作为光分解活性保护基的笼锁化合物220。由于该笼锁化合物220阻碍 靶核酸即mRNA206的互补链的延伸反应,因此即使流动池内充满反应溶液,延伸反应也不 会进行。但是,通过仅对反应场201照射波长260nm的UV光209,使反应场201上的寡探针 205末端的笼锁化合物220解离,能够在任意时间使延伸反应开始。用图3对上述寡探针的化学结构进行说明。本实施例的寡探针301的5'末端用 生物素进行修饰。这是为了利用亲和素-生物素的结合而将寡探针301固定在金结构体 上。此外,5'末端的修饰并不限于生物素,还可以使用利用氨基和马来酰亚胺基、硫醇基和 金的共价键的方法。本实施例中以mRNA的序列解析为例进行了说明,为了与mRNA的3 ‘末端的poly A部选择性杂交,本实施例的寡探针301的碱基序列为poly T序列。此外,寡探针301的3'末端用光分解性保护基进行了修饰。迄今为止已报道了各 种光分解性保护基,但本实施例使用了光分解性保护基中的代表性基团即2-硝基苄基型。 活化本实施例的2-硝基苄基型笼锁化合物的最佳波长为260nm。照射UV光后,光分解性 保护基脱保护,寡探针301变成寡探针303的分子结构。光分解性保护基解离后的寡探针 303中,由于阻碍延伸反应的物质已经解离,因此通过聚合酶而摄入溶液中悬浮的荧光标记 过的核苷酸,从而发生延伸反应。通过该机理,能利用光照射进行延伸反应的控制。用图4对适合上述延伸反应技术的核酸分析装置进行说明。为了激发四种不同的 荧光染料,本实施例的装置具备波长514nm的氩激光器401、波长633nm的HeNe激光器402 这两种激光器。使用2种激光器而非使用4种是为了降低成本,也可以具备四种激光器。 氩激光器401用于激发荧光标记过的核苷酸即AleXa488-dCTP214和Cy3_dATP215,此外, HeNe激光器402用于激发Cy5_dCTP216和Cy5. 5_dCTP217。由氩激光器401和HeNe激光 器402发出的激发光分别被分色镜(dichroic mirror) 405、分色镜406反射,经由中性滤光 片407、4/λ波长板、反射镜408、聚光透镜410、棱镜411射入基板432底面。入射角度为临 界角以上,流动池基板上的荧光染料因全反射照射而被激发。这里,利用全反射照射的优点 在于,反应溶液中游离的荧光染料并非被全部激发,而是仅从基板起延Z方向深度约150nm 附近区域能够被局部照射到。因此,与通常的落射激发法相比,能显著减少会成为噪音的背 景光。进而,照射于金结构体的激发光产生表面等离子激元共振,在金结构体大小附近的区 域内能够获得数十倍的荧光增强效果。发出的荧光经由物镜412、陷波滤波器413、带通滤 波器440而到达分色镜414。直线传播的荧光进一步被分色镜416分光,分别通过带通滤 波器417、441,通过聚光透镜415、419而会聚于C⑶相机418、420的成像面。同样地,被分 色镜414反射的荧光被分色镜421分光,分别通过带通滤波器442、443,通过聚光透镜424、422而会聚于CXD相机425、423的成像面。通过这种操作,能够同时取得四种不同的荧光染 料的荧光图像。通过控制PC似6处理各CXD相机418、420、423、425中取得的信号而使其转 换为mRNA的碱基序列。另外,上述实施例中使用全反射照射激发荧光染料,但也可以在流动池基板上设 置开口小于激发光波长的纳米开口,通过对该开口照射激发光而产生的瞬逝光来激发荧光 染料。延伸反应的控制通过控制PC似6来进行。控制PC似6使UV激光器444的快门445 开放。UV光经由带通滤波器446、经过与前述瞬逝光照明相同的光路照射基板432的底面。 本实施例中,UV激光器444的照射和荧光染料的激发使用了同一光学系统。但是,UV激光 器的照射法本身并不限定于瞬逝光照明,既可以是通常使用的落射法,也可以是斜光照明法。如前面所说明那样,随着UV激光的照射,光保护基解离,核酸的延伸反应自动进 行。在某些反应场中延伸反应完成后,控制PC驱动XY载台驱动用伺服电动机433,使下一 个反应场移动至物镜412的视野内。进而,控制PC在金结构体的散射光存在下驱动自动对 焦装置427而将焦距对准流动池壁面的荧光分子。通过重复该动作,能够对配置在流动池 内的200个反应场依次重复实时测定碱基延伸反应。此外,基板432内可制作多个流路,可 通过分注单元4 对各个流路独立分注反应液。此外,废液通过间隔物431而储存在废液 罐429中。此外,为了使实时碱基延伸反应稳定而附加了温度调整单元450。图5表示实时反应的流程。在流动池中注入含有4种荧光脱氧核苷酸和聚合酶的 反应溶液。接着,驱动XY载台进行测定的反应场的定位。接着,基于金结构体的散射图像对 流动池壁面进行自动对焦。将焦距对准流动池壁面后,开始由CCD相机获取连续图像。通过 UV激光的照射,光分解活性保护基解离,实时延伸反应开始。60秒左右的实时反应结束后, 停止照射UV激光,停止获取图像。进而,停止氩激光器、He-Ne激光器的照射,使XY载台移 动反应场的间隔的量,将同一流动池内尚未发生延伸反应的反应场定位于物镜正下方。对 1个流动池重复200次该动作,从而通过对200个反应场依次照射UV而能够简便地实现实 时碱基延伸反应且无需更换反应液。此外,流动池内的反应场数量不必限定于本实施例中 所述的200个。此外,基板上所形成的流动池的数量也没有特别限定。另外,上述实施例中通过驱动载台而将目标的反应场配置到激发光照射区域、UV 光照射区域,但也可以不移动载台而是通过控制光学系统而仅对目标的反应场照射激发 光、UV光。符号说明101,102,211,212,430,431 间隔物103,105,107,213,432 基板104 PDMS106,201,202,203,204 反应场108,207 金结构体109,301,303 寡探针206 mRNA214 Alexa488-dCTP214
215 Cy3-dATP216 Cy5-dCTP217 Cy5. 5-dCTP220 笼锁化合物302光分解活性保护基401氩激光器402 He-Ne 激光器403,404,417,440,442,443,446 带通滤波器405,406,414,416,221 分色镜407 ND 滤光片408 反射镜409 λ/4 波长板410,415,419,422,424 聚光透镜413 陷波滤波器418,420,423,425 CCD 相机426 控制 PC428 分注单元429 废液罐433 XY载台驱动用伺服电动机445 快门450温度调整单元
权利要求
1.一种单分子实时测序装置,其特征在于,具有核酸探针,其具有阻碍核酸延伸反 应的光分解性物质;反应场区域,其配置有多个该核酸探针;流路,其设有多个该反应场区 域;试剂供给机构,其对所述流路供给用于核酸延伸反应的试剂;激发光学系统,其对目标 的反应场区域照射瞬逝光并检测产生的荧光;反应控制光学系统,其对目标的反应场区域 照射使所述光分解性物质分解的光。
2.根据权利要求1所述的单分子实时测序装置,其特征在于,所述光分解性物质为在 所述核酸探针的末端进行修饰的光分解性保护基。
3.根据权利要求2所述的单分子实时测序装置,其特征在于,所述光分解性保护基为 2-硝基苄基型、癸基苯甲酰甲基型、或香豆酰基甲基型。
4.根据权利要求1所述的单分子实时测序装置,其特征在于,产生荧光增强场的金属 结构体对应于各核酸探针被配置在所述反应区域场。
5.根据权利要求1所述的单分子实时测序装置,其特征在于,所述试剂含有用通过 所述瞬逝光而产生各自不同的荧光的4色荧光染料所标记的四种脱氧核糖核苷酸dATP、 dCTP、dTTP、dGTP,和进行核酸延伸反应的酶。
6.根据权利要求1所述的单分子实时测序装置,其特征在于,所述激发光学系统为全 反射照射波长420nm SOOnm的范围的可见光而产生瞬逝光的系统。
7.根据权利要求1所述的单分子实时测序装置,其特征在于,所述反应控制光学系统 为照射波长250 400nm的范围的UV光的系统。
8.根据权利要求1所述的单分子实时测序装置,其特征在于,所述反应控制光学系统 对目标的反应区域场照射光后,移动所述流路,使不同的反应区域场进入所述反应控制光 学系统的视野。
9.一种核酸分析装置,其特征在于,具有核酸分析器件,其具有与靶核酸杂交但不照 射UV光则不进行核酸延伸反应的核酸探针、配置有多个与不同的靶核酸杂交的所述核酸 探针的反应场区域、设有多个该反应场区域且能够保持用于核酸反应的试剂的流路;激发光学系统,其对目标的反应场区域照射瞬逝光并检测产生的荧光;反应控制光学系统,其对所述目标的反应场区域照射使所述光分解性物质分解的UV光;载台驱动机构,其使核酸分析器件相对于所述激发光光学系统和所述反应控制光学系 统相对移动而使得能够对目标的反应场区域照射瞬逝光和UV光。
10.根据权利要求9所述的核酸分析装置,其特征在于,所述核酸探针的末端用光分解 性保护基进行了修饰。
11.根据权利要求10所述的核酸分析装置,其特征在于,所述光分解性保护基为2-硝 基苄基型、癸基苯甲酰甲基型、或香豆酰基甲基型。
12.根据权利要求9所述的核酸分析装置,其特征在于,产生荧光增强场的金属结构体 对应于各核酸探针被配置在所述反应区域场。
13.根据权利要求9所述的核酸分析装置,所述试剂含有用通过所述瞬逝光而产生各 自不同的荧光的4色荧光染料所标记的四种脱氧核糖核苷酸dATP、dCTP、dTTP、dGTP,和进 行核酸延伸反应的酶。
14.根据权利要求9所述的核酸分析装置,其特征在于,所述激发光学系统为全反射照射波长420nm 800nm的范围的可见光而产生瞬逝光的系统。
15.根据权利要求9所述的核酸分析装置,其特征在于,所述反应控制光学系统为照射 波长250 400nm的范围的UV光的系统。
16.根据权利要求9所述的核酸分析装置,其特征在于,所述反应控制光学系统对目标 的反应区域场照射光后,移动所述流路,使不同的反应区域场进入所述反应控制光学系统 的视野。
17.一种单分子实时测序方法,其特征在于,准备核酸探针和设有多个反应场区域的流 路,其中,所述核酸探针具有阻碍核酸延伸反应的光分解性物质,所述反应场区域配置有多 个该核酸探针,对所述流路供给靶核酸和用于核酸延伸反应的试剂,对目标的反应场区域照射使所述光分解性物质分解的UV光,对所述目标的反应场区域照射瞬逝光,检测产生的荧光,使所述流路相对于所述照射UV光的反应控制光学系统和所述产生瞬逝光的激发光光 学系统相对移动,对不同的反应场区域照射使所述光分解性物质分解的UV光,对所述不同的反应场区域照射瞬逝光,检测产生的荧光。
18.根据权利要求17所述的单分子实时测序方法,其特征在于,所述光分解性物质为 在所述核酸探针的末端进行修饰的光分解性保护基。
19.根据权利要求2所述的单分子实时测序方法,其特征在于,所述光分解性保护基为 2-硝基苄基型、癸基苯甲酰甲基型、或香豆酰基甲基型。
20.根据权利要求17所述的单分子实时测序方法,其特征在于,产生荧光增强场的金 属结构体对应于各核酸探针被配置在所述反应区域场。
21.根据权利要求17所述的单分子实时测序方法,其特征在于,所述试剂含有用通 过所述瞬逝光而产生各自不同的荧光的4色荧光染料所标记的四种脱氧核糖核苷酸dATP、 dCTP、dTTP、dGTP,和进行核酸延伸反应的酶。
22.根据权利要求17所述的单分子实时测序方法,其特征在于,所述瞬逝光通过全反 射照射波长420nm 800nm的范围的可见光而产生。
23.根据权利要求17所述的单分子实时测序方法,其特征在于,所述UV光是波长在 250 400nm的范围的UV光。
全文摘要
本发明的目的涉及在基板内的目标区域内选择性控制延伸反应。本发明将在其末端配置有笼锁化合物的寡探针固定在基板内的反应场区域。在包含反应场区域的流动池内注入反应液后,仅对反应场区域照射光,使固定在该反应场区域内的寡探针末端的光分解活性保护基解离,选择性控制聚合酶的延伸反应的开始。在流动池内,在基板上以一定间隔配置有多个反应场区域。使固定在可动载台上的流动池移动相邻的反应场区域的距离的量,照射光,连续进行延伸反应的测定。通过重复该动作,在流动池内既不使用复杂的流路、也不进行反应液的交换而稳定地测定碱基延伸反应。
文档编号G01N37/00GK102066548SQ20098012348
公开日2011年5月18日 申请日期2009年6月8日 优先权日2008年6月23日
发明者加藤宏一, 芳贺孝信, 隈崎修孝, 高桥智 申请人:株式会社日立高新技术

  • 专利名称:发动机气门凡尔线至杆端面尺寸检具的制作方法技术领域:本实用新型涉及一种检测工具,特别是关于一种柴油机气门检具。背景技术:柴油发动机是内燃机车的动力装置,它通过气门在气缸中上下运动,迫使气门的阀盘与阀座进行密贴和开启,从而实现向发动
  • 专利名称:平板显示器测试装置的制作方法技术领域:本发明涉及一种平板显示器的测试装置,特别是有关于一种具有垂直测试机台的测试装置。背景技术:随着平板显示器的制造日益精良,对平板显示器的光学测试和电学测试越来越重 要。现有的测试手段,是将光学测
  • 专利名称:一种用于检测特定工件的检具的制作方法技术领域:本实用新型涉及一种用于检测特定工件的检具,具体的说,是一种用于检测蜗轮蜗杆减速器壳体的检具。 背景技术:—种蜗轮蜗杆减速器壳体见图5 图6,其结构包括本体100,所述本体100的左、
  • 专利名称:一种红外电子液位计的制作方法技术领域:本实用新型涉及一种红外电子液位计,属电子检测技术领域。 背景技术:现有液位计主要有超声波液位计、雷达液位计等,这些液位计精度较高,但价格昂 贵,不适合于普遍应用;传统的浮球液位计虽然价格便宜,
  • 专利名称:一种摩托车智能检测仪的制作方法技术领域:本实用新型涉及一种电子检测设备,尤其涉及一种摩托车智能检测仪。 背景技术:当摩托车因为电池缺电而无法使用电启动时,摩托车维修人员头痛的是无法很快 准确判断问题的根源在哪里,有些修理人员使用万
  • 专利名称:热成像车底藏人检查装置的制作方法技术领域:本实用新型属于光电成像技术领域,具体是一种利用中红外热成像技术对通关车辆车底是否藏人进行自动检测的检查装置,适用于准确性和可靠性要求较高的口岸车道安全检测中。背景技术:在口岸旅检通道中,热
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12