山东科威数控机床有限公司铣床官方网站今天是:2025-05-16切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

用于确定目标物体的距离和方向的装置的制作方法

时间:2025-05-16    作者: 管理员

专利名称:用于确定目标物体的距离和方向的装置的制作方法
技术领域
本发明从一种根据权利要求I的前序部分所述的用于确定目标物体的距离和方向的装置出发。此外,本发明还涉及一种用于确定目标物体的距离和方向的方法。
背景技术
为了确定目标物体的距离通常使用发射信号以及接收由目标物体反射的信号回波的传感器。根据从发射时刻至回波接收的信号传播时间确定目标物体的距离。除目标物体的距离以外,通常也对目标物体所在的方向感兴趣。尤其是对于汽车领域中的应用而言,关于目标物体的方向的信息如同距离信息那样重要。在机器人技术中(例如用于近场导航中的障碍物识别),目标物体的距离信息和方向信息也是非常重要的。
为了确定目标物体的方向,可以使用三角测量方法,其中由至少两个传感器距目标物体的所测量的距离来确定目标物体的方向。三角测量方法的缺点主要在于在所述场景中存在多个反射器的情况下的对应问题以及距离估计和位置的多值性。所述多值性通常仅仅可以通过多次测量由不同的位置和所谓的跟踪方法来解决。替代地,通常也如此程度地限制单个传感器的发射特性和/或接收特性,使得传感器的探测范围能够实现障碍物的横向定位或垂直定位。在此不利的是,为了实现在实践中重要的定位精度必须极大地限制发射特性和/或接收特性,从而需要大量的传感器来监视探测范围。除用于方向确定的三角测量方法以外,尤其是也可以使用波束成形方法。在主动波束成形方法中,使多个并行主动发射器的相位精确地彼此协调,以便控制所发射的信号的叠加的主瓣的射出角。在被动波束成形方法中,使用多个并行记录的接收器的相位信息来重构所接收的信号的入射角。在很多用于波束成形的方法中,多个并行主动发射器(或者在被动方法中多个并行记录的接收器)的阵列的大小、尤其是阵列的直径是重要的,因为阵列的大小不仅确定所发射的信号的延展而且确定所接收的信号的角度分离能力。此外,阵列元件(即,被动波束成形中的接收器或主动波束成形中的发射器)之间的距离(元件距离)是重要的。在大多波束成形方法中,元件距离应小于或等于信号的波长的一半,因为否则会出现所谓的栅瓣,即发射特性和接收特性中主瓣量级上的旁瓣,其会导致探测中的多值性。通过元件距离应小于或等于信号的波长的一半限制了可用的阵列元件的大小。因此,声波和超声的主要实际应用目前在医疗技术中或水下,因为在那里介质中更大的波长也允许更大的元件距离。此外,在水中和在组织中介质与元件的耦合明显比在空气中更有利。空气中的应用(例如,用于汽车领域中或机器人技术中的障碍物识别)由于所需的较小元件距离根据所使用的频率需要非常小的阵列元件,例如在IOOkHz时具有小于I. 7mm的直径。由于发射器和接收器与介质(空气)的耦合较差,在发射器的情况下需要大的发射器面积或者在接收器的情况下需要小的质量/大的面积。然而,由于阵列元件之间所需的较小的元件距离,对于各个阵列元件不可实现大的面积。
例如在US-A 2008/0165620中描述了一个发射器和多个接收器布置在一个阵列中的装置。然而,这些接收器仅仅有条件地适于汽车领域中的应用,因为所描述的薄膜压电发射器易受机械应力影响。此外,与三角测量方法相结合地使用在US-A 2008/0165620中描述的装置。这与波束成形方法相比允许明显更大的发射器和接收器。因此,由此得出,在US-A2008/0165620中描述的传感器不适于波束成形方法。例如在FR-A 2817973和DE-A 102004050794中描述了用于求得目标物体的距离和方向的波束成形方法。在FR-A 2817973中描述的方法的缺点在于基于均匀的线性阵列,尤其是发射的功能与接收的功能不分离。在DE-A 102004050794中描述的方法中,暗示基于大的发射器,以便实现窄的发射器特性。尽管在所述专利中记载了主动波束成形,但不仅大的发射器面而且窄的发射器特征与作为主动的发射器阵列的应用相矛盾。此外,所使用的两个发射频率与在权利要求中描述的方案相矛盾
发明内容

根据本发明的用于确定目标物体的距离和方向的装置包括一个发射器和至少两个接收器元件,所述至少两个接收器元件用于接收由发射器发射并且由所述目标物体反射的信号,其中所述接收器元件设置成线性阵列、两个彼此以一个角度设置的线性阵列、包围发射器的形成圆的阵列或者二维阵列,其中所述阵列的直径可以明显大于所述信号的波长的一半,并且各个接收器元件分别具有各自的面,所述面的高度或者直径最大相应于所述信号的波长的一半,并且分离的发射器具有大于所述信号的波长的一半的高度或者直径。在一个替代的构型中,根据本发明的用于确定目标物体的距离和方向的装置包括至少两个发射器元件和一个接收器,所述接收器用于接收由发射器元件发射并且由目标物体反射的信号,其中所述发射器元件设置成线性阵列、两个彼此以一个角度设置的线性阵列、包围接收器的形成圆的阵列或者二维阵列,其中所述阵列的直径可以明显大于所述信号的波长的一半,并且所述发射器元件分别具有一个面,所述面的高度或者直径最大相应于所述信号的波长的一半,并且分离的接收器具有大于所述信号的波长的一半的高度或者直径。在两种装置中重要的是,用于波束成形的发射功能与接收功能分开。这样一方面扩宽了近场探测范围,而另一方面允许发射器和接收器组件的特定于任务的尺寸设计。不同的实施例遵循相同的原理。在本发明的范畴内,“直径”可以理解为圆的直径或椭圆的长轴。高度可以理解为在基底与和与基底相对置的点之间具有与基底最大距离的路程。三角形中的高度例如是基底和与底座相对置的尖端之间的路程。在方形或矩形中,高度相应于侧边的长度。所使用的发射器和接收器可以具有任何任意的横截面。然而,优选的是,发射器和接收器具有圆形的横截面或方形的横截面。与在同时用作发射器和接收器的所谓收发器中不同,借助根据本发明的装置也可以探测与所述装置紧邻的目标物体。这在收发器中是不可能的,因为在所述收发器中首先发射信号并且当进行发射的膜片已经振动衰减时所述收发器才能接收到达的信号。例如在超声传感器中,所述时间段通常导致20cm的最小距离,从所述最小距离起可以测量目标物体的距离。
具有一个发射器和多个接收器元件或者一个接收器和多个发射器元件的构型允许一方面探测与所述装置紧邻的目标物体而另一方面在没有多值性的情况下借助波束成形方法——例如借助被动Bartlett波束成形或Capon波束成形来确定目标物体的方向。在具有一个接收器和多个发射器的实施方式中,通过发射器元件的小于信号的波长的一半的面可以实现各个发射元件的有效距离,其最大相应于信号的波长的一半。有效距离在此是发射器元件的中点的距离。各个发射器元件的最大相应于信号的波长的一半的有效距离能够实现使用较大数量的发射器元件。这导致改善的信噪比。在具有一个发射器和多个接收器的实施方式中,通过接收器元件的小于信号的波长的一半的面可以实现各个接收器元件的有效距离,其最大相应于信号的波长的一半。有效距离在此是接收器元件的中点的距离。各个接收器元件的最大相应于信号的波长的一半的有效距离能够实现使用较大数量的接收器元件。这同样导致改善的信噪比。根据本发明的装置例如可以用作机动车上的距离传感器。其通常设置在机动车的 前保险杠和/或后保险杠的区域中。基于保险杠中的定位需要的是,所述装置相对于机械作用也是稳定的。传感器尤其是不会例如由于落石或在所谓的停车损坏(其中出现保险杠区域中的碰撞)受到损伤。为了实现这些,特别优选地使用超声发射器作为发射器。在此,基于压电的发射器尤其适合。也优选使用压电元件作为接收器元件,其将到达的信号转换成电流。为了在使用一个发射器和至少两个接收器元件时在使用波束成形方法的情况下避免多值性的探测,需要的是,接收器元件分别具有最大所发射的信号的波长的一半的高度或者直径。为了检测目标物体的方向,使用至少两个接收器元件。然而,对于用于仅仅横向分辨率的线性阵列,更大数量的接收器元件、例如至少五个接收器元件是优选的,对于用于垂直和横向分辨率的二维阵列,尤其是至少十五个接收器元件是优选的。在本发明的一个实施方式中,接收器元件设置为线性阵列。通常,接收器元件在此与发射器相邻。然而也可能的是,线性阵列例如在中部中断并且发射器位于所述位置上。此外可能的是,通过线性阵列的主线外部的附加接收器元件来补充线性阵列。当接收器元件设置为两个彼此以一个角度设置的线性阵列时,它们例如可以沿着直角三角形的直角边设置。所述发射器在此情况下优选定位在三角形的尖端内。替代地,也可能的是,例如两个线性阵列交叉并且所述发射器定位在交叉的线性阵列的交点中。除直角交叉或布置为直角三角形的直角边以外,彼此以一个角度设置的线性阵列也可以彼此以任何任意其他角度设置。然而,优选以直角设置。替代接收器元件的线性布置,也可能的是,接收器元件例如设置为二维阵列并且包围发射器。在此情况下,例如可能的是,发射器居中地定位在接收器元件之间,并且接收器元件例如圆形地包围发射器。接收器元件在此可以单行地或多行地设置。在发射器不是圆形的情况下,阵列的构型取决于发射器的横截面。接收器元件例如在发射器具有方形的横截面的情况下同样形成方形的阵列。在可以具有任何任意形状(例如,圆形、方形或任意其他形状)的二维阵列的装置中,可能的是,发射器设置在接收器元件旁边。在所述情况下,接收器元件形成与发射器分开的阵列。然而,在此情况下在后续的信号处理中需要考虑阵列外部的发射器的位置来确定目标物体的距离和方向。
当发射器的位置在阵列以外时,也可能的是,所述装置包括至少两个发射器。例如可能的是,发射器定位在由接收器元件形成的阵列的相对置的侧上。这具有如下优点可以从不同方向来检测周围环境并且由此可以更精确地检测周围环境,而不必移动传感器单元。替代地,也可以将发射器与至少两个阵列相组合。当替代至少一个发射器和由接收器元件构成的阵列使用至少一个接收器和一个由接收器元件构成的阵列时,可能的是,以与以上对于一个发射器和一个由接收器元件构成的阵列所描述的类似方式布置接收器和发射器元件。在此情况下,发射器元件分别占据接收器元件的位置并且接收器占据发射器的位置。为了借助根据本发明的装置来确定目标物体的距离和方向,由至少一个发射器发射信号,所述信号由目标物体反射,并且所反射的回波由接收器元件接收作为输入信号。根据任意波束成形方法由输入信号计算目标物体的距离和方向。 接收器波束成形方法实施由接收器元件接收的信号的空间滤波。入射的回波在物理上叠加成可以由在空间上分离的接收器元件接收的各个信号。所接收的信号随后经受在电子方面不同的放大因数或衰减因数,取决于想要在哪个方向上控制矩阵。在被动接收器波束成形方法的情况下,在此通常以软件技术来遍历不同的接收方向,而基于所接收的回波的数量的估计的其他方法也可以直接估计不同的方向。在两种情况下,考虑接收器元件的相对位置和所发射的脉冲的波长。在其最简单的典型形式中,复杂的重点用于接收器元件的信号,使得源自所期望的“视向”的信号相长地干涉,而来自其他方向的信号相消地干涉。发射器波束成形方法相应起作用,但相反。在所述情形中,在所期望的“视向”上由发射器元件发射的信号相加,而来自其他方向的信号彼此抵消。由此,视向上的目标物体与其他方向上的目标物体相比提供更强的信号。在用于确定目标物体的距离和方向的主动方法中,使用一个由多个发射器元件构成的阵列和至少一个分离的接收器。所述系统允许感测从Ocm的距离起的目标物体。然而,为了障碍物探测,扫描整个周围环境,由此根据扫描分辨率提高探测时间,即使不进行用于位置确定的跟踪。与此不同地,在被动的超声阵列中信号由至少一个发射器发送并且由一个接收器阵列接收。由此,可以借助仅仅一个所发射的超声脉冲在反射信号的障碍物方面检测整个周围环境。分离的发射器和接收器元件的根据本发明的设计又具有改善的近场探测的优点,然而附加地允许发射器和接收器元件的特定于任务的尺寸设计。根据本发明的装置例如可以用作机动车中的距离传感器或者也可以用于机器人技术的近场识别中的障碍物识别。这例如尤其在无驾驶员的运输系统中是令人感兴趣的。


在附图中示出并且在以下说明中更详细地阐述本发明的实施例。附图示出图I至3 :具有一个发射器和设置为线性阵列的多个接收器的装置;图4至6 :具有一个发射器和多个接收器的装置,这些接收器设置为彼此以一个角度设置的线性阵列,代表具有主轴线以外的任意附加元件的线性阵列,图7至9 :具有一个发射器和设置为包围发射器的阵列的多个接收器元件的装置,图10至13 :具有一个发射器和多个接收器的装置,这些接收器在所述发射器旁边设置为二维阵列, 图14 :用于被动阵列的方法流程图,图15 :用于主动阵列的方法流程图。
具体实施例方式在图I至3中示出了具有一个发射器和多个接收器元件的装置,它们设置为线性 阵列。所述装置包括一个发射器I和至少两个一在这里示出的实施方式中一在图I中八个接收器元件3、在图2中十个接收器元件3以及在图3中六个接收器元件3。接收器元件3设置为线性阵列,即在一行中并排地设置。在图I中示出的实施方式中,发射器I中断由接收器元件3形成的阵列并且因此形成线性阵列的一部分。根据本发明,所述发射器I具有大于信号的波长的一半的高度或者直径。与此相对地,所述接收器3具有最大相应于信号的波长的一半的高度或者直径。在根据图I的实施方式中,发射器I和接收器元件3构造有圆形的横截面,使得在这里直径是主要参量。与在图I中示出的实施方式不同,在图2中示出的实施方式中,发射器I不是线性阵列的一部分,而是设置在由接收器元件3形成的线性阵列旁边。发射器I与接收器元件3之间的距离的大小可以是任意的,然而不应超过所发射的信号或者其回波的有效范围。优选的是,发射器I尽可能靠近地定位在接收器元件3处。在图2中示出的实施方式中,发射器I和接收器元件3也具有圆形的横截面。在图3中示出的实施方式与此不同。在所述情况下,所述装置相应于在图2中示出的装置,然而发射器I和接收器3分别具有方形的横截面。在此情况下,对于发射器I和接收器元件3的大小而言,高度是主要参量。高度在此相应于发射器I或者接收器元件3的方形横截面的边长。在图4至6中示出了具有一个发射器I和多个接收器3的装置,其中接收器元件3形成两个彼此以一个角度设置的线性阵列。在图4中示出的实施方式中,接收器元件3形成两个线性阵列,这两个线性阵列分别在其中心相交。通过接收器元件3形成的两个线性阵列的交点由发射器I占据。除在这里示出的每三个接收器元件3在一侧与接收器I相邻的实施方式以外,接收器元件的数量也可以变化。例如也可能的是,每两个、四个或更多个接收器元件3与接收器I相邻。在图5和6中示出的实施方式中,两个彼此以一个角度设置的由接收器元件3形成的线性阵列形成一个直角三角形的直角边。在图5中的构型中,所述三角形在此以尖端竖立,相反在图6中示出的实施方式中一个线性阵列水平地延伸而另一个线性阵列与其呈直角垂直地延伸。发射器I分别定位在通过线性阵列形成的三角形的尖端中。除在图4至6中示出的线性阵列彼此以一个直角设置的实施方式以外,线性阵列也可以彼此以任何任意其他角度设置。然而,以直角设置是优选的。在图7至13中示出了具有二维阵列的构型。在图7至9中的实施方式中,发射器I在此分别由接收器元件3包围,相反在根据图10至13的实施方式中发射器I与接收器元件3相邻。
在图7中示出的实施方式中,发射器I形成中心,其由接收器元件3环形地包围。在图8中示出的实施方式中情况也是如此,但与在图7中示出的实施方式不同地在图8中示出的实施方式中接收器元件3形成两个同心环。具有多于两个由接收器元件3形成的同心环的装置也是可能的。根据阵列元件的形状和构型,不同的阵列设计可以导致密封的包装。例如当接收器元件3具有圆形的横截面(如在图7和8中的情况)时,圆形的包装可以是更有利的,而在方形的横截面或矩形的横截面的情况下规则的包装是更有利的,例如在图9中示出的那样。在此情况下,发射器I也由接收器3包围,其中接收器根据图9中的示图单行地设置。然而,在这里也可考虑在发射器I的每一侧上设置多于仅仅一行的接收器元件3。在图10至13中示出的发射器I设置在由接收器元件3形成的阵列旁边的实施方式中,图10示出如下实施方式在较高的水平分辨率的情况下提供减小的垂直分辨率。这归因于在水平方向上设有完整的线性阵列,而仅仅设有三个定位在线性阵列旁边的传感器。三个定位在线性阵列旁边的接收器元件3在此形成三角形。在图11中示出 的实施方式提供了在尽可能最少数量的接收器元件3的情况下旋转对称的接收特性。在所述情况下由接收器元件3形成的阵列是圆形的。在图12中示出的装置也提供轴线对称的接收特性,然而与如在图11中示出的圆形装置的情况下相比需要更多数量的接收器元件3。根据所使用的波束成形方法,根据图13的装置也可以实现图12中的装置实现的角度分离能力。然而在这里接收器3的数量与完全占用的阵列(如其在图12中示出的那样)相比明显减少。在图13中示出的装置也称作所谓的最小冗余阵列,其根据所使用的波束成形方法具有与在图12示出的实施方式类似的角度分离能力,然而信号/噪声比更差。在图2、3、5、6和10至13中示出的实施方式中可以任意选择发射器I的位置,但在所述情况中在后续的信号处理中必须考虑发射器I的位置。也可能的是,在图2、3、5、6和10至13中不出的实施方式中使用多于仅仅一个发射器。使用多于一个发射器允许从不同的方向检测周围环境。在图4至13中示出的装置的优点是除目标物体的水平的/横向的角度定位以外也可以求得垂直的角度位置。为了改善信噪比,有利的是提高接收器元件3的数量。在发射器I集成到由接收器元件3形成的阵列中时,限制了使用可以根据相应的应用优化角度分离能力和信噪比的有效矩阵设计的可能性。借助例如在图10至13中示出的具有侧向定位在由接收器3形成的阵列旁边的发射器I的装置来实现没有这样的附加条件的优化。替代分别设有一个发射器I和一个由多个接收器元件3构成的阵列的所示实施方式,也可能的是,分别设有一个接收器和一个由多个发射器元件构成的阵列。在此情况下,接收器分别占据在图I至13中示出的发射器I的位置而由发射器元件形成的阵列占据在图I至13中示出的接收器元件的位置。在图14中示出了具有分离的发射器的被动超声阵列的结构。在图14中示出的结构将较大的有效范围与近场中降低的“失明”的优点组合。尤其是,对于被动超声阵列而言有利的是,可以借助仅仅一个所发射的超声脉冲在反射超声的障碍物方面检查整个周围环境。
为了检测周围环境,首先由数字信号处理器11向发射器I发送一个信号。根据所述信号,由发射器发出超声脉冲I。同时,控制数字接收系统13。由此激活数字接收系统13的模拟数字转换。由周围环境中的目标物体反射的由发射器I发射的超声脉冲的回波由接收器元件3接收。接收到的信号被转发给数字接收系统13并且被转换成数字信号。所述数字信号被转发给数字信号处理器11。在数字信号处理器11中,借助于波束成形方法由并行接收的信号的高频采样的相位信息确定目标物体的距离和方向。所获得的结果例如通过输出装置15输出。除输出装置15以外或者作为输出装置15的补充,也可能的是,将在数字信号处理器11中求得的数据转发给例如可以处理这些数据的其他应用。尤其是在机器人技术的应用中例如常用的是,将在数字信号处理器11中确定的数据转发给机器人的控制单元,其中控制单元使用这些数据来控制机器人。
在图15中示出了具有分离的传感器的主动超声阵列的结构。与在图14中示出的被动超声阵列不同,在主动超声阵列中设有一个接收器19和一个由多个发射器兀件17构成的阵列。为了检测所述装置的周围环境,发射器元件17由数字信号处理器11控制,以便发射超声脉冲。在此可能的是,发射器元件17发出分别具有不同相位的信号,使得在信号的叠加中可以调整所发射的能量(即波束成形)。可以有针对性地朝一个方向发送信号或顺序地扫描周围环境寻找障碍物,其方式是,相继地朝不同的方向发送多个发射脉冲。同时,也通过数字信号处理器11激活接收器19。由接收器19接收的信号由数字接收系统13转换成数字信号。这些数字信号随后被提供给数字信号处理器11。现在由信号的传播时间得出距离,并且由所选择的发射器阵列的辐射特性得出方向。所述数据随后又可以通过输出装置15显示和/或用于其他方法。由于由发射器元件17顺序地发射信号,在图15中示出的实施方式具有如下缺点需要较高的探测时间,以便探测整个周围环境。因此优选的是,使用如在图14中示出的具有一个发射器I和多个接收器元件3的装置。
权利要求
1.用于确定目标物体的距离和方向的装置,其包括一个发射器(I)和至少两个接收器元件(3),所述至少两个接收器元件用于接收由所述发射器(I)发射并且由所述目标物体反射的信号,其特种在于,所述接收器元件(3)设置成线性阵列、两个彼此以一个角度设置的线性阵列、包围所述发射器(I)的形成圆的阵列或者二维阵列,其中,所述阵列的直径可以大于所述信号的波长的一半,并且各个接收器元件(3)分别具有各自的面,所述面的高度或者直径最大相应于所述信号的波长的一半,并且分离的发射器(I)具有大于所述信号的波长的一半的高度或者直径。
2.根据权利要求I所述的装置,其特征在于,所述接收器元件(3)设置为二维阵列并且包围所述发射器(I)。
3.根据权利要求I所述的装置,其特征在于,所述发射器(I)设置在所述接收器元件(3)芳边。
4.根据权利要求I至3中任一项所述的装置,其特征在于,所述装置包括至少两个发射器(I),从而能够从多个方向向一个场景发射超声。
5.根据权利要求I至4中任一项所述的装置,其特征在于,所述装置包括至少两个被动阵列,从而能够从多个位置探测所反射的回波。
6.根据权利要求4所述的装置,其特征在于,所述发射器(I)定位在由所述接收器(3)形成的阵列的不同侧上。
7.用于确定目标物体的距离和方向的装置,其包括至少两个发射器元件(17)和一个接收器(19),所述接收器用于接收由所述发射器元件(17)发射并且由所述目标物体反射的信号,其特征在于,所述发射器元件(17)设置成线性阵列、两个彼此以一个角度设置的线性阵列、包围所述接收器的形成圆的阵列或者二维阵列,其中,所述阵列的直径可以大于所述信号的波长的一半,并且所述发射器元件(17)分别具有一个面,所述面的高度或者直径最大相应于所述信号的波长的一半,并且分离的接收器(19)具有大于所述信号的波长的一半的高度或者直径。
8.根据权利要求6所述的装置,其特征在于,所述发射器元件(17)设置为二维阵列并且包围所述接收器(19)。
9.根据权利要求I所述的装置,其特征在于,所述接收器(19)设置在所述发射器元件(17)芳边。
10.根据权利要求7至9中任一项所述的装置,其特征在于,所述装置包括至少两个接收器(19),从而能够在多个位置处探测所反射的回波。
11.根据权利要求7至10中任一项所述的装置,其特征在于,所述装置包括至少两个主动阵列,从而能够从多个方向向一个场景发射超声或者附加地以多个频率并行地发射超声。
12.用于确定目标物体的距离和方向的方法,其中,至少一个发射器(I;17)发射一个信号,所述信号由所述目标物体反射,所反射的回波作为输入信号由接收器元件(3 ;19)接收,以及由所述输入信号通过波束成形方法计算所述目标物体的距离和方向。
13.根据权利要求I至6中任一项所述的装置或根据权利要求7至11中任一项所述的装置的应用,用作机动车中的距离传感器或者用于机器人技术中的近场识别中的障碍物识别或者用于介质空气中的障碍物识别。
全文摘要
本发明涉及一种用于确定目标物体的距离和方向的装置,其包括一个发射器(1)和至少两个接收器元件(3),所述至少两个接收器元件用于接收由所述发射器(1)发射并且由所述目标物体反射的信号,其中,所述接收器元件(3)设置成线性阵列、两个彼此以一个角度设置的线性阵列、包围所述发射器(1)的形成圆的阵列或者二维阵列,其中,所述阵列的直径可以大于所述信号的波长的一半,并且各个接收器元件(3)分别具有各自的面,所述面的高度或者直径最大相应于所述信号的波长的一半,并且分离的发射器(1)具有大于所述信号的波长的一半的高度或者直径。
文档编号G01S15/93GK102844675SQ201180019814
公开日2012年12月26日 申请日期2011年4月19日 优先权日2010年4月20日
发明者F·施特赖歇特, C·祖特, A·格拉赫, C·布朗 申请人:罗伯特·博世有限公司

  • 专利名称:一种防滴水水表接管的制作方法技术领域:本实用新型涉及与水表连接的接管。背景技术:目前的水表由于计量精度的问题,水流很小特别是在滴水状态时水表无法计量。一两户采用滴水方式接水逃避水表计量不会对供水公司造成大的损失,但是,如果很多户这
  • 专利名称:薄膜电阻温度传感器及其制造方法技术领域:本发明涉及一种温度传感器及其制造方法,具体说是一种薄膜电阻温度传感器及其制造方法。背景技术:铂电阻具有线性度高、热响应时间小、稳定性好等优势,广泛于航天、化工、汽车等领域。图1为薄膜式电阻温
  • 专利名称:内孔倒角深度量规的制作方法技术领域:本发明属于机械加工领域中的计量检测设备,具体涉及一种内孔倒角深度量规。背景技术:在机械加工领域,在连接体等一系列含有油道并承受较大压力的工件中,会存在很多肉眼难于观察的较深的内孔倒角,工件靠这些
  • 专利名称:城区地面不透水性程度分析制图方法技术领域:本发明涉及一种城区地面不透水性程度分析制图方法,属于城市发 展规划、城区测绘制图和城市遥感技术应用领域。背景技术:众所周知城区地面不透水性程度分析制图对于了解城区发展的状 况、制订城区未来
  • 专利名称:一种空气中测声速的实验装置的制作方法技术领域:本实用新型公开一种空气中测声速的实验装置,属于物理实验装置技术领域。背景技术:在大学物理实验中,空气中声速的测定是一个非常传统的实验,现有的实验装置由低频信号发生器、双踪示波器和声速测
  • 专利名称:一种可在线连续测量液体pH值的装置的制作方法技术领域:本实用新型涉及一种可在线连续测量液体PH值的装置。 背景技术:目前在实际工业在线生产中,常用检测液体pH值的pH计主要有以下几种安装途径,顶部安装、侧壁安装、管道式安装、沉入式
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12