山东科威数控机床有限公司铣床官方网站今天是:2025-06-18切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

一种用于确定和或监控离子通道电生理学性质的装置和方法

时间:2025-06-18    作者: 管理员

专利名称:一种用于确定和/或监控离子通道电生理学性质的装置和方法
技术领域
本发明涉及一种通过建立电生理学测量结构来确定和/或监控包含离子通道的结构,典型地包含类脂膜的结构例如细胞的离子通道的电生理学性质的装置和方法,在该电生理学测量结构中,细胞膜在测量电极周围形成高电阻密封,使得能够确定和监控通过细胞膜的电流。本发明的装置典型地是用于研究细胞膜中的电事件的测量系统的一部分,例如用于实现用来研究生物膜中离子迁移通道的膜片钳(patch clamp)技术的装置。尤其,本发明设计这样一种膜片钳测量系统的一种装置,该膜片钳测量系统具有高吞吐量,并且使用仅少量试验化合物,仅少量液体载体,并且能够通过同时且独立地在许多细胞上执行并行试验来在短时间内实行许多试验。
背景技术
电隔离一片膜并且在电压钳的条件下研究该膜中的离子通道的一般概念由Neher,Sakmann,和Steinback在“细胞外的膜片钳,一种用于分解通过生物膜中各个开放通道的电流的方法”,PfluegerArch.375;219-278,1978中略述。他们发现,通过相对于肌细胞膜的表面挤压包含乙酰胆碱(ACh)的吸液管,他们能够看到电流中的离散跳动,该离散跳动可归因于ACh激活的离子通道的打开和闭合。但是,他们在他们的工作中受吸液管的玻璃与膜之间的密封的电阻(10-50MΩ)相对于通道的电阻(10GΩ)非常小的事实所限制。由这种密封所产生的电噪声与电阻反向相关,并且足够大以遮掩流过离子通道的电流,该离子通道的导电率比ACh通道的导电率小。这也防止吸液管中的电压钳位到不同于电解槽的电压的值,因为将导致的通过密封的大电流。
然后发现,通过火琢玻璃吸液管并且通过施行抽吸吸液管的内部,非常高电阻(1-100GΩ)的密封可以使用细胞的表面来获得。该千兆密封将噪声的数量级减小到生物关注的大多数通道可以被研究的级别,并且极大地扩展了可以进行这些研究的电压范围。这种改良的密封称作“千兆密封”,并且吸液管称作“膜片吸液管”。千兆密封的更详细描述可以在O.P.Hamill,A.Marty,E.Neher,B.Sakmann & F.J.Sigworth“来自细胞和无细胞薄膜膜片的高分辨率电流记录的改良膜片钳技术”,Pflügers Arch.391,85-100,1981中找到。因为他们在发展膜片钳技术方面的工作,Neher和Sakmann获得1991年生理学和医学诺贝尔奖。
离子通道是促进无机离子穿过细胞膜的迁移的跨膜蛋白。离子通道参与产生和同步作用电位,突触传递,激素分泌,肌肉收缩等各种过程。许多药品通过离子通道的调节来发挥它们的特效。实例是阻塞大脑中与电压相关的Na+通道的抗癫病复方例如二苯乙内酰脲和拉莫三嗪,阻塞平滑肌细胞中与电压相关的Ca2+通道的降压药例如硝苯呲啶和硫氮草酮,以及阻塞胰腺中ATP调节的K+通道的胰岛素释放的刺激物例如格列本脲和甲苯磺丁脲。除离子通道活动的化学诱导调节之外,膜片钳技术已经使得科学家能够使用与电压相关的通道来执行操作。这些技术包括调节膜片吸液管中电极的极性,以及改变盐的组成以缓和电解液中的自由离子浓度。
膜片钳技术代表生物学和医学的主要发展,因为该技术允许测量通过单个离子通道蛋白的离子流,也允许研究单个离子通道对药品的反应。简短地,在标准膜片钳技术中,使用薄的(app.0.5-2μm的直径)玻璃吸液管。该膜片吸液管的管尖相对于细胞膜的表面而挤压。吸液管尖紧紧地密封到细胞,并且使小块膜中的少许离子通道蛋白绝缘。
这些通道的活动可以通过移除细胞的剩余部分来单独地测量(“单通道”记录),或者作为选择,可以使膜片断裂(例如通过在吸液管中施加低于大气压的压力)以给出到细胞内部的高导电性访问,所以允许测量整个细胞膜的通道活动(“全细胞”记录)。二者之间的中间位置是“细胞附着”模式,其中细胞使用千兆密封附着到吸液管,但是吸液管内部的薄膜膜片仍然是完整的。
在单通道记录和全细胞记录过程中,各个通道子型的活动可以通过强加穿过薄膜的“电压钳”来表征。在电压钳技术中,薄膜电流以恒定的薄膜电位来记录。或者-更确切地说-放大器准确地提供将薄膜电位保持在由实验者确定的水平所必需的电流。因此,由离子通道的打开和闭合而产生的电流不允许再充电薄膜。
这种实验中的时间分辨率和电压控制是给人深刻印象的,经常在毫秒或者甚至微秒的范围内。但是,膜片钳技术用作药理学筛选中一般方法的主要障碍已经是每天可以试验的化合物的受限数目(典型地至多1或2个)。并且,可以在细胞和膜片周围实现的非常慢的溶液变化率可能构成主要障碍。
确定膜片钳技术的吞吐量的主要限制是细胞和吸液管的定位和钳位,以及将溶解的化合物导向细胞和膜片的溶液供给系统的特性。
在通常的膜片钳装配中,细胞放置在用生理食盐溶液连续不断地灌注的实验容器中。细胞-吸液管连接在这些容器中的建立是耗时且麻烦的。化合物通过改变连接到少量供给瓶的阀门的入口来施加。支承液体和待试验样本的需要量是高的。
用于执行膜片钳测量的高吞吐量系统已经提出,其典型地包括具有适合于将细胞固定在测量结构中的多个位置的衬底,细胞膜的电性质可以在该测量结构中确定。
US 5,187,096,Rensselaer,公开一种用于监控细胞的细胞衬底阻抗的装置。细胞直接在电极上培养,然后电极由许多细胞覆盖,因此,各个细胞上的测量不可以执行。
WO 98/54294,Leland Stanford公开一种包括具有井的衬底的装置,井包含电极阵列。具有井和电极(金属电极)的衬底使用CVD(化学气相沉积)和蚀刻技术由硅制成,并且包括围绕电极的氮化硅“钝化”层。细胞直接在电极阵列上培养。衬底适合于测量电生理学性质,并且公开多种提出的测量方案。
WO 99/66329,Cenes,公开一种装置,其包括具有排列于井中的穿孔的衬底和在衬底每一面上提供的电极。衬底通过用激光穿孔硅衬底而制成并且可以在表面上涂敷有抗粘着材料。衬底适合于通过使用形成通过穿孔的液体流的抽吸来将细胞定位于穿孔上,提供围绕穿孔的抗粘着层,或者通过用电力引导细胞,来与细胞建立千兆密封。细胞可以由EM场或化学方法来渗透,以提供全细胞测量构型。井中的所有穿孔,从而所有可测量细胞共享一个工作电极和一个参考电极,参见

图1,因此各个细胞上的测量不可以执行。
WO 99/31503,Vogel等人,公开一种测量设备,其具有排列在衬底(托架)上的井中并且分隔两个隔舱的孔径。该测量设备包括位于孔径两侧上并且适合于将细胞定位于孔径开口处的两个电极。衬底可以具有憎水和亲水区域,以引导细胞定位于孔径开口处。也公开了借助于细胞朝向孔径的电泳运动的细胞定位。
细胞由介电泳(DEP)的操作在例如US 6,149,789,Benecke等人;US 5,454,472,Benecke等人;US 5,795,457,Pethig等人;US5,858,192 Becker等人和US 6,059,950,Dames等人中公开。所涉及的理论在例如US 5,814,200,Pethig等人和G.Fuhr等人‘随时间变化的场中的细胞运动-原理和潜能’中,‘细胞的电操作’,U.Zimmerman,G.A.Neill,eds.,CRC Press,Boca Raton,USA1996中描述。
介质中的微粒由施加到介质的电场来极化,并且电荷在微粒边界处感应。同时,如果介质是可极化的,那么电荷将在邻近微粒的介质的边界处累积,其将到达与在微粒上感应的那些电荷相反的程度。如果微粒比介质具有更大的极化率,那么净偶极子,在微粒中感应的偶极子与在介质中由微粒占据的空间中有效存在的偶极子的总和,将与场平行;如果介质比微粒具有更大的极化率,净偶极子将反平行。在发散的场中在微粒上将存在净力平行偶极子将给出朝向较大场区域的净力-正DEP;反平行偶极子将给出远离它们的净力-负DEP。
在AC场中,微粒的极化,从而感应的净偶极子,将依赖于频率。介质的极化几乎不改变。因此,按时间平均的DEP力也将依赖于频率(并且在其他参数中,介质的导电率和介电常数,微粒的大小,有效导电率和介电常数)。细胞和囊具有复杂介电性质的薄膜,这意味着在低和高频率,它们看来似乎具有比生理导电性的典型水介质低的极化率,并且在中间频率,它们看来似乎具有比生理导电性的典型水介质高的极化率。因此,对于在正确导电率范围内的给定介质,能够使用相同的微粒在低和高频率处获得负DEP,而在中间频率处获得正DEP。另外,通过使用电极阵列,其中电极对由负DEP范围内的频率的AC电位来通电以使得细胞漂浮在电极阵列上,并且使用精选的相序,能够施加通过电极阵列上的空间而运动的按时间平均的力,所以引起微粒相对于阵列而水平运动。这可以用来实现旋转(‘电旋转’)或平移(‘行波介电泳’)(TWD),或者用来相对于由另一种力,例如周围介质的流动而引起的运动来定位微粒。
US 6,149,789,Benecke等人,公开形成图案的电极阵列,其将在由阵列的几何形状预先确定的给定方向上移动细胞。这可以用来将细胞移动到给定位置,或者用来从混合总体中分离不同的细胞。在与本申请有关的方面,公开一种‘可变换滤波器’,其中为了实现细胞与其他类型的分离,细胞被移动到同心圆电极阵列的中心,在那里它们可以通过孔径(在流体静压力下)而流动。
US 5,454,472,Benecke等人公开使用TWD原理来连续分离微粒的另一种实施方案。一个方向上的TWD场与在正交方向上具有分量的第二力相结合,以使得具有所选性质的微粒移出继之以其他的流型之外。尤其是,公开一种方案,其中微粒在平行于其中具有孔径的衬底的第一隔舱中,由该衬底上的TWD电极阵列来移动。第二隔舱通过孔径连接到第一隔舱,并且电泳力由垂至于第二隔舱中的电极与第一隔舱中的另一电极之间的TWD场运动方向的场来提供,该场产生作用以牵引微粒通过孔径进入到第二隔舱中。
US 5,795,457,Pethig等人公开一种手段,借此手段,可以通过同时施加多于一个非均匀场到悬浮体来引起悬浮在液体中的微粒之间的反应,该反应概括地定义为覆盖化学,生物化学或物理相互作用。在用这种方法抽取的概念中也公开类似于上面US 5,454,472,Benecke等人中公开的概念的装置,其中装置被提供,液体和微粒可以通过该装置,与Benecke等人的差别在于AC DEP场用来移动微粒通过孔径,而不是DC场。
US 5,858,192,Becker等人,公开一种包括螺旋形电极阵列的DEP细胞操作设备,其用来由TWD引导细胞朝向或远离螺旋的中心。中心处的口被公开,细胞和液体可以通过该口。邻近中心口的一种传感元件,例如生物传感器被公开。
US 6,059,950,Dames等人公开一种与Becker等人基本上类似的螺旋形电极阵列,两个公开之间的差别在于给电极通电的方法的细节。
US 5,814,200,Pethig等人公开用于细胞分类的另一种装置和方法。虽然它尤其与本发明不相关,该公开同样有用,在现有技术中建立的DEP理论的概要被给出。
发明概述本发明提供一种用于在包含离子通道的结构例如细胞膜和人工膜上进行电测量的装置和方法,其能够高吞吐量并且基本上自动操作,更可靠,并且能够使用比现有装置基本上更少量的试验化合物。
本发明提供一种包括一个或多个适合于固定对象例如细胞的测量位置的装置,对象包括包含离子通道的薄膜,使得薄膜在测量位置处测量电极周围相对于粘着区域形成千兆密封。这使得能够使用该测量电极和放置在围绕对象的液体中的参考电极来确定或监控细胞膜的电生理学性质。作为选择,测量位置可以包括孔径,在这种情况下,薄膜在孔径周围形成千兆密封,孔径与测量电极位于其中的装满液体的隔舱相通。然后,液体将通过孔径接触细胞膜,并且可以以类似的方法进行测量。粘着区域可以是任何形状-在优选实施方案中,它将大约为圆形。
应当理解,在本说明书中使用的术语“对象”指的是包括包含离子通道的结构的任何对象,例如包含离子通道的类脂膜或者包含离子通道的人工膜。细胞是这种结构的一个实例,并且为了清楚在本说明书中尤其参考现有技术用作这种结构,电生理学性质的实例是通过离子通道的电流或者包含离子通道的薄膜的电容。全细胞和细胞附着构型被认为也应用于包括薄膜的其他闭合对象,例如囊。
本发明提供将对象定位于测量位置的手段。在上述现有技术中,其中测量位置包括孔径,定位通过使用例如通过孔径的液体流中对象的夹带,例如在US 4,055,799(Coster等人)中,或者通过由接触孔径之外的装满液体的隔舱的测量电极与接触围绕对象的液体的参考电极之间的DC场激发的电泳(EP),如在WO 99/31503(Schmidt等人)中,由US 5,506,141(Weinreb等人)和由WO01/25769(Sophion)公开的,移动对象朝向测量位置来实现。这具有许多缺点。对象必须具有净电荷这对于大多数细胞是正确的,例如大多数真核细胞在生理pH的周围介质处具有负表面电荷,但是对于囊,需要特殊的处理步骤来给出带电的表面。电极之间的DC电位差将引起DC电流流动,导致电极处的感应电流过程,这可能是不利的,例如因可逆电极的材料例如Ag/AgCl在氧化和还原形式之间转化(Ag到AgCl和反之)的有限能力,和溶液在不可逆电极例如Pt处的可能地电解而导致问题。小的可逆电极的有限能力尤其不利,如果电极必须非常小,例如如果测量电极将由千兆密封围绕,如我们的早期申请WO 01/25769中所公开的。并且,如果孔径存在,定位力,即对象朝向相反带电电极的吸引力在孔径处不是自相抵消的-即使当位于孔径处时,对象将仍然受到吸引力,并且如果它足够可变形的,它可以继续通过孔径运动(如在WO 99/31503中公开的对于囊所发生的)。这将引入关于场强从而对象的运动速率的限制,并且可能采取必要的控制手段以检测对象在孔径处的存在并关闭场以防止损坏对象。
本发明公开,对象借助于介电泳(今后缩写为DEP)有利地定位于孔径或测量电极处。在孔径存在的情况下,这通过在接触孔径相反侧的溶液中的两个电极之间施加AC电位来实现;对于具有显著AC电阻的薄膜,AC场在孔径处将是最大且最发散的,以与关于WO 99/31503和US 5,506,141中使用的DC场相同的方式,因此,在孔径附近的对象将具有施加在其上的、或者朝向它(在正DEP中)或者远离它(在负DEP)中的力。对于包括测量电极并且孔径不存在的实施方案,AC电位施加在测量电极和与对象悬浮于其中的溶液相接触的参考电极之间。
如对于现有技术所描述的(参见例如G.Fuhr等人,‘随时间变化的场中的细胞运动-原理和潜能’,‘细胞的电操作’,U.Zimmerman,G.A.Neill,eds.,CRC Press,Boca Raton,USA1996中),力的方向和相对值将依赖于AC频率,周围溶液的导电率和对象的性质。为了实现对象在孔径或测量电极处的定位,AC频率和溶液的导电率将根据使用中的对象类型来确定,以引起正DEP效应。DEP力仅施加在发散的场的区域中,因此一旦对象已经到达更均匀(虽然更高)的场的区域,例如与它们正朝向其运动的电极或孔径相接触,它们受到的力减小。这与由EP或抽吸来定位于孔径处的情况形成对比,在那种情况下,当对象位于孔径处时,它将受到比它接近孔径但是与孔径相隔时更大的力。通过设计对象在装置的不同部分中和在其运动过程中的不同时间将受到的AC场,DEP可以用来实现比EP更精确的对象定位,例如通过正和负DEP效应的结合。
在给定对象上实现正和负DEP力所需的AC场的频率可以使用现有技术发表物(参见,例如上面的Fuhr等人,图4)来估计。通常,如果周围介质的导电率大于对象内部的导电率,那么在任何给定频率仅发现负DEP;如果周围介质的导电率低于对象内部的导电率,那么正DEP通常在较高频率发现,负DEP在较低频率发现。大的DEP力主要当介质的导电率显著地小于对象内部的导电率时发现。因此,根据本发明使用正DEP的对象定位方法优选地使用导电率低于标准生理性介质的导电率的悬浮介质来实现,介质的同渗容摩如下来控制,即使用糖的包含物例如甘露醇,如本技术中已知的,以维持生存能力,当对象是细胞时,继之以用更接近于正常生理成分的不同溶液来替换介质。本发明的装置优选地包括在悬浮介质中递送细胞,并且一旦千兆密封已经实现,有效地替换溶液的手段。本发明每种实施方案的操作的最佳导电率和频率将依赖于使用中的对象。正和负DEP在现有技术中描述的典型范围如下。对于典型的哺乳动物细胞,导电率为56mS/m的介质中的类型MDA-MB-231人类乳癌细胞,负DEP和TWD效应在范围10-100kHz中发现,正DEP在更高的频率发现。对于406mS/m的介质,负DEP和TWD在范围30kHz-10MHz范围中发现,正DEP在高于该范围处发现(US5,858,192,Becker等人)。对于导电率为10mS/m的介质中的3T3成纤维细胞,负和DEP之间的分隔频率在US 6149789,Benecke等人中引用为大约100kHz。0.15M NaCl溶液的导电率,接近于典型的细胞生长培养基中的导电率,大约为1400mS/m。
本发明提出,使用施加在测量电极和参考电极之间,无论测量位置是否包括孔径,或者施加在为了与测量位置相关的目的而提供的电极的任何其他对组合之间的AC场,由介电泳(DEP)来定位对象。DEP可以单独使用,或者与用于移动对象的其他驱动手段,例如EP,流动中的夹带,重力或离心沉积作用,或者由对象的磁标记所辅助的磁定位结合地来使用。由DEP力的对象定位包括直接作用在对象自身上,或者作用在与对象相关联或附属于对象的附加标记实体上,或者作用在对象和标记实体的组合上的力。
对象定位的过程包括将物体从大半悬浮液体移至测量位置附近,然后将物体移至位置例如以在该位置建立千兆密封。本发明提出,这两步之一或者全部由DEP来实现。例如,对象从大半液体到位置的运动设想为由沉积作用或者由正DEP来实现(如上面在现有技术中对于其他申请而描述的);建立千兆密封的运动由正DEP实现,或者如果使用孔径,由通过孔径的抽吸流动中的夹带来实现。另外,从大半液体朝向位置的运动可以由负DEP(行波DEP,缩写为TWD)来实现,以引起对象相对于提供位置的表面的横向运动。使用DEP来移动对象接近于孔径,继之以向下抽吸到孔径上以形成密封,具有避免需要液体通过孔径的大量流动以及这将需要的显著压差和时间的优点。
本发明提供的另一个显著优点是,能够使用DEP,优先于溶液中存在的、可能易于粘着在孔径或测量电极附近从而减小实现千兆密封的可能性的任何碎片,来移动对象朝向测量位置。由DEP引起通过液体移动的、特征尺寸为r的对象上(例如半径为r的球体)的净时间平均力与r3成比例(参见例如US 5,814,200,Pethig等人,在此引入作为参考),所以力随着对象的大小而极大地增加。溶液中的大多数杂质将小于试验中的对象,所以将受到较小的力。因此,碎片将倾向于比待试验的对象朝向测量位置运动得慢,与由将同样倾向于移动碎片的流动夹带实现的运动形成对比。
在孔径的情况下,轻微的逆流可以通过孔径来提供(如在传统的电生理学实验中所做的一样),以维持畅通的孔径和周围粘着区域,同时对象使用DEP朝向孔径移动。碎片上的较低DEP力将导致它因液体流动而不能靠近。在衬底上的测量电极的情况下,对象朝向电极的由DEP导致的快速运动将减小碎片沉积的可能性,慢的流体流动可以在电极表面上维持,这将倾向于防止碎片沉积,或者电极可以在为防止碎片沉积而选择的方向上操作。通过孔径的逆流可以由穿过孔径的流体静压差来形成。作为选择,它可以由孔径两侧之间的电渗透流动(EOF)来提供,它由叠加在AC DEP信号上的、穿过孔径的DC电位差来驱动。例如,如果孔径的后侧保持在比前侧更正的电位,对于具有正系数的电渗透迁移率的孔径材料,那么液体将通过孔径从后向前流动。如果对象带有电荷并且进入DC场,在对象上也将存在EP效应,这对于带有负电荷的对象例如细胞,也将起作用以从前侧朝向孔径(即,在与EOF方向相反的方向上)移动细胞,这可能是有利的。选择DC电位和AC DEP信号的大小,以给出这些效应的最佳组合。如果作用在对象上的EP效应不是期望的,那么EOF可以使用在前侧上接近孔径的电极来产生,使得如果有任何距离,场几乎不渗透到液体中。
本发明提供通过监控测量位置处的测量电极与参考电极之间的阻抗来确定千兆密封实际上已经实现的手段。阻抗测量可选地用来根据施加到对象的力和(在孔径的情况下)定位方法的选择-例如,如果期望的话,DEP和抽吸之间的转换,来监控对象到测量位置的接近度,从而使用反馈来控制定位过程。如上所述通过孔径的逆流的应用可选地也用这种方法来控制。
本发明也提供将试验样本(典型地药理学药品候选物)递送到每个测量位置,使得实验可以在固定于位置处的每个对象上执行的手段。样本递送手段可以被布置,以将各个样本递送到各个位置,或者将位置集合在一起,使得相同的样本递送到多于一个位置。本发明装置中的这样一组位置称作试验界限。
本发明也提供用于在短时间内执行大量单独实验的手段。这通过提供一种系统来实现,其包括多个试验界限以及可以协调试验界限和相关功能的操作的控制部件。每个试验界限可以包括测量位置,用于将对象定位于每个位置的手段,用于建立千兆密封的手段,用于选择千兆密封已经建立的位置的手段,测量电极以及一个或多个参考电极。由此,能够在每个试验界限中执行独立的实验。因为试验界限的小尺寸,本发明允许使用仅少量支承液体和试验样本来执行测量。
因此,根据一个方面,本发明提供一种用于在介质中包含离子通道的对象上进行电测量的装置,包括衬底,具有确定适合于保留第一溶液的第一隔舱的边界的第一表面,一个或多个测量位置位于该第一表面上,每个位置包括在第一表面中、与适合于保留第二溶液的第二隔舱相通的孔径;围绕孔径的粘着区域,对象可以粘着到该粘着区域以在第一隔舱与第二隔舱之间形成高电阻密封;位于所述第一隔舱中的第一测量电极,其在使用中接触第一溶液;位于第二隔舱中的第二测量电极,其在使用中接触第二溶液;测量手段,其电连接到第一和第二测量电极,适合于在粘着到测量位置处的粘着区域的对象上进行电测量;以及对象定位手段,其包括位于第一隔舱中的第一定位电极,并且适合于提供AC信号到该电极,以在第一溶液中形成AC场,该AC场起作用以由介电泳移动对象朝向测量位置。
在一种方案中,第一测量电极和第一定位电极可以形成为单电极结构。在另一种方案中,第二测量电极和第一定位电极可以形成为单电极结构。
根据另一方面,本发明提供一种用于在介质中包含离子通道的对象上进行电测量的装置,包括衬底,具有在使用中与第一溶液相接触的第一表面,并且一个或多个测量位置位于该第一表面上,每个位置包括第一测量电极;围绕第一测量电极的粘着区域,对象可以粘着到该粘着区域以在第一测量电极和第一溶液之间形成高电阻密封;以及导电轨道,用于将第一测量电极连接到测量仪器而同时保持它与第一溶液绝缘;第二测量电极,其在使用中与第一溶液相接触;测量手段,其电连接到第一测量电极和第二测量电极,并且适合于在粘着到测量位置处的粘着区域的对象上进行电测量;对象定位手段,其包括位于衬底上的第一定位电极,并且适合于提供AC信号到该定位电极,以在第一溶液中形成AC场,该AC场起作用以由介电泳移动对象朝向测量位置。
在一种方案中,第一测量电极和第一定位电极可以形成为单电极结构。在另一种方案中,第二测量电极和第一定位电极可以形成为单电极结构。
根据另一方面,本发明提供一种在介质中包含离子通道的对象上进行电测量的过程中使用的试验结构,包括衬底,其具有第一表面,一个或多个测量位置位于该第一表面上,每个测量位置包括孔径,其位于第一表面中,并且与衬底的第二表面相通;围绕孔径的粘着区域,对象可以粘着到该粘着区域以形成到那里的高电阻密封;至少一个定位电极,其基本上围绕或邻近于粘着层区域,用于将AC信号施加到那里,以在测量位置附近形成AC场,该AC场起作用以由介电泳移动对象朝向测量位置。
在一种方案中,试验结构还包括在第一表面上或第一表面附近形成的第一测量电极,以及在第二表面上或第二表面附近形成的第二测量电极。
根据另一方面,本发明提供一种在介质中包含离子通道的对象上进行电测量的过程中使用的试验结构,包括衬底,其具有第一表面,一个或多个测量位置位于该第一表面上,每个测量位置包括第一测量电极;围绕第一测量电极的粘着区域,对象可以粘着到该粘着区域以形成到那里的高电阻密封;至少一个定位电极,其基本上围绕或邻近于粘着层区域,用于将AC信号施加到那里,以在测量位置附近形成AC场,该AC场起作用以由介电泳移动对象朝向测量位置,使得它粘着到粘着区域以形成高电阻密封。
在一种方案中,试验结构还包括在第一表面上、至少由粘着区域与第一测量电极相隔的第二测量电极。
根据另一方面,本发明提供一种用于在介质中包含离子通道的对象上进行电测量的方法,包括步骤将包括悬浮的待测量对象的第一溶液提供到衬底的第一表面,该衬底具有位于其中、与衬底的第二表面相通的孔径;
将第二溶液提供到第二表面,以建立第一和第二表面之间的流体接触;通过测量分别位于第一和第二表面上或第一和第二表面附近的第一和第二电极之间的电连续性,来测试该流体接触已经在其间实现;由介电泳驱动第一溶液中的待测量对象,到具有围绕孔径的粘着区域的测量位置。
在另一种实施方案中,该方法提供通过测量所述第一和第二电极之间的电阻抗来测试衬底上测量位置处密封的电阻的另外步骤。在另一种实施方案中,该方法提供通过施加在第一和第二电极之间的一个或多个电脉冲来建立对象的测量结构,并且在所述对象上执行测量的另外步骤。
根据另一方面,本发明提供一种用于在介质中包含离子通道的对象上进行电测量的方法,包括步骤将包括悬浮的待测量对象的第一溶液提供到衬底的第一表面,该衬底具有位于其上的第一测量电极,和围绕所述第一电极的粘着区域;提供与第一溶液电连接的第二测量电极;以及由介电泳驱动第一溶液中的待测量对象到测量位置,以使得对象粘着到粘着区域以与其形成高电阻密封。
在另一种实施方案中,该方法提供通过测量所述第一和第二电极之间的电阻抗来测试衬底上测量位置处密封的电阻的另外步骤。在另一种实施方案中,该方法提供通过施加在第一和第二电极之间的一个或多个电脉冲来建立对象的测量结构,并且在所述对象上执行测量的另外步骤。
溶液中包含离子通道的对象可以由DEP独自,由第一溶液中流动中的夹带,或者由二者来引导朝向衬底上的测量位置。第一溶液中的流动可以由从衬底外部施加的流体静压差或者由位于衬底上或衬底外部的抽吸手段所产生的抽吸作用来引起。适当抽吸手段的实例包括电渗透流动,或者其他动电学效应例如电毛细管现象,来自承压流体的压力的控制,通过化学反应或沸腾、与溶液接触的区域中蒸汽或气体的形成,由压电效应驱动的抽吸,或者将对本领域技术人员显然的其他手段。
在测量位置处提供的粘着区域可以是衬底自身的表面,并且优选地形成图案以在测量电极或孔径附近给出局部的粘着区域,以使得对象粘着到位置而没有形成完全围绕测量电极或孔径的千兆密封的可能性达到最小。作为选择,衬底材料可以是这样的,使得千兆密封没有形成,而形成到细胞或囊的千兆密封已知的粘着层例如二氧化硅或玻璃例如硼硅酸盐可以在孔径附近沉积并形成图案。
在本上下文中,术语“千兆密封”通常表示至少1G欧姆的密封,但是对于电流很大的某些类型的测量,更低的值可以是足够的。
全细胞构型可以通过在对象用千兆密封固定在那里的位置处的测量电极和参考电极之间施加一个脉冲,或者一系列电位差脉冲来获得。如果孔径存在,脉冲可以施加在与孔径任意一面上的溶液相接触的电极之间。全细胞方式的实现通过监控位置处的对象的阻抗来显示-电极之间的电容将随着对象薄膜的电容出现在电路中而增加。一系列脉冲可以具有随时间逐渐增加的持续时间和/或电位差,直到全细胞方式实现。该过程可以由系统来监控,以得知哪种脉冲协议对于给定的对象最有效,然后该协议应用于在给定实验中使用的所有对象。
作为选择,全细胞构型可以通过使包含离子通道的结构中最接近测量电极的部分经受与形成物质的孔隙的相互作用来获得。
作为另一种选择,如果孔径存在,全细胞构型可以通过借助于使用例如上述抽吸手段中的一种通过孔径而施加的抽吸脉冲,使包含离子通道的结构中由千兆密封围绕的部分断裂来获得。
在上面的两种方法中,全细胞方式的实现可以电监控,并且过程可以如对于电脉冲方法所描述的来控制。
电生理学技术中已知的其他薄膜构型例如从薄膜切除的‘外部出’或‘外部入’膜片的使用,也设想为本发明的一部分。
依赖于装置的具体实施方案,尤其是包括测量位置的衬底,对象和支承液体的添加以下面方法的一种来执行。在一种实施方案中,试验界限可以从上面到达,并且支承液体和对象的小滴可以借助于分配或移液系统提供到每个试验界限处。系统例如喷墨打印机头或泡沫喷射打印机头可以使用。另一种可能是‘nQUAD’吸气分配器或者适合于取少量液体剂量的任何其他分配/移液设备。作为选择,支承液体和对象整个地涂敷在衬底上(例如通过将包含对象的支承液体倒在衬底上或者将衬底浸入包含对象的支承液体中),从而将支承液体和对象提供到每个试验界限。如果使用少量,液体在衬底上的处理应当优选地在高湿度气氛中执行,以避免蒸发问题。
在优选实施方案中,每个试验界限是通过一个或多个微通道到达的密室。这将给出对于与外部环境相互作用的更多控制,以及到测量位置的更受控且更少量的液体施加。将获得比单独使用吸液管灌注更快速的试验溶液转换。在特别优选的实施方案中,试验对象的悬浮体和试验化合物的样本顺序地从液体分配系统装载到微流体进入通道中,然后顺序地流过测量位置到达废物储留槽,该废物储留槽优选地在衬底上或者安装于衬底上或安装到衬底的组件上提供。
在该方法的另一方面,细胞直接在衬底上培养,同时浸入生长培养基中。在最佳情况下,细胞将在整个表面上,除了表面故意做成不适合于细胞生长的区域之外,形成同类单层(依赖于待生长细胞的类型)。但是,在本发明中,应当设想,千兆密封在围绕接触公共试验界限的每个孔径周围形成,所以该层中细胞之间的‘紧密结合’的形成不是必需的,不像在WO 99/66329(Cenes)中公开的情况。
在该方法的再一个方面,可以使用具有合成一体的离子通道的人工膜代替细胞。这种人工膜可以通过在孔径上放置小块脂类,由脂类的饱和溶液来制成。该技术在例如Christopher Miller的“离子通道重建”,Plenum 1986,p.557中详尽地描述。如果孔径大小适当,并且极性液体例如水存在于孔径的两侧上,双分子脂膜可以在孔径上形成。下一步骤是将蛋白离子通道并入双分子膜中。这可以通过将具有合成一体的离子通道的脂类囊提供到双分子膜的一侧上来实现。囊可以由例如渗透梯度来牵引以与双分子膜熔合,由此离子通道并入双分子膜中。作为选择,包括离子通道的囊可以单独地定位于测量位置处。
附图简述本发明的实施方案现在将仅通过实例参考下列附图来描述,其中图1a是详细显示测量位置的、根据本发明的装置的第一实施方案的断面图;图1b是图1a中所示装置的平面图;图2是包括图1a和1b中所示装置的测量系统的图;图3是详细显示测量位置的、装置的第二实施方案的断面图;图4是详细显示测量位置的、装置的第三实施方案的断面图;图5a是详细显示测量位置的、装置的第四实施方案的断面图;图5b是图5a中所示装置的平面图;图5c是断面图也看起来像图5a中一样的装置的第五实施方案的平面图;图5d是断面图也看起来像图5a中一样的装置的第六实施方案的平面图;图6a是详细显示测量位置的、装置的第七实施方案的断面图;图6b是图6a中所示装置的平面图;图7a是详细显示测量位置的、装置的第八实施方案的断面图;图7b是图7a中所示装置的平面图;图8是详细显示测量位置的、装置的第九实施方案的平面图;图9是详细显示测量位置的、装置的第十实施方案的断面图;图10是图9中所示装置的另一个断面图,其显示围绕测量位置的特征;图11是详细显示测量位置的、装置的第十一实施方案的断面图。
优选实施方案描述图1a显示根据本发明的测量位置的一种实施方案的断面图并且图1b显示其平面图。固定待试验对象2的测量位置1在衬底12上形成。该测量位置包括第一表面,每个都是井的形式的一个或多个隔舱或“试验界限”36确定在该第一表面上,以及包括一个或多个第二隔舱6的第二表面。在图1中所示的实施方案中,仅显示了单个试验界限和单个第二隔舱,但是应当理解,可能存在有每个在单个衬底上提供的多个试验界限和多个第二隔舱,并且多于一个衬底可以提供在每个装置中。试验界限36通过在分隔薄膜4中形成的孔径30与第二隔舱相通。第二隔舱与一个或多个液体供给通道7相通,该液体供给通道7或者确定在衬底12中或者通过特征的对准确定在衬底和背衬或安装元件10中之一或两者中。电极8提供在试验界限36中,并且第二电极16提供在第二隔舱6中,它们在使用中与试验界限和第二隔舱中的液体相接触。
在使用中,试验界限装满包括对象2的液体,而第二隔舱装满电解液,以实现电极16和孔径4之间的液体传导性。对象2通过本发明的定位手段定位于孔径30并且在其周围形成千兆密封。在图1中的实施方案中,千兆密封形成到形成薄膜4的材料31,粘着区域18由对象不会粘着到其上的涂层46来确定,仅剩下材料31邻近孔径的区域暴露。作为选择,如后面的实施方案中所示,材料31可以是这样的,使得千兆密封不形成,而粘着层可以在孔径附近沉积并形成图案。如果衬底12是导电的,第二隔舱6中的电极16和接触电解液可选地可以由绝缘层43与衬底绝缘,绝缘层43自身可以是与形成薄膜的材料相同的材料31;这将允许多于一个电极16提供在公共衬底上同时保持彼此绝缘。
在一些实施方案中,有利地,第二隔舱6和电极16是电学共用的(electrically common);在这种情况下,电极16表示为参考电极。在其他实施方案中,试验界限36有利地是电学共用的,并且电极8表示为参考电极。虽然电极8和16中每个的一个在图1中显示,每个测量位置少于一个参考电极,或者仅一个公共参考电极可以提供。
图1中所示的装置可以以不同的方法由多种不同的材料来制造。基本特征在于,粘着区域中孔径附近的材料适合于形成到包括类脂膜的对象的千兆密封。这种材料包括硅,塑料,纯二氧化硅和其他玻璃例如石英或硼硅酸盐,或者掺杂有选自Be,Mg,Ca,B,Al,Ga,Ge,N,P,As以及它们的氧化物的一种或多种掺杂物的二氧化硅。粘着材料可以自身形成包括孔径的薄膜,或者可以沉积在形成薄膜的材料上或插入到形成薄膜的材料中。
设备的最小尺寸类似于待试验对象的尺寸,所以例如对于直径为10μm级的典型哺乳动物细胞,千兆密封的直径将优选地为5μm或更小。因此,在孔径存在的情况下,孔径的直径优选地为5μm或更小,更优地2μm或更小;粘着区域的外径优选地为10μm或更小,在测量电极存在的情况下,由粘着区域围绕的测量电极的直径优选地为5μm或更小,更优地3μm或更小。如果较大的对象例如卵母细胞将被试验,这些尺寸将较大,对于较小的对象则较小。
尺寸是这样的,使得适合于该目的的标准微型制造方法是有利的。图1中实施方案的制造的优选方法基于使用硅衬底12的本技术中已知的标准微型制造加工技术。加工的典型顺序如下1.氮化硅(通过低压化学气相沉积-LPCVD)沉积在硅圆片(12)的两侧上,优选地两侧都被抛光。该层(31)形成在前侧上包括孔径(30)的薄膜,并且形成蚀刻掩模以确定通过硅的后侧蚀刻。
2.沉积Au/Cr到圆片的后侧上,然后光刻并蚀刻,以形成用于蚀刻氮化硅以对后面的硅孔蚀刻形成图案的Au/Cr掩模。
3.等离子蚀刻氮化物(CF4/O2),以形成硅蚀刻掩模。
4.KOH蚀刻,以形成后面的井6(如本技术中已知的,如图1中所示,其将是金字塔形的)和薄膜。
5.背对准IR光刻-将前侧掩模与后面的蚀刻掩模对准。对前侧中的孔径30形成图案。
6.等离子蚀刻氮化物(CF4/O2)-打开孔径。
7.如果需要的话,在隔舱6后侧上的暴露的硅上沉积可选绝缘层43-通过LPCVD沉积氮化硅。
8.使用SU-8光刻-这将SU-8可光照形成图案的环氧树脂的一个层(46)涂敷在薄膜上,以确定粘着区域18。
9.沉积金属以形成电极16,如果需要的话。
10.部分地锯割圆片,以便在最后阶段的等离子清洗之后割开。
11.氧气等离子清洗-将残渣从粘着层的表面去除。
12.使用例如粘合剂的毛细管灯芯作用来连接硅和塑料部件,或者芯片和部件之间的熔焊,来将如此形成的芯片安装到绝缘外壳部件例如模制的塑料部件中,以提供液体递送和处理。
试验界限36可以通过安装在衬底12上或者安装到衬底12的一个或多个隔离部件来确定,并且可以具有如图1中所示的开口形式,或者具有通过通道到试验界限的液体进入。在图1中的简单开口结构中,试验界限由绝缘部件38来确定,仅以简化的形式描绘,以显示它与测量位置1的关系以及它限制施加到设备试验侧的液体的区域的功能。试验界限的墙壁37在图中显示是垂直的,但是实际上有利地将是倾斜的,或者具有可变的侧面或底切,使得在薄膜平面附近比在开口处宽,因为适合于将液体和悬浮在液体中的试验对象添加到试验界限的操作。衬底12的后侧也可以具有安装于衬底12上或安装到衬底12的另外部件,例如具有形成于其中的一个或多个液体通道7或者与衬底12协力以形成这种通道的部件10。
备选实施方案(没有显示)也设想为本发明的一部分,代替井36和相关电极,其包括在孔径上通过的一个或多个流体通道,所以允许悬浮的对象和其他液体通过流动而不是移液操作递送到试验对象。这种流动设备在本技术中是已知的,例如WO 0020554(AstraZeneca)中所公开的。然后,电极8被包括以与本技术中已知的流体通道相接触,或者接近孔径或者远离孔径,根据设备的期望操作特征和使用中的溶液的导电率。
包括图1中所示的测量位置装置、根据本发明的一种测量系统在图2中显示,测量系统200包括图1的装置,如202图示,衬底12上的测量位置安装在部件10中,部件10用来确定到达第二隔舱6(图1)的流体通道7,前侧上的试验界限使用流通布置、用通过通道204提供的液体来到达,对象2固定在测量位置处的适当位置,并且电极8和16与薄膜两侧上的液体相接触;连接到通道7的电解液储存器210,流体连接214能够支撑压力,并且包括抽吸手段212和在测量位置后侧上的通道7与前侧上的通道204之间形成有差别的压力的手段。该手段在图2中所示包括阀216,但是可以同样地包括使用流体静压头,在阀之后导向通到空气的废物容器218的另外抽吸或手段;用于前侧的另一个液体供给手段220,其用来提供至少(i)待试验对象的悬浮体,(ii)用于导电性试验的电解液和(iii)待试验的化合物。有利地,液体供给手段包括可以顺序地提供三种类型的液体而没有气泡夹带的液体分配系统,其例如又包括液体供给物的托盘221,和可以移动以选择适当的液体顺序的取样器头223。液体供给手段经由包括抽吸手段222的液体供给连接224连接到通道204,并且从那里连接到通风的废物容器228;切换手段240,其可以将电极8和16连接到电测量手段242,或者DEP信号产生手段246,或者在某些情况下连接到两种手段一起;以及控制和记录手段248,其控制系统所有部分的操作并且记录由测量手段产生的结果。
抽吸手段212,222可以包括在本发明的描述中详述的任何实际上可应用的液体置换手段,并且抽吸手段可以位于液体连接线路214,224中任何实际上适当的位置。
系统的操作序列如下1.在任何液体流入前侧通道204之前,装置202首先通过从储存器210通过通道7流入电解液来预先准备好。
2.当后侧液体线路214被充溢且充满时,阀216关闭,并且抽吸手段212操作以在线路214中建立超过大气的超压。所需压力不是确切的,但是足够将空气从图1a中所示装置中的第二隔舱6中冲出,并且将电解液向上移至薄膜4中的孔径30。
3.在这已经实现之后,预先准备好的电解液由液体分配系统220选择,并且通过通道204流入。
4.然后,测量手段242测试连续性已经通过孔径在通道204和7之间获得即,孔径准备接收试验对象。
5.然后,阀216打开,以均衡孔径前后之间的压力-作为选择,正压力由抽吸手段保持,以保持通过孔径从后侧到前侧的缓慢流动,其用来避免孔径被碎片阻塞;6.液体分配系统220选择包含试验对象的悬浮液体,并且将其流入通道204中。
7.切换手段240选择DEP信号产生器246,该DEP信号产生器246将AC信号以在对象上引起正DEP力的频率施加到电极,用来牵引对象朝向孔径直到它粘着;8.优选地,测量手段242通过测量孔径的阻抗来测试对象在孔径处的存在。可选地,对象的定位过程使用从测量手段的输出到定位手段的反馈来控制。
9.千兆密封可以自然地形成。作为选择,形成可以通过在孔径处施加轻微的负压力,以将对象向下吸到密封表面上,或者通过施加穿过孔径的电位,或者通过两者来辅助;10.然后,测量手段242测试千兆密封的建立。可选地,在千兆密封没有自然地形成的情况下,过程可以使用来自测量手段的输出的反馈来控制。
11.可选地,全细胞构型通过如上所述的方法,例如通过在通道7中施加短暂的负压力来实现。
12.一旦千兆密封和(可选地)全细胞构型被确认,系统起动基线和经由液体分配系统的化合物施加的传统实验顺序,并使用控制手段248记录结果。
实际上,另外的测量位置将包括在系统中,并且上面的步骤将对系统中的每个位置来进行。某种冗余度是预期的-不是每一个位置都将在必需的地方形成到对象的成功千兆密封,或者成功的全细胞测量构型,并且这些将被系统记录并且从随后的试验中排除。
图3显示使用正DEP以与图1中类似的方式定位对象,但是具有简化对象定位的至少一个另外电极的附加特征的实施方案。在对象的DEP定位中使用的另外电极40形成在薄膜材料31的表面上。电极40位于孔径周围,并且优选地关于孔径圆形对称,例如以环或弧的形式,以便在孔径区域中给出完全或基本上关于孔径对称的强发散场。电极40通过与适当的接触手段(没有显示)相接触的导体轨道41连接,以形成片外电接触。DEP电极40优选地在至少围绕孔径的区域中用能够形成到对象2的千兆密封的密封材料44涂敷。然后,这用来在对象已经由正DEP吸引到电极之后形成围绕孔径的千兆密封。然后,材料31在粘着区域之外的区域优选地用对象不容易密封到其上的绝缘涂层46来涂敷,以减小对象在除了它被中心定位时之外的时间粘着到密封区域的可能性。层46中开口的直径被选择,以使得粘着的对象将整个覆盖孔径,以及对象不易于以接触密封到孔径的对象或者阻碍到其的访问的这样一种方式来粘着的可能性达到最大。因此,直径优选地小于试验对象的直径,更优地小于或等于对象直径的一半。
涂敷电极40和轨道41的优点的另一个原因在于,减小它们和溶液之间的电化学反应的可能性。在图3中所示的实施方案中,密封材料44在芯片表面的扩展区域上扩展,并且涂敷材料46位于密封材料44之上,密封材料44暴露的区域由涂敷材料46中邻近孔径的开口的宽度来确定。如果涂层46具有适当的介电性质,另外的优点被获得,即显著地减小在远离孔径的那些区域中、由电极40和接触轨道41所产生的、由溶液中的对象所受到的场,从而将强的正DEP效应限制在邻近孔径的区域。
其他电极,例如用于测量的电极,也可以提供在材料31上并且由层46与溶液绝缘。这可以实行,例如以避免电极8形成或安装在上层部件38上的需要。
在使用中,液体(没有显示)中沉积在井36中的对象由正DEP牵引朝向AC通电的电极40。AC DEP信号的第二或反电极可以是电极8或位于与对象悬浮于其中的溶液相接触的备选电极。最接近电极40的那些对象将朝向电极牵引。因为电极至少基本上关于孔径圆形对称,因此场也基本上关于孔径圆形对称,对象将易于以它们沉积在电极上并且覆盖孔径的这样一种方式向下牵引朝向电极。随着正DEP力牵引对象朝向电极,它遇到覆盖在电极之上的密封材料44的表面,并且密封到电极。对象的确切中心定位不是必需的,如果孔径被覆盖并且千兆密封完全地在它周围实现。因此,粘着层44必须完全地围绕孔径,即使电极40没有完全地围绕孔径。一旦密封形成,形成正DEP的信号可以关闭,如果期望的话,并且密封会将对象固定在适当的位置。
图3的设备基本上类似于图1的设备,并且可以由类似的过程以及在较早的制造序列中步骤6之后的附加步骤来制造6a.沉积金属以形成电极40和接触轨道416b.光刻以对电极40和接触轨道形成图案6c.通过喷镀来沉积绝缘/粘着层44-例如二氧化硅或玻璃图4显示中心电极位于由材料31形成的薄膜的下面的另一种实施方案。这种设计适合于具有传输电场的良好性质的薄膜,例如它们是薄的和/或具有高的相对介电常数。用这种方法,来自电极40的场线穿过薄膜材料,然后朝向远方的参考电极发散,使得相同的正DEP效应向下牵引对象朝向电极。因此,材料31可以直接用作对象的密封表面,而不需要在电极上涂敷密封材料。抗粘着材料46用来将粘着区域确定为孔径周围的环,如以前一样。电极40通过接触轨道41连接到外部世界,接触轨道41优选地由绝缘体层43与衬底12绝缘(在这种情况下,衬底是导电的)。
在另一种备选实施方案中,在薄膜下面上的电极40的功能可以由接触薄膜下面的井中的电极16来实现。相对于接触薄膜上侧上的溶液的电极例如电极8,施加到该电极的AC电位可以引起通过孔的正DEP场,如上面关于图1所描述的,但是它也可以形成通过薄膜材料31的场如果其具有良好的介电性质。这些性质可以通过对薄膜的区域形成图案来控制,以给出通过邻近孔的区域比其他地方更大的场传输,所以将DEP力限制在该区域。绝缘聚合物围绕粘着区域的涂敷可以用来实现这一点。
在其他优选实施方案中,另外的电极被提供,以引起由DEP导致的、对象从远离孔径的区域朝向孔径的运动。在孔径处或孔径附近产生的正DEP将牵引对象朝向孔径,但是在与孔径隔开一端距离的地方,正DEP场,从而作用在微粒上的力的发散将是小的。对象朝向孔径的运动可以使用现有技术中描述的行波介电泳(TWD)原理、使用电极线性阵列中的负DEP来实现。然后,对象的定位可以由对于图1中所示实施方案描述的孔径处的正DEP,由例如由流体静压或电渗透流动而导致的通过孔径的流动而引起的抽吸力,或者正DEP和流动的结合来实现。有利地,电极40邻近孔径而提供,连接到独立的电源并通电,以引起朝向它的正DEP,如上面的实施方案中一样。对于给定的对象类型和溶液,负和正DEP效应分别通过施加低和高频率场来形成。场的范围相对短,所以能够在负DEP TWD场的中心区域中施加正DEP场,而没有不利地影响负DEP TWD场。作为选择,检测控制手段可以被包括,以检测对象在孔径附近的存在,并且启动正DEP或抽吸定位。这种手段可以包括孔径附近对象的光学观测,和/或孔径附近一个或多个电极的电特性的测量。
图5显示包括负DEP TWD阵列以移动对象朝向孔径的优选实施方案。图5a是图5b中以平面图形式显示的结构的XX处的断面图。在图5a中的实施方案中,其中部件如图3中来编号,附加电极50a-h显示在孔径的任意一侧。图5a中所示的结构以图3中相同的方式来形成井或流体通道的底部的一部分,但是附图的比例现在是这样的,使得仅有井或通道的基底被显示。电极50形成本技术中已知的TWD结构的一部分,包括一电极阵列,其顺序地通电以使得对象负介电泳悬浮在阵列上,并且使得它们在溶液中与阵列平行地运动。电极被布置,使得它们垂直于穿过孔径的至少一个轴向,所以引导对象朝向孔径。平面图5b显示由电极40围绕的孔径30,电极40由轨道41连接到焊垫;然后电极50a-h布置成基本上围绕孔径的弧,由导体轨道52a-h连接到另外的焊垫。然后,按照例如US 6149789(Benecke等人)或US 5795457(Pethig等人)中公开的方式施加适当选择的四相AC场,将径向地驱动对象朝向弧的中心即孔径。电极40邻近孔径而提供,像以前一样,并且可以用于对象到孔径的正DEP吸引。作为选择,如果本发明的这一方面不需要,例如如果通过孔径自身的正DEP吸引将使用,那么内部电极40可以省略,或者用作TWD阵列的最内部元件。
图5b中电极和轨道的布置是有利的,因为它仅需要单层导体轨道,并且没有通孔或交叉。布置在孔径周围的电极的数目是任意的,并且根据其中对象需要被收集和朝向孔径移动的区域来选择。如果载体溶液中对象的密度高,那么小半径的收集是足够的,从而需要相对少的电极。在这种情况下,有8个,它们将以4组来结合以实现最佳的TWD场-即,a和e,b和f,c和g,d和h将共同地进行。如果需要大量电极,那么使用两个敷金属层和通孔来在它们之间连接将是有利的。图5c显示与图5b相同的电极图案,现在连接到较少的公共导体轨道例如,电极50a和50e连接到轨道53a,50b和50f连接到轨道53b等等。轨道由导向第二导电轨道层中交叉57的通孔55彼此绝缘。如果增加数目的电极在阵列中使用,那么公共连接图案将扩展,使得每个电极连接到从孔径开始再四个电极的电极,即50a,e,i,m等(没有显示)都将连接到轨道53a。那么五个轨道和焊垫将足够。
图5d显示TWD阵列作为一系列同心圆来布置,再由与第一导电层绝缘的第二导电层上的导体轨道相接触的优选实施方案。该实施方案具有如下优点,即不存在TWD不起作用的区域,像它在图5b和5c中接触轨道的区域中存在有TWD不起作用的区域那样。同心电极由通孔55连接到位于结构中第二、较低层上的导电轨道53。电极以对于图5c中的实施方案相同的方式连接到它们各自的导体轨道。
在图6b中以平面图形式并且在图6a中以平面上X-X处的断面图形式显示的另一种优选实施方案中,电极以如US 5858192(Becker等人)和US 6059950(Dames等人)中公开的螺旋形布置,四个电极60,62,64和66以交错的布置来提供并且分别通过来自AC源的连接器轨道61,63,65,和67来供给,使得在相邻的电极之间存在渐增的90度相位差。这使得对象沿着径向路径朝向螺旋形的中心移动。然后,对象通过上述手段定位于孔径处。
图7b显示另一种实施方案的平面图,并且图7a显示平面图上X-X处的断面图,其中螺旋形TWD阵列如图6中所示的实施方案中来提供,此外,中心电极40被提供,用于对象在孔径处的正DEP定位(孔径没有在图7b中显示)。电极60,62,64,66连接到轨道61-67,像以前一样,除了现在在组中存在有第五螺旋形电极,其包括在TWD螺旋形电极的两个之间交错的、导向孔径周围的环形电极40的导体轨道41。这是连接中心电极40而不需要第二级导电层的特别有利的电极阵列。但是,轨道41可以导向位于螺旋形电极60-66下面的第二级上的电极40,如果期望的话。
用来移动对象朝向孔径的TWD阵列的其他结构设想为本发明的一部分。上述实施方案具有基本上布置在孔径周围的阵列,其将移动对象从大角度的范围朝向孔径。但是,包括从一个或多个主要方向移动对象的阵列的实施方案也被设想。例如,图8以平面图形式显示一种设备,其中使用一电极阵列80,82,84,86等由TWD移动对象通过通道90,以将对象递送到孔径30,其中电极80,82,84,86等由现有技术例如US 6149789(Benecke等人)或US 5795457(Pethig等人)中已知的来连接的四个AC线81,83,85,87来驱动。孔径优选地位于通道狭窄的区域中,如图8中所示。到驱动线的连接需要两级接触层,以及在两级之间引导的通孔89。连接的备选结构对本领域技术人员将是显然的。
本发明的另一种实施方案在图9和10中显示,其中正DEP用来将对象定位于平面电极而不是孔径处。图10显示位于衬底102上的测量位置100。图9以近视方式显示测量位置;图10将测量位置作为试验设备104的一部分来显示,包括具有测量位置的衬底102;作为衬底一部分形成或者安装在衬底上的部件106,其以井120的形式来确定试验界限,测量位置100位于井120中;参考电极108,其安装于井中以接触井中的液体,由导电轨道110连接到保持远离溶液的接触区112,并且由保护层114来绝缘。测量位置100包括工作电极区域122,该工作电极区域122由导电轨道116连接到也远离溶液的接触区118。参考图9,测量位置的细节如下。工作电极区122由绝缘保护层124中的开口来确定。暴露于开口中的导体轨道116涂敷有选择以给出在包含氯化物离子的细胞支承溶液中的稳定电化学电位的材料,优选地由又涂敷有氯化银层132的银层130形成的Ag/AgCl电极。围绕在层124中开口的是对象140的薄膜可以形成到其上的千兆密封的区域134。如果形成层124的材料自身适合于千兆密封的形成,那么在该区域中不需要对该材料的另外修改。附加材料134有利地被提供,以增强到对象的密封。这种密封材料的实例包括二氧化硅或玻璃,优选地通过喷镀来沉积。测量位置的设计是这样的,与现有技术中的情况形成对比,当对象密封到密封区域时,在电极的顶面(这里由层132的表面来显示)和对象薄膜之间不需要紧密接近的密封。实际上,一层溶液有利地包括在层132的表面与对象薄膜之间的空间142中。该层溶液用来将从电极电位获得的边界明显的电位施加到对象薄膜,并且也用来在紧挨着薄膜的位置保持温和的溶液环境,而不是典型地在将细胞粘合到电极的现有技术方法中的变更环境。
在使用中,相对于远方的参考电极,例如图10中的电极108,或者专用于此目的的另一个电极,AC电势施加到电极122,以将在悬浮于其上的对象上产生正DEP效应的频率。AC场将以来自先前的实施方案中的相同方式在电极上强烈地发散;对象将由正DEP牵引朝向电极,并且场在电极附近的强发散将意味着它们将易于到达正好位于电极之上的空间。当向下朝向电极牵引时,它们遇到密封区域并且形成到密封区域的千兆密封,密封包围电极。然后,可以通过电生理学中已知的传统方法来检测密封的质量。可以对图9中的实施方案做修改,以提高密封的可能性和密封的质量,例如密封材料134的表面有利地提高到电极的表层132之上。这用来保持细胞膜远离电极的表面,这是有利的,因为银离子被毒细胞新陈代谢的倾向性减小。为此目的,包含电解液的另一种材料,例如水凝胶可以被包括,覆盖在Ag/AgCl电极的表面上,以减小溶液中的Ag+离子朝向细胞的扩散。
与在我们的早期申请WO 01/25769中公开的由介电泳(EP)的定位相反,由DEP导致的对象定位是有利的,因为由粘着区域包围的测量电极的大小必须小-对于典型的哺乳动物细胞,直径为典型地5μm或更小-并且电极必须是可逆电极,以建立相对于溶液的稳定测量电位。因此,电极的载流量受材料在其氧化和还原形式之间的转换(Ag到AgCl和反之)所限制。这限制了可以在给定DC方向上通过的电流量,从而限制了电泳可以用来定位细胞的程度。但是,ACDEP避免了这个问题。小电极的容量对于电生理学测量的程序是足够的。
图11显示测量位置100像以前一样提供在衬底102上的另一种实施方案,类似的元件如图9和10中类似地来编号。图11中的测量位置设想为包括在类似于图10中所示的试验设备中。此外,在图11中,另外的电极150被提供,其完全或基本上围绕工作电极122。电极150目的在于提供将对象向下牵引到测量位置的正DEP吸引,并且电极150由导向接触区156的导电轨道152连接到外部电路系统,接触区156由绝缘层154与溶液绝缘。该实施方案具有工作电极不用于DEP对象定位的优点;因此避免了在该过程中流动的电流流过电极,当是AC时,这仍然可以增加AgCl电极表面的溶解速率,从而增加由溶液中的Ag+离子使细胞中毒的可能性[2]。一层密封材料134涂敷在DEP电极150上以给出密封表面,细胞可以在已经被朝向电极牵引之后在该密封表面处形成千兆密封。
在另一种实施方案中(没有显示,但是从上面的实施方案中容易明白),另外的定位电极以上面图4-8中包括孔径的较早实施方案中相同的方式围绕中心电极150来提供。对象借助于负DEP TWD朝向它们可以定位于那里并且千兆密封可以在那里形成的中心区域的运动,使用正DEP以类似的方式是有利的。
在上面图9-11中所示的实施方案中,图2中所示的完整系统和操作序列轻微地修改。因为不存在到第二装满液体的隔舱的孔径,使用抽吸来定位细胞,辅助千兆密封形成或实现全细胞构型是不可能的。第一点必须由DEP独自,在我们的早期申请WO 01/25769中公开的EP,或者二者的结合来实现;千兆密封的形成可以由测量和参考电极之间的电位差来辅助。全细胞构型由测量和参考电极之间的电位差脉冲,和/或形成孔隙的化合物在测量电极附近的应用来实现。上面与液体流在孔径后侧的施加,或穿过孔径的压差的控制相关的装置和操作序列的部分,简单地被省略。其他方面,例如对象在测量位置的检测或定位过程的反馈控制是适用的。
其他实施方案在附加权利要求书的范围内。
权利要求
1.一种用于在介质中包含离子通道的对象(2)上进行电测量的装置,包括衬底(12),其具有确定适合于保留第一溶液的第一隔舱(36)的边界的第一表面,一个或多个测量位置(1)位于该第一表面上,每个位置包括在第一表面中、与适合于保留第二溶液的第二隔舱相通的孔径(30);围绕孔径的粘着区域(18),所述对象可以粘着到其上以在第一隔舱(36)与第二隔舱(6)之间形成高电阻密封;位于所述第一隔舱中的第一测量电极(8),其在使用中接触第一溶液;位于第二隔舱中的第二测量电极(16),其在使用中接触第二溶液;测量装置(200,242),其电连接到第一和第二测量电极(8,16),适合于在粘着到测量位置处的粘着区域的对象(2)上进行电测量;以及对象定位装置(246),其包括第一定位电极(8,40,50,60…),并且适合于提供AC信号到该电极,以便在第一溶液中形成AC场,该AC场起作用以通过介电泳移动对象朝向测量位置。
2.根据权利要求1的装置,其中对象定位装置(246)还包括位于第一或第二隔舱中的第二定位电极(40)。
3.根据权利要求1或权利要求2的装置,其中第一测量电极(8)和第一定位电极作为单电极结构来提供。
4.根据权利要求1或权利要求2的装置,其中第二测量电极和第一定位电极作为单电极结构来提供。
5.根据权利要求1~3中任何一个的装置,其中所述测量电极中的一个与所述测量位置中多于一个是电学上共用的。
6.根据任何前面的权利要求的装置,其中粘着区域(18)包括直接围绕孔径(30)的第一区域(44),对象(2)可以粘着到该区域,该粘着区域由对象不粘着到其上的第二区域(46)来围绕。
7.根据权利要求6的装置,其中孔径(30)的直径为5微米或更小。
8.根据权利要求7的装置,其中孔径(30)的直径为2微米或更小。
9.根据权利要求6,权利要求7或权利要求8的装置,其中第一区域具有10微米或更小的直径。
10.一种用于在介质中包含离子通道的对象(140)上进行电测量的装置,包括衬底(102),其具有在使用中与第一溶液相接触的第一表面,并且一个或多个测量位置(100)位于该第一表面上,每个位置包括第一测量电极(130);围绕第一测量电极的粘着区域(134),所述对象可以粘着到其上以在第一测量电极和第一溶液之间形成高电阻密封;以及导电轨道(116),用于将第一测量电极连接到测量仪器而同时保持它与第一溶液隔离;第二测量电极(108),其在使用中与第一溶液相接触;测量装置(200,242),其电连接到第一测量电极和第二测量电极,并且适合于在粘着到测量位置处的粘着区域的对象(140)上进行电测量;对象定位装置(246),其包括位于衬底上的第一定位电极(150),并且适合于提供AC信号到该定位电极,以便在第一溶液中形成AC场,该AC场起作用以通过介电泳移动对象朝向测量位置。
11.根据权利要求10的装置,其中第一定位电极(150)基本上围绕或邻近于粘着区域。
12.根据权利要求10或权利要求11的装置,其中第一定位电极和第二测量电极作为单电极结构(108)来形成。
13.根据权利要求10~12中任何一个的装置,其中粘着区域(134)包括直接围绕第一测量电极的第一区域,对象可以粘着到该区域,第一区域由对象不粘着到其上的第二区域来围绕。
14.根据权利要求13的装置,其中第一测量电极的直径为5微米或更小。
15.根据权利要求14的装置,其中第一测量电极的直径为3微米或更小。
16.根据权利要求13,权利要求14或权利要求15的装置,其中第一区域具有10微米或更小的直径。
17.根据权利要求10的装置,其中粘着区域(134)和第一测量电极(130)空间上分离,使得在使用中容积(142)在粘着到粘着区域的对象(140)和第一测量电极之间形成。
18.根据任何前面的权利要求的装置,其中对象定位装置(246)还包括用于产生在第一隔舱(36)中第一溶液的流动的夹带装置(222)。
19.根据权利要求18的装置,其中所述夹带装置包括抽吸泵。
20.根据任何前面的权利要求的装置,其中测量装置(200,242)还包括脉冲产生器(246),其适合于将电脉冲或脉冲序列施加在所述测量电极之间,直到检测到电极之间预先确定级别的阻抗。
21.根据任何前面的权利要求的装置,还包括分配装置(221),用于将对象和第一溶液递送到测量位置附近。
22.根据权利要求21的装置,其中分配装置包括形成在所述衬底的第一表面中的多个微通道,每个微通道与测量位置相通。
23.根据任何前面的权利要求的装置,其中测量位置还包括将测量位置与邻近的测量位置分离开的限制墙壁(38,106)。
24,根据权利要求23的装置,其中限制墙壁包括涂敷到衬底并在其上形成图案以确定所述测量位置的沉积层或粘着层。
25.根据任何前面的权利要求的装置,还包括在一个构型中每个测量位置周围布置,以便能够在测量位置周围施加发散电场的一个和多个定位电极。
26.根据权利要求25的装置,还包括在每个测量位置周围布置、适合于产生负介电泳力以驱动对象朝向各自测量位置附近的多个电极。
27.根据权利要求1~9中任何一个的装置,其中所述对象定位装置还包括夹带装置,用于产生通过所述孔径的第一溶液的流动。
28.一种在介质中包含离子通道的对象上进行电测量的过程中使用的试验结构,包括衬底(12),其具有第一表面,一个或多个测量位置(1)位于该第一表面上,每个测量位置包括孔径(30),其位于第一表面中,并且与衬底的第二表面相通;围绕该孔径的粘着区域(18),所述对象可以粘着到其上以形成高电阻密封;至少一个定位电极(40,50,60…),其基本上围绕或邻近于粘着层区域,配置成用于施加AC信号以在测量位置附近形成AC场,该AC场起作用以通过介电泳移动对象朝向测量位置。
29.根据权利要求28的试验结构,还包括在第一表面上或第一表面附近形成的第一测量电极(8);以及在第二表面上或第二表面附近形成的第二测量电极(16)。
30.根据权利要求28或权利要求29的试验结构,其中定位电极(40)包括位于衬底上孔径周围的导电层,并且粘着区域包括位于定位电极上的介电层(44)。
31.根据权利要求28或权利要求29的试验结构,还包括围绕粘着区域的抗粘着区域(46)。
32.根据权利要求28~31中任何一个的试验结构,其中孔径的直径是5微米或更小。
33.根据权利要求32的试验结构,其中孔径的直径是2微米或更小。
34.根据权利要求28~33中任何一个的试验结构,其中粘着区域具有10微米或更小的直径。
35.根据权利要求28或权利要求29的试验结构,包括多个测量位置,每个测量位置由绝缘墙壁(38)分隔。
36.根据权利要求35的试验结构,其中绝缘墙壁包括沉积在所述衬底上的场层,所述场层中的多个井的每一个确定所述测量位置中的一个。
37.根据权利要求28~36中任何一个的试验结构,其中孔径(30)形成在第一表面上的薄膜材料(4)中,桥接形成在衬底材料中的较大通孔的相当一部分,但不是全部,并且其中定位电极(40)形成在薄膜材料(31)的下侧上。
38.根据权利要求28或权利要求29的试验结构,还包括邻近于每个测量位置布置成阵列的多个定位电极,配置成适合于能够施加行波介电泳到对象上以驱动对象朝向孔径。
39.根据权利要求38的试验结构,其中电极阵列包括围绕测量位置而扩展的一系列同心轨道(50)。
40.根据权利要求39的试验结构,其中同心轨道是围绕测量位置的部分环形。
41.根据权利要求39的试验结构,其中同心轨道是围绕测量位置的全环形。
42.根据权利要求38的试验结构,其中电极阵列包括一系列同心螺旋形轨道(60)。
43.根据权利要求42的试验结构,其中电极阵列还包括到所述至少一个定位电极的导电轨道。
44.根据权利要求38的试验结构,其中电极阵列包括线性阵列。
45.一种在介质中包含离子通道的对象上进行电测量的过程中使用的试验结构,包括衬底(12),其具有第一表面,一个或多个测量位置(1)位于该第一表面上,每个测量位置包括第一测量电极(130);围绕第一测量电极的粘着区域(14),对象可以粘着到其上以形成高电阻密封;以及至少一个定位电极(40,50,60…),其基本上围绕或邻近于粘着层区域,配置成用于施加AC信号以在测量位置附近形成AC场,该AC场起作用以通过介电泳来移动对象朝向测量位置,使得它粘着到粘着区域以形成高电阻密封。
46.根据权利要求45的试验结构,还包括在第一表面上、至少通过所述粘着区域而与所述第一测量电极分隔开的第二测量电极(108)。
47.根据权利要求45或权利要求46的试验结构,其中第一测量电极的直径是5微米或更小。
48.根据权利要求47的装置,其中第一测量电极的直径是3微米或更小。
49.根据权利要求45~48中任何一个的装置,其中粘着区域具有10微米或更小的直径。
50.根据权利要求45或权利要求46的装置,其中粘着区域(134)和第一测量电极(130)空间上分开,使得在使用中容积(142)在粘着到粘着区域的对象(140)和第一测量电极之间形成。
51.根据权利要求45的试验结构,还包括邻近于每个测量位置布置成阵列的多个定位电极,配置成适合于能够施加行波介电泳到对象上以驱动对象朝向第一测量电极。
52.根据权利要求51的试验结构,其中电极阵列包括围绕测量位置而扩展的一系列同心轨道(50)。
53.根据权利要求52的试验结构,其中同心轨道是围绕测量位置的部分环形。
54.根据权利要求52的试验结构,其中同心轨道是围绕测量位置的全环形。
55.根据权利要求51的试验结构,其中电极阵列包括一系列同心螺旋形轨道(60)。
56.根据权利要求55的试验结构,其中电极阵列还包括到所述第一测量电极的导电轨道。
57.根据权利要求51的试验结构,其中电极阵列包括线性阵列。
58.一种用于在介质中包含离子通道的对象上进行电测量的方法,包括步骤将包括悬浮的待测量对象的第一溶液提供到衬底的第一表面,该衬底具有位于其中、与衬底的第二表面相通的孔径;将第二溶液提供到第二表面,以建立第一和第二表面之间的流体接触;通过测量分别位于第一和第二表面上或第一和第二表面附近的第一和第二电极之间的电连续性,来测试该流体接触已经在第一和第二电极之间实现;以及通过介电泳驱动第一溶液中的待测量对象,到具有围绕孔径的粘着区域的测量位置。
59.权利要求58的方法,还包括通过测量所述第一和第二电极之间的电阻抗来测试衬底上测量位置处密封的电阻的步骤。
60.权利要求58或权利要求59的方法,还包括通过施加在第一和第二电极之间的一个或多个电脉冲来建立对象的测量构型,并且在所述对象上执行测量的步骤。
61.权利要求58的方法,还包括通过将减小的压力施加到第二溶液,来增强对象到粘着区域的粘着的步骤。
62.权利要求58的方法,还包括通过将孔隙形成化合物施加到由高电阻密封封闭并且与第二溶液相接触的对象的区域,来建立对象的测量构型的步骤。
63.权利要求58的方法,还包括将溶液中的试验化合物提供到对象附近,同时操作测量装置以观察对象对于化合物的存在以及对于由测量装置提供的电刺激的电响应的步骤。
64.一种用于在介质中包含离子通道的对象上进行电测量的方法,包括步骤将包括悬浮的待测量对象的第一溶液提供到衬底的第一表面,该衬底具有位于其上的第一测量电极,和围绕所述第一电极的粘着区域;提供与所述第一溶液电接触的第二测量电极;以及通过介电泳驱动第一溶液中的待测量对象到测量位置,以使对象粘着到粘着区域以便与其形成高电阻密封。
65.权利要求64的方法,还包括通过测量所述第一和第二电极之间的电阻抗来测试衬底上测量位置处密封的电阻的步骤。
66.权利要求64或权利要求65的方法,还包括通过施加在第一和第二电极之间的一个或多个电脉冲来建立对象的测量构型,并且在所述对象上执行测量的步骤。
全文摘要
一种用于确定和/或监控包含离子通道的结构中离子通道的电生理学性质的装置和方法,使用AC驱动定位电极来驱动待分析的对象到测量位置。测量位置可以包括位于两个包含溶液的隔舱之间的孔径,每个隔舱包括各自的测量电极。孔径包括在其外围的粘着区域,并且被确定尺寸使得待分析的对象不能通过孔径。作为选择,测量位置可以包括由适当地确定尺寸以容纳对象的粘着区域所围绕的测量电极,对象可以粘着到该粘着区域,以及远离该测量电极的第二测量电极。
文档编号G01N33/487GK1529814SQ02814220
公开日2004年9月15日 申请日期2002年6月20日 优先权日2001年6月20日
发明者拉斯·汤姆森, 拉斯 汤姆森, 德克·里尤特, 里尤特, 多格森, 约翰·多格森, 沃尔夫, 安德斯·沃尔夫, 艾尔-阿利, 加米尔·艾尔-阿利 申请人:索菲昂生物科学有限公司

  • 专利名称:基于电网故障智能识别设备的电网故障识别方法技术领域:本发明涉及一种电网故障识别方法,尤其涉及基于一种基于电网故障智能识别设备的电网故障识别方法。背景技术:目前,低压配电网线路故障区段的定位,一直是令人比较困扰的问题。一旦低压开关跳
  • 专利名称:用于测定半导体开关的温度的方法和设备的制作方法技术领域:本发明涉及一种用于测定半导体开关的温度的方法和设备。背景技术:半导体开关尤其例如用于电压和电流的整流器和逆变器,其中,通常将多个半导体开关彼此电连接来实现变流器。半导体开关在
  • 专利名称:一种用于日本产铜箔表面处理机的铜箔表面在线检测仪的制作方法技术领域:本实用新型涉及一种在线检测装置,尤其涉及一种用于日本产铜箔表面处理机的铜箔表面在线检测仪。背景技术:目前,市场上普遍使用铜箔表面在线检测仪对铜箔的外观质量进行检测
  • 专利名称:星形轮压溃力检具的制作方法技术领域:本实用新型涉及一种用于检测摩托车发动机星形轮圆柱的压溃力检具。 背景技术:摩托车发动机星形轮,目前有五星(4个档位和1个空档)和六星(5个档位和1 个空档)两种,是一种换档机构中起换档作用的关重
  • 专利名称:汽车座椅横杆检验工具的制作方法技术领域:本实用新型涉及长度、平整度的测量工具领域,具体为一种汽车座椅横杆检验工具。背景技术:汽车座椅是汽车配件中的重要一环,直接影响司机和乘客的舒适度,汽车座椅零件的测量是加工和安装过程中必不可少的
  • 专利名称:燃气具用风压传感器的制作方法技术领域:本实用新型涉及到一种燃气具用风压传感器,它适用于燃气热水器和 供热水_供暖两用型热水器。技术背景在现有技术中,燃气热水器、供热水_供暖两用型热水器等燃气具所用的风压传感部件,通常采用的是设置一
山东科威数控机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 http://www.ruyicnc.com 版权所有 All rights reserved 鲁ICP备19044495号-12