专利名称:用于为地下发射选择频率的测量设备及相关方法
技术领域:
本发明总体上涉及对地下(ingroimd)发射频率源的定位和/或定性,且更具体 地,涉及一种用于测量噪声的设备和方法,所述噪声会干扰在地下发射频率下收到的信号 的接收。
背景技术:
在使发射器移动经过地面的某些操作中,必须基本连续地监视发射器位置和方 向。这类操作的一个示例在于由地下钻探工具所携载的发射器的使用。这类操作的另一示 例在于移动发射器通过地面内预先存在的钻探或路径。作为示例,可使用这类预先存在的 路径的操作包括通过预先形成的钻探回拉公共事业线以及对各种类型的公共事业线包括 供水管线和废水管线绘图。结合前述操作使用的传统的定位和监视系统通常是基于包含对 由移动经过地面的发射器所射出的振荡磁场进行检测的完善技术。现有技术系统中所关注的一点涉及发射器信号的本地干扰,这是由存在于环境中 的电磁噪声引起的。发射器信号通常限于小于50千赫兹的低频范围,以便使信号有效穿透 地面并可通过位于表面上的接收器来检测。在下述系统的正常操作条件中会存在若干噪声 源,所述系统采用在地面中移动并同时以这些频率发射的发射器。例如,地下交通回路系 统,其根据在十字路口存在有机动车而自动操作停车灯,可以射出在相同低频率范围中的 信号作为用于传统的定位器/监视器信号的信号。发现另一重要噪声源为高架或埋置的输 电线,其一般发出50Hz或60Hz (及其谐波)的噪声。而且,如果两个或多个地下发射器彼 此靠近操作,则所射出的发射器信号会互相干扰,从而降低了所涉及的全部系统的精度和 功效。其干扰信号频率是已知的这类噪声源可以被称为城市特定噪声源。在环境中会存在 有其他低频噪声源,诸如由计算机网络连接和社区访问电视(CATV)线路产生的噪声,并且 这些噪声可以被称为城市一般噪声源。城市特定噪声和城市一般噪声源会限制可采用地下发射器的精度和范围。例如, 可以将地下发射器的使用限制在有交通回路的街道下面。然而,申请人认识到对精度和范 围的限制可依从于频率。即是说,一个频率下的精度和范围会比特定噪声环境中的不同频 率更多地受到限制。相关技术的前述示例及其相关限制意图为说明性而且排他性的。通过阅读说明书 以及研究附图,对于本领域技术人员而言,相关技术的其他限制将变得明显。
发明内容
结合下述系统、工具和方法来描述并图示出下列实施例及其各个方面,所述系统、 工具和方法意为示例性和说明性的而非限定范围。在各种实施例中,一个或多个上述问题 已得到缓解或消除,而其他实施例也为其他改进指引了方向。—般而言,描述一种用于与系统结合使用的设备及相关联的方法,在所述系统中, 使发射器在操作程序期间移动经过一区域中的地面,同时发射具有发射频率的发射器信号。所述发射频率可被选择为在发射频率范围中间隔开的一组离散发射频率其中之一,并 且所述区域包含会在所述区域内变化且覆盖所述发射频率范围的电磁噪声。在本公开的一个方面中,所述便携式设备可以包括接收器,所述接收器具有至少 包含所述发射频率范围的接收器带宽,用于在所述发射频率范围中测量所述电磁噪声以建 立所述电磁噪声的频率组成,所述电磁噪声的频率组成用于在选择离散发射频率其中之一 作为选定的发射频率时使用,所述选定的发射频率随后在所述操作程序期间由接收器接 收。在本公开的另一方面中,所述便携式设备可以包括接收器,所述接收器具有至少 包含所述发射频率范围的接收器带宽并被配置用于在下列模式下操作(i)设定模式,用 于至少在所述发射频率范围中测量电磁噪声以建立所述电磁噪声的频率组成,所述电磁噪 声的频率组成用于在选择离散发射频率其中之一作为选定的发射频率时使用,所述选定的 发射频率随后在所述操作程序期间由接收器接收;和(ii)定位模式,用于接收所选定的发 射频率以提供与所述发射器相关的特定信息。在本公开的再一方面中,描述一种方法,其中,在所述操作程序之前,检测所述区 域中的电磁噪声,以产生一组噪声环境信息。分析该组噪声环境信息,以建立电磁噪声的频 率组成,用于在将所述发射频率选择为所述多个离散发射频率其中之一时使用。在本公开的又一方面中,描述一种用于与下述系统结合使用的便携式设备及相 关联的方法,在所述系统中,在操作程序期间从区域中的地面内发射电磁定位信号。所述定 位信号包含可从在发射频率范围中间隔开的一组离散发射频率中选择的发射频率,并且所 述区域包含会在所述区域内变化且覆盖所述发射频率范围的电磁噪声。所述便携式设备包 括接收器,所述接收器具有至少包含所述发射频率范围的接收器带宽,用于至少在所述发 射频率范围中测量所述电磁噪声以建立所述电磁噪声的频率组成,所述电磁噪声的频率组 成用于在选择离散发射频率其中之一作为选定的发射频率时使用,所述选定的发射频率随 后在所述操作程序期间被用作为所述定位信号。在本公开的连续的方面中,描述一种用于与系统结合使用的便携式设备,在所述 系统中,在操作程序期间从区域中的地面内发射电磁定位信号。所述定位信号包含可从在 发射频率范围中间隔开的一组离散发射频率中选择的发射频率,并且所述区域包含会在所 述区域内变化且覆盖所述发射频率范围的电磁噪声。所述便携式设备包括接收器,所述接 收器具有至少包含所述发射频率范围的接收器带宽并被配置用于在下列模式下操作(i) 设定模式,用于至少在所述发射频率范围中测量电磁噪声以建立所述电磁噪声的频率组 成,所述电磁噪声的频率组成用于在选择离散发射频率其中之一作为选定的发射频率时使 用,所述选定的发射频率随后在所述操作程序期间被用作为所述电磁定位信号;和(ii)定 位模式,用于接收所选定的发射频率以提供与所述电磁定位信号相关的特定信息。在本公开的又一方面中,描述一种用于与下述系统结合使用的设备及相关联的方 法,在所述系统中,使发射器在操作程序期间移动经过区域中的地面,同时发射具有发射频 率的发射器信号并且所述区域包含会在所述区域内变化且覆盖所述发射频率范围的电磁 噪声。通过检测器,在所述操作程序之前,在地上位置检测所述区域中的电磁噪声,使得所 述电磁噪声在没有发射器信号的情况下被检测到。通过处理器,至少部分基于所检测到的 电磁信号,确定用于在地上位置接收所述发射器信号的发射器的预测最大操作深度。至少在所述操作程序之前显示所述预测最大操作深度。除了上述示例性方面和实施例以外,通过参照附图以及研究下列描述,进一步的 方面和实施例将变得清楚。
在附图中的参照图中图示出示例性实施例。这里披露的实施例和图旨在作为说 明性的而非限制性的。图1是根据本发明制作的便携式设备的一个实施例的图解视图,在此示出以图示 其组件。图2是将要在其中执行操作程序的区域的图解平面图,并且其中,作为操作程序 的准备可以使用图1的设备。图3是噪声功率相对于频率的曲线图,包括图2的区域中三个不同频率的噪声功 率的标绘图,并且与图2中所示的各种噪声产生特征垂直对齐。图4是平面2的部分区域的进一步简化的图解视图,包括将图1的便携式设 备布置在其上方的预期路径。该预期路径在起始点或凹坑与停止点或凹坑之间延伸。图3 的曲线图被示出为与预期路径对齐并与地下障碍物相关。图5是图4的区域的简化图解视图,为正视图,其中,操作者沿着测量路径移动图 1的便携式设备。图6是图示出用于图1的设备处于噪声测量模式下的操作的一个实施例的流程 图。图7是图示出图1的设备的显示屏幕在对噪声测量进行设定期间的一个可能外观 的屏幕截图。图8是图示出图1的设备的显示屏幕在噪声测量期间的一个可能外观的又一屏幕 截图,其中,可以指示操作者沿着测量路径移动并且可以给其各种选项以控制并监视噪声测量。图9-11是图示出图1的设备的显示屏幕在噪声测量期间在沿着测量路径的三个 相应位置的可能外观的屏幕截图,并且其中,每个图示出了这些位置中相应的一个位置的 实时噪声。图12是图示出图1的设备的显示屏幕在噪声测量之后的一个可能外观的又一屏 幕截图,其中,操作者可令设备进入自动选择模式。图13是图示出图1的设备的显示屏幕的一个可能外观的又一屏幕截图,其为随后 的使用指定自动识别的发射频率,并且其中,给操作者提供有附加选项。图14是图示出图1的设备的显示屏幕的一个可能外观的又一屏幕截图,其示出了 已为沿着测量路径监视的大量所选频率确定的噪声值。图15是图示出图1的设备在噪声测量模式下的操作的另一个实施例的流程图。图16是图示出图1的设备的显示屏幕的一个可能外观的屏幕截图,其示出了可 呈现给用户的显示输出选项。图17是图示出图1的设备的显示屏幕的一个可能外观的屏幕截图,其响应于用户 对在一个或多个选定的频率下沿着预期路径所测量的噪声的显示的选择。
图18是图示出图1的设备的显示屏幕的一个可能外观的屏幕截图,其响应于用户 对操作区域的噪声分布图的显示的选择。图19a是图示出带有相干解调器的相干接收器的基带解码的过程图。图19b和19c是分别图示出曼彻斯特编码的位1和位0的波形图,其中,图19b示 出了位“1”的曼彻斯特编码的基带波形,图19c示出了位“0”的曼彻斯特编码的基带波形, 并且其中每一个都发生在具有对应于1比特时间段的长度的比特区域中。图19d是示出了比照信噪比绘制的误码率值的对数坐标图,其中,示出了完美解 调的曼彻斯特编码的OOSK的BER,并且误码率表示为Pe,信噪比表示为Eb/Nq。图19e是运用图解法图示出在发射器与接收器之间的距离(Itl处信号强度的确定 的过程图,其中,示出了距离发射器Cltl处的接收器的位置的Sci(Cltl)2估计。图19f是运用图解法图示出噪声值Ntl的确定的过程图,其中,示出了发射器关闭 情况下的N。估计。图19g是图示出下述技术的一个示例的流程图,所述计数用于按照检测到的噪声 在沿着钻探路径或者其他合适的路径的各点确定最大可用发射器深度。图20是图示出图1的设备的显示屏幕的一个可能外观的屏幕截图,其响应于用户 对操作区域内的最大可用发射器深度的显示的选择。图21是用于为可靠的数据解码预测最大可用操作深度的方法的另一实施例的流 程图。图22是图示出显示器的外观的一个示例的屏幕截图,其提供对所关注的发射器 频率的确认和用户选择。
具体实施例方式做出下列描述以使本领域一个普通技术人员能够制作和使用本发明,并且该描述 在专利申请及其要求的语境下提供。对所描述的实施例的各种修改对于本领域技术人员而 言将是显而易见的并且在此教导的一般原理可应用于其他实施例。因而,并非意图将本发 明限制于所示出的实施例,而是要使其与符合在此描述的原理和特征、包括修改例及其等 同物的最大范围相一致,其被限定在所附权利要求书的范围内。要注意的是,附图并未按比 例而实际上是以认为是最佳图示出所关注的特征的方式概略示出的。对于图中所提供的各 种视图,可采用诸如上/下、左/右等描述性术语,以增进读者的理解,并且这些术语决非 意图进行限制。现在回到附图,其中各图通篇用相同附图标记表示相同项目,紧接着注意图1,其 图示出便携式设备的一个实施例,该便携式设备一般用附图标记10表示。要注意的是, 为了保持图示清楚而未示出组件之间的电缆,但本领域一个普通技术人员结合该全部公 开内容要理解这些电缆存在并且可容易地实施。设备10包括三轴天线集束(three-axis antenna cluster) 11,其用于测量磁通量的表示为bx、by和bz的三个正交布置的分量。名 称为“ORTHOGONAL ANTENNA ARRANGEMENT AND METHOD”的第 6,005,532 号美国专利披露了 准备在这里使用的一个有用的天线集束,其与本发明一起被共同拥有并通过引用全部并入 此中。天线集束11与接收器部件12电连接,所述接收器部件12根据需要可以包括放大和 滤波电路。至于后者,可以提供数据检测滤波器作为该接收器部件的一部分。未示出与接
10收器部件的电连接,但要理解为该电连接存在。可提供倾斜的传感器装置14,用于测量引力 角度,由所述引力角度可确定磁通量在水平坐标系中的分量。设备10进一步包括图形显示 器16、接收器部件17、具有天线19的遥测装置18以及与各种组件适当地互连的处理部件 20。该处理部件可以包括数字信号处理器(DSP),所述DSP被配置成用以执行操作期间所需 的各种程序。应当理解,图形显示器16可以为触摸屏,以便有利于操作者对在屏幕上定义 的各种按钮进行选择,并且/或者有利于在屏幕上定义的各种按钮之间翻滚,以提供给操 作者选择。这类触摸屏可以单独使用或者与输入设备21例如键盘组合使用。后者可以在 触摸屏并非必需的情况下使用。而且,可以采用输入设备的许多变型并且其可以使用滚轮 以及其他合适的公知形式的选择设备。遥测装置及相关联的天线是可选的。处理部件可以 包括诸如一个或多个处理器、任何适当类型的存储器和模数转换器这样的组件。如本领域 所公知的,后者应当能够检测至少两倍于所关注的最高频率的频率。作为一个选项,GPS(全 球定位系统)接收器22可与GPS天线24 —起被包括。GPS组件可用以勘测坡度(survey grade),以便提供提高的位置确定准确度。在其中未使用GPS接收器的一个实施例中,可采 用某一其他形式的测量设备。作为以幻象示出的一个示例,可以将测量轮28支撑在支腿30 上,所述支腿30能可拆卸地与设备10附接。将传感器32安置在支腿30上,用于随着测量 轮28沿着地面34滚动监视其转动。该传感器可为任何合适的类型,例如,光电的、机械的 或霍尔效应的,并且适当地将测量轮28配置成与选定类型的传感器协调工作。传感器32 产生由处理部件20监视的信号,以便为下述目的对设备的移动定性,所述目的将在下面 变得显而易见。根据需要添加其他组件(未示出),例如,磁强计和超声波变换器,所述磁强 计用以帮助进行相对于钻头方向的位置确定,所述超声波变换器用于测量设备在地面上方 的高度。在本示例中,设备10被配置成用作为定位器,用于监视并跟踪移动经过地面的发 射器,如第6,496,008号美国专利(以下被称为'008专利)中所描述的,其与本申请一起 被共同拥有并通过引用全部并入此中。,008专利进一步提供了关于设备10的组件及其 用于跟踪并监视发射器在地下的操作的具体细节。在'008专利的示例中,发射器射出如 该发明的图2-4中所示的偶极子场(dipolefield)。如所将看到的,设备10进一步被配置 成用于在实际执行具体操作程序之前为发射器选择频率,发射器随后将以该频率在地面中 工作。这类操作程序包括,但不限于水平方向钻进操作(drilling operation)、回拉操作 (pullback operation)禾口勘察操作(survey operation),所述f占进操作用于形成f占探,所 述回拉操作可以在钻进操作之后执行,且所述勘察操作用于绘制地面中预先存在的通路。 另一类与这些讨论相关的操作程序是缆线定位。在缆线定位时,令地下缆线沿着其长度射 出电磁场。该定位功能可以在期望的操作程序期间由设备10提供,并且被用作为该设备的 一个模式,所述一个模式可被称为定位模式。不论将要执行的操作程序的具体类型为何,都应当理解,可以使发射器或探空仪 可用于任何频率下,但必须具有可互换的罩壳外形。通常,将在地面中工作的钻探工具或回 拉设备装置成用于容纳具有指定罩壳外形的发射器,从而能够通过仅安装精选的发射器就 可以在大量可用射出器当中选择定位信号。然而,将会期望关于哪一个可用发射器将会最 佳匹配具体操作程序而给操作者提供现场向导。参考图2,在平面图中图示出了将要在其中执行操作程序的区域100。具体而言, 钻机(drill rig) 102被图示出用于执行水平方向的钻进程序,以使钻头串(drill string)(未示出)从起始点112沿着预期或期望路径110延伸到停止点114,所述起始点112示出 为第一凹坑,所述停止点114示出为停止凹坑。应当理解,这些起始点和停止点的存在对于 使用便携式设备10执行将要描述的程序并非是必须的,并且示出这些凹坑是出于说明性 目的。预期路径在通向十字路口 118的通道116下方延伸。交通回路120被用于以已知的方 式控制交通信号122,使交通回路射出交通回路干扰124。公共事业线(utility line) 130 被埋入在十字路口中且在平面图中其本身与预期路径110相交。高架公共事业电力线136 位于十字路口近旁,并依据区域100在世界上的物理位置射出一般产生于50Hz或60Hz的 电力线干扰139及其谐波。应当理解,噪声环境的测量应当优选代表在随后的操作程序期 间,例如,在用于安装公共事业的水平方向钻进或回拉操作期间将会遇到的实际噪声环境。 在某些诸如回拉操作这样的情况下,预期路径是预先存在的钻探。对于其他操作程序例如 绘制现有公共事业线的操作程序而言,地下路径可以是预先存在的。结合图2参照图3,后者包括噪声功率P对沿χ轴的距离的曲线图138。所标绘的 三个频率包括12KHz,示出为实线并用附图标记140表示;19KHz,示出为虚线并用附图标 记142表示;和33KHz,示出为由用短划线分开的成对的长划线组成的线并用附图标记144 表示。应当理解,这三个频率代表可从诸如由钻探工具执行的地下发射器发射定位信号的 实际频率;然而,并非意图将这些频率作为限制而是为了示例性目的选择它们。任何合适的 发射频率都可利用并根据这些描述来考虑。据此,用图3中的标绘图代表对应于可用的任 何一组发射频率的发射器。图3的标绘图示出为与图2的区域100通常为垂直对齐关系, 以便图示出干涉产生组件在不同频率下会有的影响。例如,响应于交通回路干扰124,12KHz 下的标绘图140在位置X1处呈现波峰150,其具有较之于标绘图142或144在X1处呈现的 噪声功率要大的噪声功率。值得注意的是,波峰150大体至少与图2的公共事业线130对 齐。除波峰150之外,标绘图140所呈现的噪声功率中绝大部分大致都是沿着χ轴的三个 标绘图的最低点。响应于高架电力线噪声139,标绘图144在X2处呈现波峰152,其在另外 两个标绘图上方显著延伸。除标绘图140的波峰150的区域以外,标绘图144沿着χ轴进 一步呈现全部最高噪声值。虽然19KHz下的标绘图142与标绘图140相比并未显示出沿着 χ轴的许多位置的最低噪声,但值得注意的是,标绘图142并未如另外两个标绘图一样包含 明显的波峰。参考图4,区域100的简化的图解图示在平面图中示出了起始点112和停止点114 以及在它们之间延伸的预期路径110。示出了公共事业130其在该视图中与预期路径相交 的一部分。此外,图示出便携式设备10,且其通常被布置在预期路径的一端,用于至少在该 预期路径表现为地面的投影时至少通常沿着预期路径在方向151上移动。参考图5,在正视图中示出了区域100的简化的图解图示,其示出了起始点112、停 止点114以及在它们之间延伸的预期路径110。地面用附图标记152表示。预期路径被配 置成在公共事业130下面经过以便避免与该公共事业碰撞或接触。操作者154握住便携式 设备10并使其沿着延伸至停止点114的测量路径156在箭头151的方向上移动。要注意 的是,测量路径与图4的视图中的预期路径一致,为地面的投影。在本示例中,操作者154 使测量轮128至少通常沿着预期路径110在地面的投影滚动。如将进一步讨论的,测量轮 128和支腿130并非是必需的。即是说,可使用便携式设备10的移动的其他形式的测量, 例如,可指示GPS接收器22或操作者154使便携式设备在箭头151的方向上以恒定速度移动。在另一个实施例中,可以使用加速计装置用于检测移动。例如,在诸如计步器这类的设 备中,加速计响应于由脚步产生的移动而产生脉冲,并且对所得到的脉冲计数,以提供距离 指示。如本领域所公知的,通过将加速计脉冲数据和与单个操作者的步幅有关的信息相结 合,能够使移动距离表现得更为精确,尽管这样的精度并不认为是必要的。如本领域所公知 的,例如可以通过使用利用地球磁场的磁传感器来检测方向性移动。为了本示例的目的,关 于位置k,k+l. . . k+n对设备10的移动定性,其中,便携式设备的当前位置是位置k,且位置 k = η位于停止点114处。参考图6和7,前者是图示出用于设备10的操作的方法的一个示例的流程图,其用 附图标记200表示,而后者图示出设备10的屏幕16。首先,在图6的202,设备10可以请 求与预期路径的目标深度相关的信息以及与发射器相关的信息。在图7的对应的屏幕截图 中,操作者154(图5)可以输入选定的或目标操作深度。也可输入发射器功率。在本示例 中,已经用输入线205在204选择了 8英尺的深度。编辑选择206可以提供对屏幕上的任 何输入的修订。输入线208提供与可用射出器频率相关的信息的输入。在本示例中,操作 者已输入12ΚΗζ、19ΚΗζ、33ΚΗζ的值,其对应于图3和4中为说明性目的而示出的频率。实 际上,操作者可以输入射出器频率的任何组合。当然,可以通过例如在屏幕上直接或者使用 图1的输入设备21选择编辑特征206来修订当前输入。一旦操作者结束了数据输入,操作 者就会选择“开始噪声测量”按钮210。在噪声测量模式下,其可被称为多模式设备中的设定模式,操作前进至图6的 220。依据设备10的具体实施例,可伴随着噪声的测量对设备10的移动进行监视。即是 说,噪声测量可以基于设备10的移动加权。如上所述,通过随着测量轮28沿着地面滚动监 视其转动或者通过使用GPS 22来提供本示例中的移动监视。关于根据图6的设备10的操 作,将看到噪声测量在一系列间隔上进行。每个间隔都相当短,并且基于正在监视的发射 器频率选择间隔的时间段。据此,对该间隔检测到一组噪声环境信息,其可用以建立以特定 频率和/或以连续方式在整个频率范围上存在的噪声。图8图示出测量模式期间的屏幕16的外观的一个实施例,其可以与根据图6的正 在进行的操作一起显示。此屏幕指示操作者沿着测量路径移动并以在屏幕上定义的按钮的 形式提供大量选项。在一个选项中,操作者可以选择“实时显示”按钮230,其将令设备显示 对操作者已选定的发射器频率的当前噪声测量。下面将更加详细地讨论这样的实时显示。 另一个选项是“暂停”按钮232,其响应于用户的激励而令处理部件20在当前间隔中至少 暂时停止采集噪声信息。该暂停功能通过图6的步骤234实施。一旦进入暂停模式,该步 骤就令设备10对另一用户交互监视按钮232。在暂停模式下,屏幕16可以给操作者提供 可以闪现的“已暂停”指示且按钮232可以显示“重新继续”。与此同时,设备10可以提供 听觉指示,例如,周期性的嘟嘟声,以将操作者的注意力引至设备的已暂停状态。响应于按 钮232的另一操作者激励的检测,图6中的操作移至240,其中,对当前间隔重新继续噪声测 量。在242,响应于当前噪声间隔的结束,如果记录了移动信息,则可以将所测得的噪声值 与移动信息一起保存。应当理解的是,为了处理目的可以将噪声信息和可选的运动信息储 存在易失性存储器中。在244,将噪声信息转换至频域,以对当前间隔建立电磁噪声的频率 组成。频率组成可以被表示为噪声功率相对于频率。可以公知的方式,例如,用快速傅立叶 变换(TFT)执行该转换。应当理解的是,将要描述的另一个实施例不必使用时域_频域变换。基于转换的结果,在246,对当前间隔在频域中建立噪声的功率谱。此功率谱可以被显 示出,这将在下面进一步讨论。在248,可以对每一个所关注的频率建立噪声值。在本示例 中,所关注的频率为12KHz、19KHz和33KHz。在250,可以按比例绘制并保存所关注的频率 的噪声值。在252,可以将实时噪声显示在图1的屏幕16上。尽管这些噪声值对应于当前 间隔,但应当理解的是,该间隔持续时间可以很短,至少从实践的观点来看噪声显示似乎是 连续的。例如,近似0. 1秒的间隔持续时间实质上对于操作者而言是难以觉察的并提供对 足够低的频率的监视。对于沿着测量路径的多个位置,下文中紧接着将对噪声信息的显示 进行详细描述。结合图2和3参照图9,图示出其中操作者在图3的位置X1处选择了实时显示的显 示器16。以条形图形式示出该显示,其中,横轴300代表频率且纵轴302代表0-10刻度上 的噪声功率。12KHz直条304延伸至噪声刻度上的约7. 1,19KHz直条306延伸至噪声刻度 上的约3. 05且33KHz直条308延伸至噪声刻度上的约4. 8。12KHz的峰值310在直条304 上用星号标出,且12KHz的平均值312在直条304的主干上用三角形标出。要注意的是,虽 然为了图示清楚而对于其余频率以及在相关图中没有示出峰值和平均值,但对于每个频率 都可以显示这样的值。这些峰值和平均值可以任何合适的方式,例如,用这里所描述的技术 来确定。在一个实施例中,可以确定电磁噪声的噪声功率相对于频率的标绘图316,并且可 以装置显示器16用于图示出该标绘图。在本示例中,标绘图316表现平均噪声功率,虽然 波峰噪声功率正好是可容易显示的,但为了保持图示清楚而没有示出。因而,在平均频率组 成方面,可以将噪声的功率谱表现为噪声功率,其是由测量期间所得到的噪声数据比照频 率来绘制的。测量期间可以对应于单个间隔,如结合图6所描述的,或者对应于一些间隔的 组合,其中,每个测量间隔都给组合的或整组噪声环境信息贡献一组噪声数据。图9的显示器16还包括第一阈值320和第二阈值322,这两个阈值并非必须示出 在显示器上,但为了说明性目的而已示出。要注意的是,噪声阈值的特定电平可以基于在图 6的步骤202中输入的信息。这类信息可以包括但不限于发射器在随后的操作程序期间的 预期深度以及每个可用的发射器的发射功率和频率。应当理解的是,可以使用颜色来强调 与阈值有关的噪声值,但这类颜色由于图示制约而未提供。在操作者未输入此信息的情况 下,设备10不必显示阈值。在本示例中,第一阈值320下方的区域可以被认为是低度噪声 区,在该区域中达到峰值的直条的颜色可以示出为绿色。第一阈值320与第二阈值322之间 的区域可以被认为是中度噪声区,在该区域中达到峰值的直条的颜色可以示出为黄色。鉴 于这一点,直条306和308都将示出为黄色。第二阈值322上方的区域可以被认为是高度 噪声区,在该区域中达到峰值的直条的颜色可以示出为红色。相应地,直条304的颜色将示 出为红色。例如,在使用单色显示器的实例中,通过在噪声直条内打上阴影或使用灰度值, 其中直条的明暗对应于其相关联的噪声值,可以对各种噪声范围定性。要注意的是,使用图 9中的暂停模式按钮232可以进入暂停模式。而且,使用显示屏幕上的按钮可以给操作者提 供其他选项。选择暂停模式可以使显示器16返回到图8的外观。参照图9,应当理解的是,显示器16可以非常多的方式示出实时噪声信息而仍然 处于这里的教导的范围之内。例如,可以将条形图格式修改成使这些直条直接靠在一起并 且每个直条都包括用数字表示的频率指示。此外,条形图格式并非是必需的。在一个途径 中,显示器可以完全依靠数字表示或者可以使用任何其他合适的形式的图形表现,所述数
14字表示实质上列出每个频率及其相关联的噪声值。图10图示出其中操作者在图3的位置X2处选择了实时显示的显示器16。12KHz 直条304延伸至噪声刻度上的约1. 8且基于阈值320其颜色可以为绿色,19KHz直条306延 伸至噪声刻度上的约3. 2且其颜色可以为黄色,并且33KHz直条308延伸至噪声刻度上的 约8. 9且其颜色可以为红色。图11图示出其中操作者在图3的位置X3处选择了实时显示的显示器16。12KHz 直条304延伸至噪声刻度上的约2. 9且基于阈值320其颜色可以为绿色,19KHz直条306延 伸至噪声刻度上的约3. 8且其颜色可以为黄色,并且33KHz直条308延伸至噪声刻度上的 约5. 7且其颜色可以为黄色。参照图4-6和8,在到达停止点114(图4)时,操作者在显示器16上选择“停止噪 声测量”按钮400(图8)。作为响应,步骤402 (图6)终止噪声数据的采集。之后,在404, 基于对发生在设备10沿着测量路径移动期间的时间间隔所储存的信息,确定每个所关注 的频率的平均噪声功率。在执行此确定时,可以使用在可选步骤242测量的移动信息来对 噪声信息加权,以解决操作者缺少移动会引发的问题,即是说,操作者缺少移动会趋于不成 比例地强调这些间隔中的至少一些间隔。可替代地,在用户终止噪声测量之前,步骤402令 设备10进入405处的下一测量间隔并将操作引回步骤220,用于下一测量间隔。参照图6、12和13,在406,对操作者呈现屏幕16上的选项(图12),以使用自动 选择模式,用于自动选定这些频率其中之一。为了使用该自动选择模式,用户选定“是”按 钮410 (图12)。响应于该选择,在一个实施例中,图6的步骤412比较每个频率的平均噪 声功率并识别具有最低值的一个平均噪声功率。然后,步骤414在显示器16上指示选定的 频率,例如,如图13所示,用附图标记416指示。在本示例中,由于下述原因,所以自动选定 的频率为12KHz,所述原因根据接下来对平均噪声功率的特定值的进一步讨论将显而易见。 在另一个实施例中,由于每个频率的噪声值与阈值相关,所以自动选择可以考虑每个频率 的噪声值。例如,可以将下述频率从作为发射频率的可用选择中排除,所述频率其在沿着测 量路径的任一点处的峰值都超过第二阈值322 (参见图9,作为12KHz频率的一个示例)或 者保持在第二阈值上方长于预定的一段时间。作为另一个示例,当一特定频率相对于其他 频率保持在第一阈值320下方较长的一段时间时,自动选择可偏向于选择该特定频率作为 发射频率。频率选择可相对于阈值对噪声性能进行加权。例如,频率选择可侧重于相对于 第一阈值320的噪声性能,其比相对于第二上阈值322的噪声性能更为重要。在其他实施 例中,用户例如可使用触摸屏显示器来标记障碍物和/或其他关注点的位置,从而使提议 的钻进路径可以与指定的障碍物以及相关联的噪声值一起呈现在显示器上。鉴于这一点, 了解到,给定频率的噪声值在障碍物近旁超过第二阈值322,这可以是选择不使用该给定频 率作为发射频率的因素。另一方面,可以忽略在钻进路径的端点处的凹坑近旁超过第二阈 值322。在任何实施例中,每当正采用的选择参数没有提供充分确定的结果时,自动选择特 征都可以默认为手动操作模式。例如,全部频率都可能超过第二阈值322并且另外平均噪 声值也相对较接近。图13的显示器16提供给操作者使用按钮417切换至手动操作的选项,这将导致 对每个频率都显示平均噪声功率和波峰噪声。当然,如果操作者希望对最佳噪声值作出他 或她自己的决定,则操作者可以选择“否”按钮418,这可导致在中间显示平均和波峰噪声功率。图13中的显示屏幕在双模式设备中提供按钮419,用于离开噪声测量/设定模式并进 入定位模式。现在将注意力引至图6和14。如果操作者选择不使用自动选择特征,则步骤420 令显示器16产生如其在图14中所呈现的外观。对每个频率均示出波峰噪声和平均噪声功 率值。例如,可以基于显示出最高噪声功率的测量间隔来确定给定频率的波峰噪声。当然, 波峰噪声功率的确定可以在正在进行的基础上对其进行监视及更新。分别对应于12KHz、 19KHz和33KHz,用旗形标志(flag) 501、502和504示出波峰噪声值。12KHz的波峰近似 为7. 1,19KHz的波峰近似为3. 6且33KHz的波峰近似为8. 9。分别对应于12KHz、19KHz和 33KHz,用直条506、508和510表示每个频率的平均噪声功率。12KHz的平均噪声值近似为 2. 2,19KHz的平均噪声值近似为2. 8且33KHz的平均噪声值近似为5. 0。要关注的是,尽管 12KHz具有最低平均噪声值,但最低波峰噪声值由19KHz呈现。鉴于这一点,操作者会关注 于了解每个波峰噪声值沿着测量路径发生在何处。在一个实施例中,设备10可以跟踪该信 息并且例如邻近于显示器16上个每个旗形标志指示每个噪声波峰的这类位置。在图14中, 对于12KHz、19KHz和33KHz,每个波峰的χ轴位置分别被指示为500、900和650英尺。操作 者可以将这些波峰的位置与沿着预期路径的任何地下障碍物的位置进行比较,以便确保 在障碍物区域内保持定位精度。在本示例中,公共事业130(参见图4和5)位于约450英 尺处,非常接近12ΚΗζ的波峰噪声值。在这样的情形中,即使12ΚΗζ呈现出最低平均噪声功 率,操作者也可选用12ΚΗζ以外的发射频率。操作者可回忆起图9示出的位置X1的实时显 示示出了 19ΚΗζ在障碍物130近旁呈现出最低噪声。当然,操作者可以返回到位置X1重复 实时噪声测量。作为另一示例,操作者可认为接近停止点114的精度是最为重要的。在此 情况下,操作者可以基于位置X3的显示(图3和11)选定12ΚΗζ作为发射器频率。当然, 操作者可单根据呈现最低平均噪声值而选择12ΚΗζ。参照图14,应当理解的是,可以使用以不同颜色表示、打上阴影和/或改变明暗来 相对于阈值320和322适当地强调波峰和平均噪声值。例如,平均值噪声直条506和508的 颜色可以为绿色而平均值噪声直条510的颜色可以为黄色。波峰噪声旗形标志501和504 可以为红色而波峰噪声旗形标志502可以为黄色。在一个实施例中,操作者可以选择显示 特征,其比照χ轴标绘出发射器频率中选定的一个频率的噪声功率。此标绘图例如可以从 图4提取的线图之一的形式呈现在显示器16上。现在将注意力转向图15,此图是图示出用于设备10的操作的方法的另一个示例 的流程图,其总体上用附图标记200'表示。要注意的是,方法200'与图6的方法200共 有大量步骤。据此,为了简短的目的,将不再重复对这些共有步骤的描述且读者可以参照以 上讨论。然而,图15中的技术的使用存在不同,其建立了一个或多个指定发射器频率下的 噪声。在一个实施例中,例如,使用可调谐窄带接收器电路来进行噪声测量,上述可调谐窄 带接收器相继连续被调到所关注的每一个频率。在其他实施例中,可以应用数字滤波器技 术,与在整个频谱上的噪声测量不同,这使得确定离散频率下的噪声测量。方法200'以前述步骤202开始,其中,例如如上所述,发射器频率、功率和目标深 度信息可以由操作者输入。在600,设定设备10以接收所关注的第一频率。这可以是任何 频率,但出于简明的目的一般会是最低或最高频率。在本示例中,假设最低频率12ΚΗζ为第 一频率,并且将19ΚΗζ和33ΚΗζ分别作为第二和第三频率。通常,在一个实施例中,可以进行离散傅立叶变换(DFT)以确定存在于所关注的频率中的噪声。应当理解的是,可以采用 任何合适的技术,包括,例如,戈策尔(Goertzel)滤波器,或作为另一个示例,小波滤波器。 在602,设备10进入进行噪声测量的测量模式。然后,步骤234实施上述暂停特征,其令噪 声测量中止并响应于用户交互而重新继续。在604,对当前频率进行噪声测量和移动监视。 在606将所测得的噪声值与当前频率的移动信息一起保存。如上所述,移动信息是可选的, 但可以用于在测量路径的范围内确定平均噪声值时对数据加权。在610,关于是否要监视 另一频率做出决定。如果要监视,则在612将频率增至所关注的下一频率,并且对作为当前 频率的下一频率,在600开始重复操作。另一方面,如果已对当前间隔的全部所关注的频率 都进行了测量,则操作移至步骤250,所述步骤250对当前间隔按比例放大噪声值并保存。 据此,步骤606相继连续产生一组噪声环境信息,该组信息包含了全部所关注的频率。步骤 252提供对来自当前间隔的值以实时显示的形式进行的显示,如上所述,以提供给操作者以 连续监视沿着测量路径的噪声读取的时机。沿着测量路径的每个间隔都照这样处理,直到 在402终止数据采集为止。剩余的程序与以上描述一致地执行。如上所述,使用图15的技 术容易实施显示器16上的各种显示。参照图1,在其中设备10可用于噪声测量和定位的双模式的实施例中,将会有利 的是,在这两个模式中使用相同的天线和接收器电路。即是说,天线11和接收器部件17可 以用于这两个模式。这样,由于用相同的组件测量噪声环境和定位信号,所以不必确定作为 频率的函数的天线和接收器组合的灵敏度。换言之,该灵敏度对于这两个测量将是相同的。应当理解的是,设备10可容易用于在将要执行的操作程序为缆线定位程序时勘 测噪声环境。例如,操作者可以使用基于缆线对地面的投影的测量路径。当然,操作者可 以输入可用作为缆线定位频率的频率。然而,应当理解的是,施加缆线定位频率会在噪声 勘测期间产生将不存在的错误定位信号。在名称为“DISTINGUISHING FALSE SIGNALS IN CABLELOCATING”的第7,151,375号美国专利中披露了一种极为有利的系统和方法,所述系 统和方法实质上消除在缆线定位程序期间出现的错误缆线定位信号的作用,其与本发明一 起被共同拥有并通过引用全部并入此中。参考图16,可以响应于图6和15的步骤420将显示器输出选项提供给操作者。在 步骤420,屏幕16可以给用户提供大量选项,这些选项可以用任何合适的方式例如上述方 式来选择。例如,一个选择用附图标记450表示并允许用户选择条形图显示,其可以是图14 的显示。结合图16参照图17,选择452允许用户选择对应于一个或多个单独的以及先前选 定的发射器频率的噪声功率的显示,例如其可以如图17中所示呈现为比照距离标绘的噪 声功率。据此,提供并且可显示对于每个选定的频率的电磁噪声的功率谱相对于距离的标 绘图。现在,参考图18并结合图16,另一选择454提供噪声分布图456的显示。这类噪 声分布图可以包含比照距离标绘的频率,并且用颜色、灰度明暗或代表噪声功率的恒定值 的等高线示出该分布图上任何指定位置的噪声值。在本示例中,由于与本讨论相关联的图 示限制,所以使用了等高线458。分布图的大片区域呈现白噪声,其在若干位置用附图标记 460指示。然而,在分布图456上可看见噪声波峰462和464,从而用户可选择用虚线示出 的发射器频率470,用于将要在与分布图456相对应的区域中执行的地下操作,所述发射器频率470避免了噪声峰值。图16进一步提供选择474,其允许用户返回到自动选择模式并 可提供图13中所示的显示。鉴于前述,提供一设备以与系统结合一起使用,在所述系统中,使发射器在操作程 序期间移动经过区域中的地面,所述操作程序会涉及发射定位信号的地下发射器或发射定 位信号的地下缆线。所述信号具有可选自为一组离散频率当中的一个离散频率的发射频 率。作为一个示例,可以基于手边可用的探测器来选择选定的发射频率,所述探测器可以内 置于诸如钻探工具或回拉装置这类地下设备中,其中,每个可用的探测器都被配置用于以 不同的离散频率发射。作为另一示例,可对指定的探测器进行调谐或设定使其以选定的离 散发射频率发射。作为又一示例,指定的探测器可被配置用以同时发射多个离散发射频率, 并且可以对协作的接收器进行调谐使其只接收选定的离散发射频率。在缆线定位的例子 中,地上发射器可以被配置用以令所期望的缆线射出所关注的频率。据此,以合适的方式, 可以将发射频率设定为发射频率范围中间隔开的多个离散发射频率其中之一。所述区域包 括可以在该区域内变化且遍及所述发射频率范围的电磁噪声。这里所描述的便携式设备通 常包括接收器,所述接收器具有至少包含所述发射频率范围的接收器带宽,用于在所述发 射频率范围中测量所述电磁噪声以建立所述电磁噪声的频率组成,所述电磁噪声的频率组 成用于在选择离散发射频率其中之一作为选定的发射频率时使用,所述选定的发射频率随 后在所述操作程序期间由接收器接收。所期望的是,根据存在的噪声,为用户确定并显示与发射器在沿着钻探路径或其 他地下路径和/或与钻探路径或其他地下路径相关联的指定点的最大可用深度相关的信 息,用于可靠的数据接收。以下,将紧接着描述用于确定最大可用深度的技术的一个实施 例。首先,假定是理想相干接收器,其中,已对载波进行了相干解调,并且已对位/符 号时序和信息包同步图案进行了完全跟踪。如图19a的过程图中所示,可以对最后得到的 基带数据进行最优化解码。基带数据在数学上可以如下表示r(t) = Si(t)+v(t) ;i = {0,1}(1)其中,如在这里所提出的全部表达式中使用的,r(t)为所接收到的信号,单位为伏 特,且t为时间,单位为秒。函数Si(t)是在图19b和19c的图解标绘图中图示出的曼彻斯 特编码基带数据波形,所述图19b和图19c示出了电压中的信号幅度对时间,并且其中分别 示出了位1和位0的波形。虽然在本说明书的语境下使用了曼彻斯特编码,但应当理解的 是,可以采用任何合适的类型的编码。此外,要考虑到,本领域一个普通技术人员利用所掌 握的该全部公开内容而能够容易将所揭示的教导应用于其他形式的编码。可以假定所发射的数据被加性高斯白噪声(AWGN)v(t)污染。如果AWGN具有指数 为α2的正态分布(即,平均值为0的高斯),则概率密度函数(PDF)可以表示为
权利要求
一种用于与系统结合使用的便携式设备,在所述系统中,使发射器在操作程序期间移动经过一区域中的地面,同时发射具有发射频率的发射器信号,并且所述发射频率可被选择为在发射频率范围中间隔开的一组离散发射频率其中之一,并且所述区域包含会在所述区域内变化且覆盖所述发射频率范围的电磁噪声,所述便携式设备包括接收器,具有至少包含所述发射频率范围的接收器带宽,用于至少在所述发射频率范围中测量所述电磁噪声以建立所述电磁噪声的频率组成,以用于选择离散发射频率其中之一作为选定的发射频率,所述选定的发射频率随后在所述操作程序期间由接收器接收。
2.如权利要求1所述的便携式设备,进一步包括显示器,用于显示电磁噪声的至少存在于所述发射频率范围中的频率组成。
3.如权利要求1所述的便携式设备,其中,所述接收器包括检测器,用于通过在测量 期间监视所述电磁噪声来检测所述电磁噪声以产生噪声信号;和处理部件,用于处理所述 噪声信号以建立所述电磁噪声的对应于所述测量期间的平均频率组成。
4.如权利要求3所述的便携式设备,进一步包括移动监视装置,用于建立所述便携式设备处于移动状态或静止状态其中的一种状态, 并且被配置用以与所述处理部件协作,以通过响应于所述静止状态中止电磁噪声的所述监 视并且之后响应于所述移动状态重新继续所述电磁噪声的所述监视,来启动一暂停间隔, 从而使存在于所述静止状态期间的电磁噪声实质上对所述平均频率组成没有影响。
5.如权利要求1所述的便携式设备,包括用于接收一个或多个用户交互的用户输入装 置,并且其中,所述接收器被配置用以与所述用户输入装置协作用于接受用户交互,以通过 中止电磁噪声的测量并且之后重新继续所述电磁噪声的测量来启动一暂停间隔,从而使存 在于所述暂停间隔期间的电磁噪声实质上对所述平均频率组成没有影响。
6.如权利要求1所述的便携式设备,其中,所述接收器被配置用于在一系列测量时间 间隔上检测电磁噪声,并且建立所述电磁噪声的对应于每个所述测量时间间隔的频率组 成。
7.如权利要求1所述的便携式设备,其中,所述接收器被配置用于基于所述电磁噪声 的频率组成自动选择所述选定的发射频率。
8.如权利要求7所述的便携式设备,包括用于指示所述选定的发射频率的显示器。
9.如权利要求1所述的便携式设备,其中,所述接收器被配置用于在时间间隔上建立 所述电磁噪声的功率谱并且包括一显示器,所述显示器被配置用于描绘所述电磁噪声的功 率谱。
10.如权利要求9所述的便携式设备,其中,所述接收器产生所述电磁噪声的所述功率 谱相对于频率的标绘图,并且所述显示器被配置用于图示出所述标绘图。
11.如权利要求9所述的便携式设备,其中,所述接收器对所述发射频率范围中的选定 的频率产生所述电磁噪声的功率谱相对于距离的至少一个标绘图,并且所述显示器被配置 用于图示出所述标绘图。
12.如权利要求1所述的便携式设备,包括用户输入装置,用于接收一个或多个用户 交互;和处理器,被配置用以与所述用户输入装置协作,以识别在所述用户交互中选定的一 组所述离散发射频率。
13.如权利要求12所述的便携式设备,包括显示器,并且其中,所述处理器被配置用于对所述一组离散发射频率内的每个发射频率从所测得的电磁噪声中产生出离散噪声级别, 并且用于驱动所述显示器以指示与所述一组离散发射频率中每个所述离散发射频率相关 联的噪声级别。
14.如权利要求13所述的便携式设备,其中,所述处理器被配置用于将所述显示器限 制到所述一组离散发射频率,而不显示与在所述用户交互中未选定的任何离散发射频率相 关联的噪声级别。
15.如权利要求1所述的便携式设备,其中,所述接收器被配置用于在所述操作程序期 间接收所述定位信号,并且所述便携式设备进一步包括与所述接收器通信的定位装置,用 于在所述操作程序期间从所述接收器获取所述发射器信号,用于在跟踪发射器的地下位置 时使用。
16.如权利要求1所述的便携式设备,其中,所述接收器包括天线阵列,所述天线阵列 被配置用于检测沿着三个正交对置的接收轴的所述电磁噪声。
17.如权利要求16所述的便携式设备,其中,所述天线阵列被配置用于在所述操作程 序期间接收所述发射器信号。
18.一种用于与系统结合使用的便携式设备,在所述系统中,使发射器在操作程序期间 移动经过一区域中的地面,同时发射具有发射频率的发射器信号,并且所述发射频率可被 选择为在发射频率范围中间隔开的一组离散发射频率其中之一,并且所述区域包含会在所 述区域内变化且覆盖所述发射频率范围的电磁噪声,所述便携式设备包括接收器,具有至少包含所述发射频率范围的接收器带宽并被配置用于在下列模式下操 作(i)设定模式,用于至少在所述发射频率范围中测量电磁噪声以建立所述电磁噪声的 频率组成,以用于选择离散发射频率其中之一作为选定的发射频率,所述选定的发射频率 随后在所述操作程序期间由接收器接收;和(ii)定位模式,用于接收所选定的发射频率以 提供与所述发射器相关的特定信息。
19.一种用于与系统结合使用的方法,在所述系统中,使发射器在操作程序期间移动经 过一区域中的地面,同时发射具有发射频率的发射器信号,所述发射器信号的特征在于发 射频率,所述发射频率是可选择的以便将所述发射频率设定为发射频率范围中间隔开的多 个离散发射频率其中之一,并且所述区域包含会在所述区域内变化且覆盖所述发射频率范 围的电磁噪声,所述方法包括在所述操作程序之前,检测所述区域中的电磁噪声,以产生一组噪声环境信息;以及分析该组噪声环境信息,以建立电磁噪声的频率组成,以用于将所述发射频率选择为 所述多个离散发射频率其中之一。
20.如权利要求19所述的方法,包括提供便携式设备,用于通过使便携式设备沿着至 少一部分地上通道移动来执行电磁噪声的所述检测,所述地上通道的一部分与发射器的预 期地下移动是间隔开的。
21.如权利要求20所述的方法,其中,所述预期地下移动由预先存在的地下通道限定, 并且移动使得所述便携式设备至少大致沿着所述地下通道对地面的投影移动。
22.如权利要求20所述的方法,其中,所述预期地下移动由随后通过钻探工具形成的 地下通道而限定,所述钻探工具携带所述发射器使得所述地下通道为所述钻探工具的预期 路径,并且移动使得所述便携式设备至少大致沿着并在所述预期路径上方移动。
23.如权利要求19所述的方法,包括显示至少存在于所述发射频率范围中的电磁噪声 的频率组成。
24.如权利要求19所述的方法,其中所述检测在测量时间段上产生噪声信号,并且对 所述噪声信号的处理产生了该组噪声环境信息,以建立对应于所述测量时间段的电磁噪声 的频率组成。
25.如权利要求19所述的方法,其中,所述检测电磁噪声信号在一系列相继连续的时 间间隔中执行,从而对应于每个相继连续的时间间隔记录一组噪声数据,以建立于与每个 相继连续的时间间隔相关联的频率组成。
26.如权利要求25所述的方法,包括配置便携式设备,用于执行所述检测和所述分 析,使得所述便携式设备可以沿着地上通道移动,所述地上通道与所述发射器的预期地下 移动是间隔开的,并且随着使所述便携式设备沿着至少一部分所述地上通道移动,启动所 述检测;以及当所述便携式设备不沿着所述一部分地上通道移动时,暂停所述检测。
27.如权利要求25所述的方法,包括配置便携式设备,用于所述执行所述检测和所述 分析,使得所述便携式设备可以沿着地上通道移动,所述地上通道与所述发射器的预期地 下移动是间隔开的;以及使所述便携式设备在所述检测期间沿着至少一部分所述地上通道 以至少大致恒定的速度移动,使得每个时间间隔的频率组成沿着该部分所述地上通道至少 近似均等地被加权。
28.如权利要求25所述的方法,包括配置便携式设备,用于所述执行所述检测和所述 分析,使得所述便携式设备可以沿着地上通道移动,所述地上通道与所述发射器的预期地 下移动是间隔开的;并且进一步配置便携式设备,用于测量沿着地上通道的移动并基于所 测得的移动对每个相继连续的时间间隔的频率组成进行加权。
29.如权利要求19所述的方法,包括显示所述频率组成。
30.如权利要求19所述的方法,包括基于用于在所述操作程序中使用的电磁噪声的 频率组成,自动地以电子方式选择所述离散发射频率其中之一作为所述发射频率。
31.如权利要求19所述的方法,其中,所述分析建立在一时间段上的所述电磁噪声的 功率谱,并且包括显示该电磁噪声的功率谱。
32.如权利要求31所述的方法,包括产生电磁噪声的所述功率谱相对于频率的标绘 图,并显示所述标绘图。
33.如权利要求31所述的方法,包括对所述发射范围中的选定的频率产生电磁噪声 的所述功率谱相对于距离的至少一个标绘图,并对所述选定的频率显示所述标绘图。
34.如权利要求19所述的方法,包括提供具有处理部件的便携式设备,用于执行所述 检测和所述分析,并且进一步提供用户输入装置作为所述便携式设备的一部分,用于接收 一个或多个用户交互,并配置所述处理部件用以与所述用户输入装置协作以识别在所述用 户交互中选定的一组所述离散发射频率。
35.如权利要求34所述的方法,包括使用所述处理部件对所述一组离散发射频率内 的每个发射频率从所测得的电磁噪声中产生出离散噪声级别,并且显示与所述一组离散发 射频率中每个所述离散发射频率相关联的离散噪声级别。
36.如权利要求35所述的方法,包括将所述显示器限制到所述一组离散发射频率,而 不显示与在所述用户交互中未选定的任何离散发射频率相关联的噪声级别。
37.如权利要求19所述的方法,包括提供便携式设备,用于执行所述检测和所述分 析,并且进一步使所述便携式设备配置有定位装置,用于在所述操作程序期间接收所述发 射器信号并跟踪所述发射器在所述地下通道中的地下位置。
38.如权利要求19所述的方法,包括检测沿着三个正交对置的接收轴的电磁噪声。
39.如权利要求38所述的方法,包括使用天线阵列以检测沿着三个正交对置的接收 轴的电磁噪声,并且之后使用该天线阵列在所述操作模式期间接收所述发射器信号。
40.一种用于与系统结合使用的便携式设备,在所述系统中,在操作程序期间从一区域 中的地面内发射电磁定位信号,所述定位信号包含可从在发射频率范围中间隔开的一组离 散发射频率中选择的发射频率,并且所述区域包含会在所述区域内变化且覆盖所述发射频 率范围的电磁噪声,所述便携式设备包括接收器,具有至少包含所述发射频率范围的接收器带宽,用于至少在所述发射频率范 围中测量所述电磁噪声以建立所述电磁噪声的频率组成,以用于选择离散发射频率其中之 一作为选定的发射频率,所述选定的发射频率随后在所述操作程序期间被用作为所述定位 信号。
41.一种用于与系统结合使用的方法,在所述系统中,在操作程序期间从一区域中的地 面内发射电磁定位信号,所述定位信号包含可从在发射频率范围中间隔开的一组离散发射 频率中选择的发射频率,并且所述区域包含会在所述区域内变化且覆盖所述发射频率范围 的电磁噪声,所述方法包括将接收器配置成包括至少包含所述发射频率范围的接收器带宽,用于至少在所述发射 频率范围中测量所述电磁噪声以建立所述电磁噪声的频率组成,以用于选择离散发射频率 其中之一作为选定的发射频率,所述选定的发射频率随后在所述操作程序期间被用作为所 述定位信号。
42.一种用于与系统结合使用的便携式设备,在所述系统中,在操作程序期间从一区域 中的地面内发射电磁定位信号,所述定位信号具有可从在发射频率范围中间隔开的一组离 散发射频率中选择的发射频率,并且所述区域包含会在所述区域内变化且覆盖所述发射频 率范围的电磁噪声,所述便携式设备包括接收器,具有至少包含所述发射频率范围的接收器带宽并被配置用于在下列模式下操 作(i)设定模式,用于至少在所述发射频率范围中测量电磁噪声以建立所述电磁噪声的 频率组成,以用于选择离散发射频率其中之一作为选定的发射频率,所述选定的发射频率 随后在所述操作程序期间被用作为所述电磁定位信号;和(ii)定位模式,用于接收所选定 的发射频率以提供与所述电磁定位信号相关的特定信息。
43.一种用于与系统结合使用的方法,在所述系统中,使发射器在操作程序期间移动经 过一区域中的地面,同时发射发射器信号,并且所述区域包含会在所述区域内且基于频率 变化的电磁噪声,所述方法包括在所述操作程序之前,在地上位置检测所述区域中的电磁噪声;至少部分基于所检测到的电磁信号,确定用于在地上位置接收所述发射器信号的发射 器的预测最大操作深度;以及至少在所述操作程序之前指示所述预测最大操作深度。
44.如权利要求43所述的方法,其中,所述发射器信号可以在所述操作程序期间以一发射频率进行发射,并且其中,确定所述预测的最大操作深度包括建立至少在所述发射频 率下的电磁噪声的平均值,且之后,至少部分基于所述平均值,对所述发射器信号建立阈值 信号值,以用于建立所述预测的最大操作深度。
45.如权利要求44所述的方法,其中,确定预测最大操作深度包括建立所述电磁噪声 的标准偏差,并且结合所述平均值使用该标准偏差,以建立所述预测最大操作深度。
46.如权利要求43所述的方法,其中,所述发射器信号可在所述操作程序期间以多个 不同频率其中之一发射,并且其中,所述确定包括对每一个所述发射器频率建立发射器的 最大操作深度,且所述指示包括显示所述多个不同频率中的每一个频率的最大操作深度。
47.如权利要求43所述的方法,其中,所述发射器信号可在所述操作程序期间由所述 发射器发射,包含调制数据,并且所述方法进一步包括发射由仿真调制数据调制的仿真发 射信号,且所述检测包括与所述电磁噪声一起接收所述仿真发射信号,且确定预测最大操 作深度包括修正所述仿真发射信号,以基于所述仿真调制数据的可解码性来识别所述预测 最大操作深度。
48.如权利要求47所述的方法,其中,所述仿真发射信号包含仿真发射频率,并且其 中,修正所述仿真发射信号包括将所述仿真发射频率的信号强度变化一所述仿真发射频率 的固定值,以识别代表最小信号强度的阈值信号强度,在所述最小信号强度下,所述仿真调 制数据是可解码的,使得所述最小信号强度限定所述预测最大操作深度。
49.如权利要求48所述的方法,其中,改变所述仿真发射频率的信号强度包括使所述 信号强度最初从仿真调制数据可解码的值开始递增地减小。
50.一种用于与系统结合使用的设备,在所述系统中,使发射器在操作程序期间移动经 过一区域中的地面,同时发射发射器信号并且所述区域包含会在所述区域内变化的电磁噪 声,所述设备包括检测器,用于在所述操作程序之前,在地上位置检测所述区域中的电磁噪声,使得所述 电磁噪声在没有发射器信号的情况下被检测到;处理器,被配置用于基于所检测到的电磁噪声,确定用于在地上位置接收所述发射器 信号的发射器的预测最大操作深度;和显示器,用于至少在所述操作程序之前指示所述预测最大操作深度。
全文摘要
本发明提供一种用于与系统结合使用的便携式设备及相关联的方法,在所述系统中,在操作程序期间从地面内发射定位信号。所述定位信号包含可从发射频率范围中的一组离散发射频率中选择的发射频率,并且所述区域包含会变化的电磁噪声。所述便携式设备包括具有包含发射频率范围的带宽的接收器,并可用于在发射频率范围中测量电磁噪声以建立电磁噪声的频率组成,用于在选择离散发射频率其中之一作为选定的发射频率时使用,所述选定的发射频率随后在操作程序期间被用作为定位信号。所述定位信号可以从钻探工具、回拉装置或地下缆线发出。发射器的预测最大操作深度可以在操作程序之前确定。
文档编号G01V3/08GK101943760SQ20101014200
公开日2011年1月12日 申请日期2010年4月8日 优先权日2009年7月6日
发明者劳斯·韦亚特·莱姆, 艾伯特·W.·周 申请人:默林科技股份有限公司